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Double-complex function theory [1, 2, 3] is an alternative isomorphic version of the
former bi-complex function theory initiated by C. Segre [4]. The double-complex
numbers, elements of the double-complex algebra, denoted C(1, j), are represented
as follows: α = z + jw, where j2 = i, and z, w are complex numbers. The algebra
C(1, j) is not a division algebra. A complex-analytic structire can be defined by
an analogue of the Cauchy-Riemann equations. In this note we develop some basic
notions of differential forms on C(1, j) and we study different quadratic geometries
(Q-geometries [6]) over the double-complex algebra C(1, j), and over the bi-complex
algebra BC [5]. In fact, these two algebras are isomorphic.

1. We consider differential 1-forms ω = ϕ(α)dα + ψ(a)da∗ on the double-complex
algebra C(1, j). These 1-forms generalize the formula for the differential of a double-
complex function f(α) = f0(z, w) + jf1(z, w), namely

df =
∂f

∂α
dα+

∂f

∂α∗
dα∗,

where α∗ = z − jw is the conjugate of α = z + jw and

∂f

∂α
=

1

2

(

∂f0
∂z

+
∂f1
∂w

)

− j
i

2

(

∂f0
∂w

+ i
∂f1
∂z

)

,

∂f

∂α∗
=

1

2

(

∂f0
∂z

−
∂f1
∂w

)

+ j
i

2

(

∂f0
∂w

− i
∂f1
∂z

)

,

dα = dz + j dα∗ = dz − jdw.

The operator of exterior differentiation is defined as usually:

dω = dϕ(α) ∧ dα+ dψ(α) ∧ dα∗.

By definition, dα ∧ dα = dα∗ ∧ dα∗ = 0, and dα ∧ dα∗ = −dα∗ ∧ dα.
It is not difficult to see that d2ω = 0 for double-complex differential forms.
Calculating, we obtain:

dω =

(

∂ψ

∂α
−

∂ϕ

∂α∗

)

dα ∧ dα∗ and dα ∧ dα∗ = −2jdz ∧ dw.

Differential 2-forms Ω = F (α)dα ∧ dα∗ are defined as usually and, respectively, for
the operator of exterior differentiation d we have always d Ω = 0.
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Clearly, each 2-form is closed, and the 1-form ω = ϕ(α)dα + ψ(a)da∗ is closed iff:

∂ψ

∂α
−

∂ϕ

∂α∗
= 0.

Having in mind that:

ψ(α) = ψ0(z, w) + jψ1(z, w) and ϕ(α) = ϕ0(z, w) + jϕ1(z, w),

∂ψ

∂α
=

1

2

(

∂ψ0

∂z
+
∂ψ1

∂w

)

− j
i

2

(

∂ψ0

∂w
+ i

∂ψ1

∂z

)

,

∂ϕ

∂α∗
=

1

2

(

∂ϕ0

∂z
−
∂ϕ1

∂w

)

+ j
i

2

(

∂ϕ0

∂w
− i

∂ϕ1

∂z

)

,

we express the last equation in terms of partial complex derivatives
∂ψ0

∂z
,
∂ϕ0

∂z
,
∂ψ1

∂w
,

∂ϕ1

∂w
. As a result we obtain that the 1-form ω is closed iff:

∂(ψ0 − ϕ0)

∂z
+
∂(ψ1 + ϕ1)

∂w
= 0,

−
∂(ψ1 − ϕ1)

∂z
+ i

∂(ψ0 + ϕ0)

∂w
= 0.

The last remark does not concern the holomorphic differential 1-forms on the consi-
dered algebra, i.e. the forms ω = ϕ(α)dα with holomorphic coefficient ϕ(α). This means
that ∂ϕ/∂α∗ = 0, or, equivalently, the Cauchy-Riemann double-complex system is valid
for ϕ(α) = ϕ0(z, w) + jϕ1(z, w):

(1)
∂ϕ0

∂z
=
∂ϕ1

∂w
,
∂ϕ0

∂w
= i

∂ϕ1

∂z
.

For detailed exposition see [1] or [2].
Each holomorphic 1-form is closed. Indeed, we have:

dω = dϕ(α) ∧ dα =

(

∂ϕ

∂α
dα+

∂ϕ

∂α∗
dα∗

)

∧ dα = 0.

We say that the double-complex differential 1-form ω is exact in the domainG ⊂ C×C

if there exist double-complex function f(α) defined in G, such that ω = df(α). Let the
1-form ω = ϕ(α)dα + ψ(a)da∗ be exact in the domain G. Then, there exists a function
f(α), defined in G, such that:

ω = df(α) =
∂f

∂α
dα+

∂f

∂α∗
dα∗.

Comparing, we obtain the following system for the function f(α):

∂f

∂α
= ϕ(α),

∂f

∂α∗
= ψ(α).

The integration of this system depends on the topological properties of the domain G.
Denoting by H0(G) the vector space of all double-complex holomorphic functions

on the domain G ⊂ C × C, and by H1(G) the vector space of the double-complex
holomorphic 1-forms on G, we consider the sequence of mappings defined by the exterior
derivative d:

H0(G) → H1(G) → 0.

This sequence is exact iff each double-complex holomorphic 1-form on G is exact 1-
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form. This is true, for example, in the bi-disk G = ∆(z)×∆(w), where ∆(z), resp. ∆(w),
is an open disk in the complex plane C(z), resp. C(w).

2. In this paragraph we consider the equation ∂∂∗f(α) = 0. More precisely, the left-
hand side looks as follows:

∂

∂α

(

∂f

∂α∗

)

=
1

4

{

∂

∂z

(

∂f

∂α∗

)

− ji
∂

∂w

(

∂f

∂α∗

)}

.

After some calculations we obtain:
∂

∂α

(

∂f

∂α∗

)

=
1

4

(

∂2f

∂z2
+ i

∂2f

∂w2

)

= 0.

In terms of the even part f0(z, w) and the odd part f1(z, w) of the double-complex
function f(α), the last equation reduces to the system:

∂2f0
∂z2

+ i
∂2f0
∂w2

= 0,

∂2f1
∂z2

+ i
∂2f1
∂w2

= 0.

So that, f0(z, w) and f1(z, w) are solutions of the equation

(2)
∂2u

∂z2
+ i

∂2u

∂w2
= 0

with respect to u = u(z, w) as a function of two complex variables.

3. Double-complex Laplacian. We have obtained in the previous paragraph the
complex second order equation (2). It is called double-complex Laplace equation and its
left-hand side – double-complex Laplace operator or double-complex Laplacian. Let us
remark that this equation follows directly from the system (1) written in the previous
paragraph.

In the bi-complex function theory we have the bi-complex Cauchy-Riemann system,
namely

(3)
∂f0
∂z

=
∂f1
∂w

,
∂f0
∂w

= −
∂f1
∂z

.

From this system it follows directly the following Laplace equation

(4)
∂2u

∂z2
+
∂2u

∂w2
= 0.

It is called bi-complex Laplace equation [5], and its left-hand side – bi-complex
Laplacian.

We consider the solutions of the two obtained Laplacians, the bi-complex and the
double-complex Laplace equations. Their solutions are called, respectively, bi-complex
harmonic functions, and double-complex harmonic functions.

It is clear, that the even and the odd parts of a double-complex function are double-
complex harmonic functions. The same is true for bi-complex functions and their even and
odd parts. Here we give an example of a double-complex holomorphic function which does
not satisfy the bi-complex Laplace equation. Namely, let us take the function f(α) = α2,
α ∈ C(1, j). In complex coordinates it looks as follows: f(z + jw) = (z + jw)2 = z2 +
iw2 + j(2zw). The even part f0 = z2 + iw2 and the odd part f1 = 2zw satisfy the system
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(1), but they are not separately double-complex holomorphic functions.
The even part of the considered double-complex function, considered as a quadratic

form Q = z2 + iw2, has a nice geometric interpretation related with the isotropic cone
of a quadratic geometry over the algebra of double-complex numbers. We will see that
there is not a similar interpretation for the quadratic form Q = z2 + w2.

4. Geometric application. Quadratic geometries over some algebras. Here
we shall consider different quadratic forms and the corresponding isotropic cone geometry
from analytical point of view. The mentioned geometry with respect to quadratic form
Q is called Q-geometry [6].

4.1. The algebra of complex numbers C. The module of the complex number z
is defined by the real quadratic form x2 + y2 = zz = |z|2. It is naturally related to the
ordinary Hermitian scalar product

< z,w >= zw, < z, z >= x2 + y2.

The equation < z, z >= 0 defines the isotropic cone, which is trivial: it reduces to the
origin. This simple example serves only for comparison.

4.2. Q-geometry with Q = z2 + w2. We can take the complex quadratic form
z2 + w2. It is related with the scalar product < α, β >= zu+ wv, where z, w, u, v ∈ C.
We have in mind the basic equalities < 1, 1 >= 1, < 1, j >= < j, 1 >= 0, < j, j >= 1.
The isotropic cone < α,α >= 0 is defined just by the quadratic form z2+w2. Clearly, the
considered form is a holomorphic function of two complex variables which does not satisfy
neither the system (3), nor the system (1). So that, in the considered Q-geometry the
isotropic cone z2+w2 = 0 cannot be interpretted from analytic point of view (bi-complex
or double-complex).

In real coordinates the equation z2 + w2 = 0 is represented as follows: if z = x + iy,
w = ξ + iη, then it is equivalent to the system

x2 + ξ2 − (y2 + η2) = 0, xy + ξη = 0.

This means that the considered isotropic cone coincides with the interesection of two
3-dimensional real surfaces in R4.

4.3. Q-geometry with Q = z2 + iw2. Now we consider our main problem. We
take the scalar product over C(1, j) defined by the following basic equalities < 1, 1 >=
1, < 1, j >=< j, 1 >= 0, < j, j >= i. The scalar product seems as follows < α, β >=
zu+ iwv, where α = z + jw, and β = u+ jv, j2 = i, z, w, u, v ∈ C. The isoptropic cone
< α,α >= z2 + iw2 = 0 is defined by the holomorphic function of two complex variables
z2 + iw2, which is not double-complex holomorphic. It is easy to verify that this function
satisfies the double-complex Laplace equation:

∂2u

∂z2
+ i

∂2u

∂w2
= 0.

Finaly, we can formulate the following

Proposition. In the above defined Q-geometry over the algebra of double-complex

numbers the surface of the isotropic cone is a double-complex harmonic surface. This is

not true in the sense of bi-complex numbers.

The complex equation z2 + iw2 = 0 is equivalent to the following system in real
variables:

x2 − y2 − 2ξη = 0, ξ2 − η2 + 2xy = 0.
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So that, the isotropic cone in this case coincides with intersection of the above defined
two 3-dimensional surfaces in R4.
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ДВОЙНО-КОМПЛЕКСНИ ДИФЕРЕНЦИАЛНИ ФОРМИ

Петър Стоев

Двойно-комплексната теория на функциите [1, 2, 3] е комутативна версия на ква-
тернионния анализ подобна на предшестващата я би-комплексна теория на фун-
кциите, начената от К. Сегре (1982) [4]. В началото беше допуснато по недора-
зумение идентифициране с би-комплексната теория (вж. [2, 3]). Елементите на
двойно-комплексната алгебра, означавана с C(1, j), се представят както след-
ва: α = z + jw, където j2 = i, z, w са комплексни числа, α е по дефиниция
двойно-комплексно число. Алгебрата C(1, j) не е алгебра с деление. Двойно-
комплексната холоморфност се определя от един вид система на Коши-Риман
(вж. [1, 2]). В тази бележка развиваме някои основни понятия за диференциал-
ните форми върху C(1, j). Проблемът е да докажем, че повърхнината на изо-
тропния конус в двойно-комплексната псевдо-евклидова геометрия удовлетворя-
ва двойно-комплексно ∂∂∗-уравнение.
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