
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2007
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2007

Proceedings of the Thirty Sixth Spring Conference of
the Union of Bulgarian Mathematicians

St. Konstantin & Elena resort, Varna, April 2–6, 2007

REPRESENTING TREES*

Boyko B. Bantchev

Trees are a well studied and widely used data structure. Nevertheless, it seems that
there are topics related to trees which have not received enough attention in the
computing literature. This paper discusses of them: some finer points in representing
general trees.

1. Introduction. The tree data structure is the archetypal for representing hierar-
chies, and as such is rightly considered as a well known object in computing. Still, studying
the relevant literature, as well as practicing with various programming systems reveals
that some topics seem to have escaped the attention of both scientist and practitioners.
These are perhaps small topics, yet we consider it important to subject them to explicit
treatment. In the following, we discuss one such topic, namely the efficient, with respect
to traversing and other “mass” operations, representation of general trees.

We observe that the well known ways to represent trees are either conceptually
inadequate in the stated respect, or redundant, or both. Yet, it turns out to be difficult
to achieve substantial improvement over them. Besides, different schemes of representing
trees prove advantageous in different cases, so the goal of finding a representation “good
enough” for most uses is probably unacheavable. Perhaps this is one reason why trees,
despite their apparent utility, are extremely rare inhabitants of the libraries coming with
the programming languages and development environments.

2. Trees and representations. Trees organize data hierarchically, but how do we
represent trees as data themselves? There are many ways to do that, depending on what
kind of trees are to be dealt with, the set of operations that we want to be available on
those trees, and the time-space efficiency tradeoff tolerated in a particular context.

Let us concentrate on general (i.e. not binary) rooted trees. Many interesting represen-
tations of such trees are described in the classic encyclopaedia [1]. One can observe that
they vary widely in terms of utility and economy of storage.

As a rule, compact representations are of lesser utility. For example, a tree of n nodes
can be represented as an array of n indices, where each entry corresponds to a tree node
and holds an index to that node’s parent. This scheme is attractive by being both simple
and the tightest possible, and it works well if all we need to do with a tree is adding a node
and knowing the parent of a node. However, an instant access from a node is only given
to its parent, finding any other related node, such as a child or a sibling, takes many
primitive operations on the representation. As a consequence, many operations, such

*This work has been supported in part by SUFSI grant #135/2006

193



as removing a node, pruning or extracting a subtree, traversing, reorganizing, finding
the set of children or siblings of a node, telling whether a node is a leaf etc., are very
time-consuming, even prohibitively so.

We are often interested in representations that may not be as tight as the above
mentioned but ensure fast access to all “close relatives” of a node – its children, its siblings
and its parent, so that many useful operations on trees can be performed efficiently.

The tradition dictates that, trees being dynamic structures, each of their nodes is
separately allocated and linked to some others. Depending on which links are directly
provided, each of the three mentioned kinds of access appears to be direct or not.

Typically, a node is linked to one of its children and to one of its siblings. This implies
that the siblings of a node form a sequentially linked list, so that starting from a node,
each other one is accessible. The last node in the list can point to those nodes’ common
parent, thus, providing an indirect linking of all siblings to their parent. Alternatively,
each node can be linked directly to its parent, so that all nodes access their respective
parents instantly, but then more storage is allocated for each node and for the tree as a
whole.

Trading storage for speed is acceptable in most cases, but sometimes we would need
both good time efficiency and a memory usage as low as possible. Can we do better in
this respect than the above sketched schemes, and if yes, how?

3. Representing a tree efficiently. First of all, vectors can be used instead of linked
lists for representing children: each node’s child nodes then form a vector of siblings which
is referred to from that node. Thus, the sibling relation becomes implicit, and omitting
the pointers from the linked representation, leads to economy of space. A certain gain in
speed is also to be expected due to referencing all children of a node by index.

One does not find a mention of the vector-based representation in the well known
texts on data structures, such as [2], but it is really advantageous, especially when the
number of children of a node does not change frequently. Using vectors is facilitated
by modern programming environments, all of which provide means for dynamic array
allotting and manipulation.

Are there more sources for economising on space without sacrificing speed? Yes –
although not unconditionally – and the way in which this can be done leads to an
interesting observation regarding the role of hierarchy as a data structuring pattern in
general.

As it was already mentioned, in representing trees – and this applies to other data
structures as well – we usually rely on hierarchical composition of types. According to
this view, a tree is built up of nodes, therefore, we first define the structure of a node,
and then link the nodes as needed. Note that in this respect building a tree is basically
the same as that of, say, a linear list, although the resulting structures are functionally
different.

However, in this way the representation of a tree easily becomes redundant. If each
node holds a reference to its parent, then, obviously all the children of a node refer to
that same node but we fail to factor this out. This is insatisfactory in two ways. From
a practical viewpoint, it is potentially space-inefficient. From conceptual viewpoint, it is
simply inadequate (just as any other kind of redundancy is).

It turns out that representing (under our requirements) a tree – the archetypical
hierarchical structure – is inadequate to do in a strictly hierarchical manner! Indeed, the
194



many-to-one relation between a bunch of nodes and their parent is “reverse-hierarchical”
and is not readily accommodated within a straight hierarchy.

It is easy to remove the redundancy by introducing a node handle to mediate the
connection between a node and its children. The figure shows a tree and its representation
using node handles. There is a handle for each node with at least one child. Nodes
themselves are grouped into blocks of siblings, each node being linked to a handle if it
has children, or holding a null pointer if it is a leaf. A handle contains two pointers.
One of them (heading to the right) links to a block of children nodes. The other pointer
(depicted by upward arrow) links to a parent’s handle and is accompanied by an index
(the value below it) distinguishing the parent among its siblings. For example, the handle
pointing to the block of nodes f , g, h also points to a handle pointing to b, c, d, e. The
value 2 means that the second of these, i.e. c, is the parent of f , g and h. The topmost
handle has a null pointer as there is no parent to link to there.

Note that this scheme readily lends itself to representing a forest. Indeed, if the
topmost node vector contains two or more siblings, the structure corresponds to a forest.
All usual operations, such as adding a tree (or a forest) to a forest, linking a tree as a
child to another tree’s node etc., are easily implementable.

a

b c d e

f g h i j

a

1
b c d e

2
f g h

4
i j

In the above described representation, each handle uniquely determines a node – the
parent of some group of nodes that it points to by its right (child) arrow on the figure.
Since no leaf node has a handle, it may be practical to create handles for leaves, with
null child pointers, temporarily as need arises, in order to identify all nodes uniformly
by the same kind of data values. Those handles would not be parts of the data structure
representing the tree per se, so that no space is consumed without necessity.

How much space, if any, do we save using the proposed method? We are saving some
space by representing each parent uniquely, but introducing node handles increases the
number of pointers used per node, so that in fact the “gain” can be negative. Therefore,
roughly speaking, the more leaves and less internal nodes in a tree, the less space is
consumed.

More precisely, let a tree has n nodes, m of which are internal. With a straightforward
vector representation we would be using three cells for each node: for pointing to its
contents, to its parent, and to the array of its children. That makes 3 n pointer cells in

195



total. With a vector representation with handles, we need a pointer to contents and a
pointer to children, plus m + 1 handles, each comprising of three cells: 2 n + 3 (m + 1)
cells in total. The difference between the two computed values is

G(n,m) = n− 3 (m + 1).
When G is negative, then using handles looses to the plain scheme. The worst case for
G (m = n− 1, a linear tree) amounts to −2 n.

On the other hand, for a d-high complete k-ary tree n = (kd+1 − 1)/(k − 1) and
m = (kd − 1)/(k − 1), so G = (kd(k − 3) − 3k + 5)/(k − 1). A complete tree is most
favourable to the handle-based representation because the number of internal nodes is
the least possible. Still, as we see from the above result, for the handle-based scheme to
be advantageous k > 3 is needed. Clearly, with k and d increasing, G grows, and is of
the same order of magnitude as n, therefore, with the introduction of handles we would
be using about 2/3 of the space that the simple vector scheme needs.

3. Conclusion. What can we conclude from our observations? For small or medium-
size trees, or ones with low degree of branching, it is best to use the simple vector
representation. For large trees the handle-based representation consumes less space.
The difference between the two is insignificant for many applications, but there remain
cases when it is important. Huge XML files – something not rare in today’s information
technology world – are an example.

REFERENCES

[1] D. E. Knuth. The art of computer programming, Vol. 1: Fundamental algorithms, 3rd ed.
Addison-Wesley, 1997.
[2] A. V. Aho, J. E. Hopcroft, J. D. Ullman. Data structures and algorithms. Addison-
Wesley, 1983.

Boyko B. Bantchev
Institute of Mathematics and Informatics
Acad. G. Bontchev Str., Bl. 8
1113 Sofia, Bulgaria
e-mail: bantchev@math.bas.bg

ПРЕДСТАВЯНЕ НА ДЪРВЕТА

Бойко Бл. Банчев

Дърветата са добре изучена и широко използвана структура от данни. При все
това, някои свързани с дървета теми изглежда не получават заслужено внимание
в литературата от съответната област. Тази статия обсъжда една такава тема:
някои подробности във връзка с представяне на общи дървета.

196


