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The dynamic stability of a cantilevered Timoshenko beam resting on an elastic
foundation of Winkler type and subjected to a tensile follower force is studied. It is
found that in both cases, with and without foundation, the Timoshenko beam theory
predicts dynamic instability of cantilevers under tension unlike the Bernoulli-Euler
beam theory.

1. Introduction. It is well known that within the framework of the Bernoulli-Euler
beam theory a cantilever subjected to a tensile follower force never loses its stability.
However, it turned out that this is not the case when the cantilever is treated according
to Timoshenko beam theory.

The dynamic stability of a cantilevered Timoshenko beam subjected to a compressive
follower force is studied by Nemat-Nasser [1]. He found that the critical force of the
Timoshenko beam is less than the critical force of the Bernoulli-Euler beam and that
the critical force depends on the slenderness of the beam. The effect of the Winkler
foundation on the stability of the foregoing beam is studied by Lee, Kuo and Lin [2].
They found that for some values of the foundation modulus the cantilevered Timoshenko
beam is destabilized in the sense that its critical force is less than the critical force of the
same beam but without foundation.

There exist many other studies on the dynamic stability of Timoshenko beams that
account for different effects – concentrated masses, elastically supported ends, intermediate
supports, etc. In all of them the Timoshenko beam is subjected to a compressive follower
force. To the best of our knowledge there do not exist papers where results concerning the
dynamic stability of Timoshenko beams subjected to tensile follower force are reported.
This problem is studied in the present note. The aim is to find out whether a tensile
force can destabilize a Timoshenko beam and to analyse the influence of the Winkler
foundation on such phenomenon.

2. Boundary-value problem. Consider an uniform elastic cantilevered beam of
length L, cross-section area A, inertia moment of the cross-section I , resting on a Winkler
foundation of modulus c and subjected to a tensile force N at the free end, which is always
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normal to the end cross-section (that is a follower force1). In this case, according to the
Timoshenko beam theory [4, 5], the local kinetic and strain energies of the beam are
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where X is the axial coordinate along the beam axis, t is the time, W (X, t) is the
transverse deflection of the beam axis and Θ(X, t) is the rotation angle of the cross
section. E, G and k are Young’s modulus, the shear modulus and the shear coefficient,
respectively, and ρ is the mass density per unit length of the beam.

The Euler-Lagrange equations associated with the functional of Lagrangian density
T − U read
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These equations together with an appropriate set of boundary conditions describe entirely
the dynamic behaviour of the considered beam. The boundary conditions for a cantilevered
Timoshenko beam subjected to a follower force are
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Using the dimensionless variables
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where ν is Poisson’s ratio, and taking into account the relation G = E/[2 (1 + ν)],
equations (1) and boundary conditions (2) take the dimensionless form
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Separating the variables in the form

w = u (x) exp (iωτ) , Θ = θ (x) exp (iωτ) ,

equations (3) and conditions (4) transform to the two-point boundary value problem

1For a detail discussion on the notion follower force see the exhaustive survey of Elishakoff [3]
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Actually, this constitutes a non-self-adjoint eigenvalue problem, the eigenvalue parameter
being the frequency ω.

The general solution of the equations (5) can be written in the form

u = C1 cosh (a1x) − C2 sinh (a2x) + C3 sinh (a1x) + C4 cosh (a2x) ,

θ = C1b1 sinh (a1x) + C2b2 cosh (a2x) + C3b1 cosh (a1x) − C4b2 sinh (a2x) ,(7)

where Ci (i = 1, . . . , 4) are arbitrary complex numbers,
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Substituting the solution (7) in the boundary conditions (6), one obtains a linear homo-
geneous system for the unknown constants Ci. The condition for existence of a nontrivial
solution to this system can be written as
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Consequently, for a given set of the beam parameters λ, β, k0 and P , the eigenfrequen-
cies ω are determined as the solutions of equation (8). The critical force Pcr is determined
as the lowest value of P at which this equation has a solution with negative imaginary
part, the rest of the beam parameters being kept fixed.

3. Results and discussion. In the case studies presented below, Timoshenko beams
of rectangular cross section with shear coefficient k = 5/6 and Poisson’s ratio ν = 0.3
are considered. The eigenfrequencies of the beams are determined solving equation (8)
numerically using the routine FindRoot in Matematica. Each eigenfrequency of negative
imaginary part is also verified by a Maple implementation of the shooting method
(package shoot2 [6]) to confirm once again that it corresponds to a nonzero solution
(u, θ) of the eigenvalue problem (5), (6).

First, the dynamic stability of beams without foundation is studied. For convenience,
a new slenderness parameter µ is introduced which, for beams of rectangular cross section
of height h, is µ = h/L (λ = µ2/12). The critical forces are computed for values of the
parameter µ between 0.01 and 0.20. As a typical example, the results for the case µ = 0.10

2This package can be downloaded from the website of the first author of paper [6] (Douglas B.
Meade) at http://www.math.sc.edu/˜meade/maple/Shoot9/Shoot9.zip
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Fig. 1. Evolution of the eigenfrequencies with the force P of a Timoshenko beam with
k0 = 0 and µ = 0.10: (a) first ten eigenfrequencies; (b) eleventh (thin line) and twelfth

(thick line) eigenfrequencies

are presented in Fig. 1. The evolution of the first 10 eigenfrequencies is shown in Fig. 1(a).
It is found that the first eigenfrequency decreases, while the eigenfrequencies from second
to tenth increase with the tensile force P . The eleventh and twelfth eigenfrequencies also
increase, but they coincide at the critical force Pcr = 0.3817 as is seen in Fig. 1(b).
Beyond Pcr a complex eigenfrequency of real part 721 and a negative imaginary part
appears indicating the dynamic instability of the beam. Timoshenko beams with other
values of µ possess stability features that are similar to the case µ = 0.10. The critical
forces and the real parts of the respective eigenfrequencies for 10 values of the slenderness
parameter µ are presented in Table 1.

Table 1. Critical forces for cantilevered Timoshenko beams without foundation

µ 0.01 0.02 0.03 0.04 0.05 0.10 0.15 0.20
Pcr 0.5705 0.5709 0.4101 0.3472 0.4095 0.3817 0.3541 0.4131
Re [ω] 67945 16992 7558 4257 2759 721 312 208
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Fig. 2. Instability region (shaded) of a cantilevered Timoshenko beam with µ = 0.10.
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Next, the dynamic stability of Timoshenko beam of slenderness µ = 0.10 resting on
Winkler foundation is studied for values of the dimensionless foundation modulus k0 up
to 310. It is found that there exists a region of parameters (k0, P ), where the beam is
unstable which is shown in Fig. 2. The lowest critical force is found to be Pcr = 0.0136
achieved at foundation of modulus k0 = 77.5. This critical force is smaller than the
compressive critical force for the same beam without foundation which is 0.0153.

Thus, it is found that the Timoshenko beam theory based on equations (1) predicts
dynamic instability of cantilevers under tension unlike the Bernoulli-Euler theory. The
Winkler foundation is found to destabilize the beam for values of k0 up to 310 in the
sense that the critical forces for 0 < k0 < 310 are less than the critical force at k0 = 0.
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ДИНАМИЧНА НЕУСТОЙЧИВОСТ НА КОНЗОЛНА ГРЕДА НА
ТИМОШЕНКО ПОДЛОЖЕНА НА ОСОВ ОПЪН

Петър А. Джонджоров, Васил М. Василев

Представено е изследване на динамичната устойчивост на конзолна греда на
Тимошенко върху еластична основа от Винклеров тип под действието на осова
сила на опън. Показано е, че както с основа, така и без нея, моделирането на тази
греда посредством теорията на Тимошенко води до динамична неустойчивост, за
разлика от моделирането посредством теорията на Бернули-Ойлер.
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