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LOCAL VARIATION METHOD TO CALCULATE TWO
DIMENSIONAL GRAVITY WAVES IN CONTAINER"

Dimitar S. Iliev

We study the dynamics of two-dimensional gravity waves of an inviscid incompressible
fluid in a channel. The fluid flow is assumed to be irrotational. We have energy
dissipation along the triple contact line. A numerical code is developed to study the
dependence of the time evolution on the free line. We use a standard numerical scheme
to solve the interfacial low problems. The main element of this scheme is calculation
of the harmonic potential. For this we develop a modified numerical method of the
local variations method to solve the Laplace equation on non-rectangular domain with
mixed boundary conditions. We show that with the suggested numerical algorithm
the behavior of the fluid in a container can be effectively studied.

1. Introduction. It is of fundamental and engineering importance to investigate
liquid sloshing in a partially filled container for unspecified motion that is a complex
theoretical problem. Numerous studies are devoted to investigate gravity waves in confined
region using different approaches and techniques. The asymptotic methods for determining
the frequencies of standing gravity waves are well known, at least for vertical boundaries.
In [1] a weakly-nonlinear theory is formulated for standing waves in infinite depth and
in [2] — case of arbitrary depth. To calculate the dynamics of an incompressible fluid
with free surface different numerical methods are used [3-6]. Most of the research on
gravity waves on a free liquid surface is concentrated on waves propagation. The way
how dissipative processes on the triple contact line influences the gravity waves is not
enough investigated. Usually only not completely realistic extreme cases when the free
surface meets the boundary orthogonally or the contact line remains fixed throughout
the motion are considered. More realistic assumption is that dissipation is large but
finite. One of the basic models [7] uses the idea that the fluid particle on the triple
contact line can move, but when it moves a friction force, proportional to the point
velocity, acts on it which impedes its motion. Until now, for this model there isn’t
any solution available for dynamic behavior of points on the triple contact line. When
friction force is added to the model, then the dynamic equation becomes much more
complicated. For this case in each time step Laplace equation must be solved for more
complex domain with more complicated boundary conditions. In this work we would like
to propose effective numerical method to solve this problem. To this end we modify the
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local variation method. This method is effective to solve partial differential equation with
mixed boundary conditions in a variety of domains. Using this method we obtain for the
first time dynamic solution for the motion of the fluid when the described friction force is
taken into account. Till now only spontaneous quasi-static relaxation dynamics of liquid
on solid surfaces in the partial wetting regime was studied numerically [8], [9].

2. Problem formulation. We consider motion of an inviscid and incompressible
fluid inside 2D rectangular container under the action of the gravity g and the friction

force F = —y*v* (y* can be considered as a friction coefficient) (see Fig. 1).
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Fig. 1. Definition sketch Fig. 2. Schematic graphic of a part of the

grid lines and grid points in solution domain

The distance between the walls Lo and L, is a. Ly is the tank bottom, the depth is
b. The fluid flow is assumed to be irrotational, therefore it can be described in terms of
a velocity potential ¢ (v = grad ¢). We use a Cartesian coordinate system (x/a, y/a).
The z-axis coincides with the non perturbation position of the free surface and the y-axis
is directed vertically upward. We choose the channel length a as a characteristic length,
and \/a/g as a characteristic time. We use dimensionless variables z, y, t, v and the

renormalized potential ¢ defined as follows: t = t*1\/g/a, v = v*+v/a/g, ¢ = ¢*/a /ag,
where g is the gravity acceleration. Potential ¢ must satisfy Laplace’s equation in S:

(1) V2o (R,t) =0, R(z,y)€S.
The container bottom and walls are rigid and impermeable, therefore
(2) 0p(R)/0x =0, Re{Lyp, Ly}, Op(R)/Oy=0, RE Lpo.

The dynamic boundary condition on the free line L is based on the Bernoulli equation
and is given at the initial points by

(3) dp(R)/0t = —v(R)*/2 — R,, R(z,y) € L/{Ao,Au},
and at the boundary points Ay, A, of L by
(4) dp(R)/0t = —v(R)?/2 — R, — v, R € {Ag A}
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3. Numerical method. The motion of the free line L () is simulated by performance
of the following steps: 1. Specify the initial free line L (0) and the distribution of the
harmonic potential ¢ (0) over L (0); 2. Solve the equation (2) subject to the conditions
(3) and ¢ (R) = ¢ (R,0), R € L(0); 3. Compute the velocity at the free line; 4. Update
the position of the free line; 5. Update the harmonic potential at the free line using
equations (3), (4) (for details see [10]).

Solving Laplace equation. The principle problem is to solve (1) with boundary
conditions (2) and
(5) ¢(R)=¢(L,t), Re L.

To solve this problem we obtain the minimum fy,;;, of the functional

i ][ () o

in set of functions f which satisfy the boundary conditions

(7) df (R)/0x =0, Re€{Lo,Ls}, Of(R)/Oy=0, RE Lpot,

(8) f(R) =o(L,t),R e L(t).
The function fuin satisfies the conditions (1), (2), (5). We obtain this function numerically.
We cover the domain S by a two-dimensional grid of lines, as it is shown in fig 2.

To satisfy the boundary conditions (7) we add three grid lines outside of S. Denote by
R ;= (%ij;,¥ij),i=1,...,101,5 =1,...,101 the grid points. We have:

|xi+1,j - 1'7;’]“ = 1/99,’& = ]., ey 100,
[Yij — Yij+1l = Di = |Yi2 — ¥ino1| /99, i=1,...,101; j=1,...,100.
On the grid points we approximate f by F; ;. The condition (8) is approximated by
(9) Fi101 = ¢(Ri101)-
The condition (7) is approximated by the relations
Fyj=Fs;, Fioi,; = Fogj, j = 2,100
(10) Fi,l = Fi’3, Z = 2, 100,
Fyy=F33, F1 101 = F399.
We obtain the minimum of the function of the variables Fj ;, i = 2,100; j = 2,100

i=2,100
§=2,100

3.7 2 e 2
(1) F(F)= % ([0 FE]+ Dy (F)]) S
2%}
where S; ; is the area of the trapezoid R; j, Riy1,j, Rit1,j+1, Bij+13
Fijo1—F;  Fij— Fig

D4 —
Y 24 2A 41
pii__ L Py —Fy (680 +tg6,11) i 1 Fiprim — Fijn
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with boundary conditions (9), (10). The condition (9) is fixed, but the condition (10)
is not given initially. We overcome this difficulty using Local variations method we’ve
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modified. This method is based on an iterative approach. When we change a value of
the function (11) at inner grid point R, 3, Ry 99 or Rs,, then we change the value at
corresponding boundary point using condition (10).

Finding the position of free line at consecutive moments of time. At the
time moment k£ we find ¢ at points R;; of the grid and after that we calculate the
velocities at the points R; 101 that belong to the free line L (k). After that we evaluate
the displacements of the positions of the points R; 191 for time step At=0.02. This is
how we find the position of these points at the next time moment. From Eqs. (4), (5) we
find the values of ¢ at these points. By cubic spline approximations we determine all the
points of the free line L (k+ 1) and ¢ (L (k + 1)).

4. Numerical results. The independent parameters are: the initial free line L (0),
the distribution of the harmonic potential ¢ (0) over L (0), a/b, . All results given here
are for a/b = 1.

4.1 Without friction. To test numerical method we consider first the case in
which the friction force is zero. We take the same initial condition as in the obtained
asymptotic solution [1] for the full nonlinear problem for € = 0.157. We can compare our
results with asymptotic solution because the wave amplitude is small and the distance
between L and the container bottom is large (see Fig. 3). We find good correspondence
between the two results. In Figure 4 numerically obtained harmonic potential ¢ in
time step 25 is shown. At each time step, when we calculate ¢, we analyze how the
function obtained by the minimizing process approximates directly the Laplace equation.
For this in each inner grid point we calculate ; ;(t) = |V (t,R; ;)| by the second-
order centered-difference approximation of V2 (¢, R; ;). We obtain that for all time
moments max (g;,; € E) = 0.009, mean (g;; € E) = 0.6 1076, E = {e; ; (t),i =2,...,99,
j=2,...,99, t=1,...,127}
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Fig. 3. With circles is shown the free line,

obtained with our calculations at different Fig. 4 The harmonic potential ¢ in time step
moments of time. With solid line nonlinear T=25
solution obtained in [1] is shown

In asymptotic solutions in this case the free line is approaching the solid surface at
an angle of 90° at any moment of time. Numerical results correspond to this boundary
condition. We obtain contact angle in each time step by linear approximation. Mean
contact angle is 90.01°, the standard deviation is 0.26°, max derivation is 0.5°.
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4.2 With friction. In this case we have the same initial conditions as in the case
4.1, but now the friction force v = 0.2 is added at the boundary points of the free line.
In Figure 5 we compare cases 4.1 and 4.2. For this case we calculate again how the
Laplace equation is obtained in inner grid points with second-order centered-difference
approximation. We obtain that for all moments of time with first cycle good approximation
maxe; ; = 0.01, mean &; ; = 1075, In this case the fluid free line is approaching the solid
surface at a contact angle, which changes with the time as it shown in Fig. 5.
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Fig. 5. The position of the line L at moments of time 7' = {25; 50; 75; 100; 125} in the two
cases. The position of the line L in the case 4.2 is shown with solid line. The position of the
line L in the case 4.1 is shown with triangles.

The obtained results show that with the suggested numerical algorithm we can effecti-
vely solve the Laplace equation with mixed boundary condition in non-orthogonal domain
and we can study the behavior of the fluid in a vessel when friction forces at the contact
line are present.
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METO/I HA JIOKAJIHUTE BAPUAIINU 3A IIOJIVAHABAHE HA
JABYMEPHU 'PABUTAIIMIOHHU B'bJIHU B KOHTEMHEP

duvursp C. Unues

N3cnenBame nuaaMuKaTa Ha IBYMEPHU I'PABUTAIIMOHHN BBHJIHA HA WJi€aIeH HECBUBAEM
bayun B kKanas. QrynIHOTO TI0JIE ce TIpeIroiara HoTeHIa Ho. Pa3riex tamMe Moes
B KOHMTO MMa JUCUTIAINS HA €HePTHUsTa Ha Tpuda3HaTa KOHTAKTHA JTHHUS. Pazpaboren
€ YUCJIeH aJI'OPUTHM 3a U3Cje/IBaHe Ha 3aBUCHMOCTTa OT BpeMeTO Ha €BOJIIOIUATa Ha
cBoOoHATA JnHUA. V3mo3BaMe cTaHIapTHA YHC/IEHA CXEMA 3a pelllaBaHe 33/1a9aTa
3a JaBHU2KeHMe Ha GIIyus cbC cBobomua rpanuria. OCHOBEH eJIEeMEHT Ha Ta3W CXEeMa €
HAMHMPaAHETO HA MOTEHIMAJa. 3a PElIaBaHeTO Ha TO3U IpobiieM pasBuBaMe Moiaudu-
Kalysl Ha YUCJIEHUS METOJ[ Ha JIOKAJIHUTE BapHaIlUM 3a pelllaBaHe Ha YPaBHEHUETO
ua Jlamrac 3a HeopToroHasHa 00JIACT M CMECEHU IpaHuvHu ycaoBus. [lokasBame ge ¢
[Ipe/IJIATaHUs YUCJIEH aJITOPUTHM MOXKe e(DEKTHBHO Ja Ce M3CJIE/IBA IIOBEIEHUETO HA
diyn B KOHTEHED.
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