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EXISTENCE OF SOLUTIONS IN A CLASS OF DYNAMIC
SPATIAL CONSUMPTION MODELS*

Iordan V. Iordanov, Andrey A. Vassilev

We investigate the existence of solutions to a class of economic models that feature a
dynamically optimizing consumer who makes both consumption and spatial location
(migration) decisions. We show that under certain assumptions a solution to the
model exists.

Introduction. In the present paper we study the existence of solutions to a class
of dynamic economic models featuring a combination of consumption-saving and spatial
location decisions made by an optimizing agent. The problem stated here constitutes
a natural building block for developing larger models to study aggregate consumption
and migration phenomena. We translate the economic problem into an optimal control
problem with a finite horizon and prove the existence of a solution to this problem under
certain assumptions. Unlike traditional existence proofs in the spirit of Theorem 4, §4.2
in [4], we dispense with convexity assumptions on the set of generalized speeds for the
optimal control problem. The setup and the assumptions we employ, are described in
Section 2. Our existence result, along with its proof, is stated in Section 3.

2. The problem. We consider the following problem:

(1) max
c(t),z(t)

J(c(t), z(t)) :=
∫ T

0

[u(c(t))− g(ẋ(t))]e−ρtdt + l(a(T ))

subject to
(2) ȧ(t) = ra(t) + w(x(t))− pc(t)− h(ẋ(t)), a(0) = a0 ≥ 0,

(3) ẋ(t) = z(t), x(0) = x0 ∈ [0, 1].
Problem (1)–(3) is a continuous-time optimal control problem with a finite horizon

T , where a(t) and x(t) are the state variables and c(t) and z(t) are the controls. The
assumptions we make, are as follows. For the controls they are:
(4) 0 ≤ c(t) ≤ C, ∀t ∈ [0, T ],

(5) |z(t)| ≤ Z, ∀t ∈ [0, T ],
with Z,C > 0.
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We impose the nonnegativity constraint
(6) a(T ) ≥ 0.

Then, the set of admissible controls is taken to be
∆ := {c(t) ∈ L2[0, T ], z(t) ∈ L2[0, T ], such that conditions (4), (5) and (6) are satisfied}.

The real function w(x) is defined and continuous on the real line. We assume that
W ≤ w(x) ≤ W and w(x) ≥ 0 for x ∈ [0, 1], w(x) < 0 for x 6∈ [0, 1].

The real-valued functions u(·) and l(·), defined on [0,∞), are increasing, continuous
and concave.

The real-valued functions g(·) and h(·) defined on [−Z, Z], are continuous and convex.
We also assume that g(z), h(z) ≥ 0 and that g(0) = h(0) = 0.

The parameters ρ, r and p are taken to be strictly positive.
In economic terms, the above model looks at the optimal decisions of an economic

agent who tries to maximize utility u(·) from consumption c(t), where a unit of consump-
tion is obtained at price p. This consumer is characterized, at each time instant t, by
financial asset holdings a(t) and location in space x(t). Assets earn interest r and in
location x the agent can receive1 wage w(x). Apart from c(t), the consumer chooses a
location in space through the speed of relocation z(t). Changing one’s location incurs
certain monetary costs (transportation, transaction etc.), denoted by h(·), which depend
on the speed of relocation. The consumer is also assumed to form habits with respect to
the current location and, thus, to experience a certain psychological discomfort (disutility)
g(·) from relocation. Both the utility of consumption and the disutility from relocation
are time-discounted at rate ρ. Finally, the consumer also derives utility l(·) from the level
of financial assets a(T ) left as a bequest at the end of his lifetime.

3. The main theorem. To prove the existence of a solution to the model, we start
by stating two supplementary results.

Lemma 1. Let the functions xi, i = 1, 2, . . . , and x̄ be defined on [0, T ] and let take
values in the interval [a, b]. Let xi tend uniformly to x̄ as i → ∞ (denoted by xi ⇒ x̄)
and w ∈ C0[a, b]. Then, we have

i)
1
m

m∑
i=1

xi ⇒ x̄,

ii) w(xm) ⇒ w(x̄),

iii) w

(
1
m

m∑
i=1

xi

)
⇒ w(x̄).

in [0, T ], as m →∞.
Proof. The proof directly replicates the standard proofs of counterpart results on

numerical sequences. ¤
Lemma 2 (The Banach-Saks Theorem). Let {vn}∞n=1 be a sequence of elements in a

Hilbert space H which are bounded in norm: ‖vn‖ ≤ K = const, ∀n ∈ N. Then, there
exist a subsequence {vnk

}∞k=1 and an element v ∈ H such that

1We do not model labour-leisure decisions in this setup, so the consumer may be taken as supplying
inelastically a unit of labour at each moment in time.

253



∥∥∥∥
vn1 + · · ·+ vns

s
− v

∥∥∥∥ → 0 as s →∞.

Proof. See, for example, [1, pp. 78–81]. ¤
Theorem 1.Under the assumptions stated in section 2, there exists a solution to

problem (1)–(3) for (c(t), z(t)) ∈ ∆.

Proof. We start by noting that the set of admissible controls ∆ is nonempty. To see
this, choose controls c(t) ≡ c0 = const and z(t) ≡ 0. Then, any c0 ∈ [0, min{w(x0)/p, C}]
ensure that a(T ) ≥ 0.

Next, observe that∣∣∣∣∣
∫ T

0

u(c(t))e−ρtdt

∣∣∣∣∣ ≤
∫ T

0

|u(c(t))|e−ρtdt ≤
∫ T

0

max
0≤c≤C

|u(c)|e−ρtdt ≤ T max
0≤c≤C

|u(c)| < ∞.

Also,

0 ≤
∫ T

0

g(z(t))e−ρtdt ≤
∫ T

0

max
z≤|Z|

g(z)dt = T max
z≤|Z|

g(z) < ∞.

Finally,
a(T ) ≤ erT [a0 + T max

x
|w(x)|], i.e. 0 ≤ a(T ) ≤ const < ∞,

so that l(a(T )) is bounded.
Thus, for (c(t), z(t)) ∈ ∆, the objective functional (1) is bounded. Consequently,

J0 := sup(c(t),z(t))∈∆ J(c(t), z(t)) < ∞. Then, we can choose a sequence of controls
{(ck(t), zk(t))} ⊂ ∆ such that J(ck(t), zk(t)) → J0.

Let ak(t) and xk(t) be the state variables corresponding to the controls (ck(t), zk(t)).
It is easy to verify that the functions ak(t) and xk(t) form a uniformly bounded and
equicontinuous set. Then, by the Arzelà-Ascoli theorem (see, e.g., [4], Ch.4), there exists
a subsequence (aks(t), xks(t)) ⇒ (ā(t), x̄(t)).

Notice that for (c(t), z(t)) ∈ ∆, we have

‖c(t)‖L2 =
∫ T

0

|c(t)|2dt =
∫ T

0

c(t)2dt ≤
∫ T

0

C2dt = C2T,

‖z(t)‖L2 =
∫ T

0

|z(t)|2dt ≤
∫ T

0

Z2dt = Z2T.

Then, if cks(t) and zks(t) are the controls corresponding to (aks(t), xks(t)), by Lemma
2 we can in turn choose subsequences cksq

(t) and zksq
(t) whose arithmetic means tend

in L2[0, T ]-norm to some elements in L2[0, T ], denoted ¯̄c(t) and ¯̄z(t), respectively. For
brevity, we introduce the notation cq(t) := cksq

(t), zq(t) := zksq
(t) etc., as well as c̃m(t) :=

1
m

m∑
q=1

cq(t) and z̃m(t) :=
1
m

m∑
q=1

zq(t).

Then, we have established that: (1) (aq(t), xq(t)) ⇒ (ā(t), x̄(t)) as q → ∞ and (2)
c̃m(t) −−→

L2

¯̄c(t), z̃m(t) −−→
L2

¯̄z(t) as m →∞.

So far, it is not clear whether c̃m(t) and z̃m(t) are admissible: they obviously satisfy
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(4) and (5) but the corresponding a(T ) may fail to satisfy (6). However, we can show
that the controls ¯̄c(t) and ¯̄z(t) are admissible.

Indeed, according to [3, Ch. 7, §2.5, Prop. 4] we can choose subsequences of c̃m(t)
and z̃m(t) that converge a.e. and, after passing to the limit, we obtain that ¯̄c(t) and ¯̄z(t)
satisfy (4) and (5).

It remains to show that ¯̄a(T ) = erT
[
a0 +

∫ T

0
[w(¯̄x(t))− p¯̄c(t)− h(¯̄z(t))]e−rtdt

]
≥ 0,

where ¯̄x(t) = x0 +
∫ t

0
¯̄z(τ)dτ .

Consider

(7) ãm(T ) = erT

[
a0 +

∫ T

0

[w(x̃m(t))− pc̃m(t)− h(z̃m(t))]e−rtdt

]
,

with x̃m(t) = x0 +
∫ t

0
z̃m(τ)dτ =

1
m

m∑
q=1

(
x0 +

∫ t

0
zq(τ)dτ

)
=

1
m

m∑
q=1

xq(t). Adding and

subtracting
1
m

m∑
q=1

w(xq(t)), and applying Jensen’s inequality to the term h(z̃m(t)), we

obtain

ãm(T ) ≥erT

∫ T

0

[
w(x̃m(t))− 1

m

m∑
q=1

w(xq(t))

]
e−rtdt

+
1
m

m∑
q=1

erT

[
a0 +

∫ T

0

[w(xq(t))− pcq(t)− h(zq(t))]e−rtdt

]

≥erT

∫ T

0

[
w(x̃m(t))− 1

m

m∑
q=1

w(xq(t))

]
e−rtdt

(8)

By Lemma 1, both integrands inside the square brackets in the last line of (8) tend
uniformly to w(x̄(t)), so that the integral tends to zero. Thus, if lim

m→∞
ãm(T ) exists, we

have lim
m→∞

ãm(T ) ≥ 0.

We proceed to check that lim
mj→∞

ãmj (T ) = ¯̄a(T ) for a suitable subsequence ãmj (T ).

We know that
1
m

m∑
q=1

xq(t) = x0 +
∫ t

0

1
m

m∑
q=1

zq(τ)dτ . Since
1
m

m∑
q=1

xq(t) ⇒ x̄(t) and,

additionally, as it is easy to verify by applying Hölder’s inequality that
∫ t

0
z̃m(τ)dτ →∫ t

0
¯̄z(τ)dτ when z̃m(t) −−→

L2

¯̄z(t), we obtain x̄(t) = x0 +
∫ t

0
¯̄z(τ)dτ = ¯̄x(t).

Since c̃m(t) −−→
L2

¯̄c(t) and z̃m(t) −−→
L2

¯̄z(t), there exist subsequences c̃mj (t) and z̃mj (t)

such that c̃mj (t) −−→
a.e.

¯̄c(t) and z̃mj (t) −−→
a.e.

¯̄z(t). To simplify notation, we refer to the
new subsequences as c̃j(t) and z̃j(t). Since the function h(z) is bounded on [−Z, Z], by
Lebesgue’s dominated convergence theorem

∫ T

0
h(z̃j(t))e−rtdt → ∫ T

0
h(¯̄z(t))e−rtdt. It can

also be verified that
∫ T

0
c̃j(t)e−rtdt → ∫ T

0
¯̄c(t)e−rtdt. Lastly, we know that∫ T

0
w(x̃j(t))e−rtdt → ∫ T

0
w(x̄(t))e−rtdt as w(x̃j(t)) ⇒ w(x̄(t)). Consequently, the limit

of (7) as mj → ∞ exists and is equal to ¯̄a(T ), so that ¯̄a(T ) ≥ 0. This shows that ¯̄c(t)
and ¯̄z(t) are admissible.

By an application of Lebesgue’s dominated convergence theorem to the corresponding
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terms in (1), we get lim
j→∞

J(c̃j(t), z̃j(t)) = J(¯̄c(t), ¯̄z(t)).

Define ρmj (T ) := erT
∫ T

0

[
w(x̃mj (t))−

1
mj

mj∑
q=1

w(xq(t))

]
e−rtdt. Obviously, ˜̃amj (T ) =

ãmj
(T )−ρmj

(T ) also tends to ¯̄a(T ) and ˜̃amj
(T ) ≥ 1

mj

mj∑
q=1

aq(T ), where aq(T ) corresponds

to (cq(t), zq(T )). Then, indexing by j instead of mj in order to simplify the notation, we
get

J0 ≥ J(¯̄c(t), ¯̄z(t)) = lim
j→∞

{∫ T

0

[u(c̃j(t))− g(z̃j(t))]e−ρtdt + l(˜̃aj(T ))

}

≥ lim
j→∞

{
1
j

j∑

i=1

[∫ T

0

[u(ci(t))− g(zi(t))]e−ρtdt + l (ai(T ))

]}

= lim
j→∞

{
1
j

j∑

i=1

J(ci(t), zi(t))

}
= J0.

This shows that the admissible pair (¯̄c(t), ¯̄z(t)) is optimal, as required. ¤
4. Examples. In [2] we study the optimal behaviour of the consumer under the

assumptions u(c(t)) = c(t)1−θ/(1− θ), g(z(t)) = ηz(t)2, l(a(T )) = e−ρT a(T )1−θ/(1− θ)
and h(z(t)) = ξz(t)2.
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СЪЩЕСТВУВАНЕ НА РЕШЕНИЕ НА ЕДИН КЛАС ОТ
ДИНАМИЧНИ ПРОСТРАНСТВЕНИ МОДЕЛИ НА ПОТРЕБЛЕНИЕ

Йордан В. Йорданов, Андрей А. Василев
В работата се разглежда въпроса за съществуване на решения за един клас от
икономически модели с потребител, решаващ динамична оптимизационна зада-
ча, в която се прави избор на потреблението и на положението в пространството
(миграция). Доказва се, че при определени допускания съществува решение на
модела.
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