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In this paper an approach for defining the displacements of an elastic link from
an open-loop kinematic chain (manipulator) is presented, supposing that the
displacements are small. The approach is based on the differential equation of an
elastic line of a bent beam and the D’Alembert principle. The law of motion and
the equation of the elastic line are considered and solved together. The cases of the
simplest motions of an elastic link with a fixed point mass at its end are analyzed.
The general case of motion of this link when it appears to be the last one in the
structure of manipulating system is also analyzed. An example of two-link 2R plane
manipulator with second flexible link is given.

1. Introduction. One of the most important problems in Robotics is the effective
real time obtaining of the dynamic equations of motion for the real-time simulation and
control purposes, i.e. as well as for effective investigations and manipulator design, so
for realizing effective control algorithms. After geometrical description of the concrete
structure, the next step is the kinematical modelling which may be realized on the
base of the different parameterizations of the rotation group and the different algebraic
descriptions, using homogeneous matrices and rotation matrices. Further on, the dyna-
mical modeling of manipulators can be realized on the base on the Lagrange’s equations,
Newton-Euler recursive equations, the equations of D’Alembert, Gauss, Appel, Kane,
etc. We will not referee here the so many papers and books on this subject. The robot
manipulators are divided in some groups: rigid body manipulators ([1], [2], [5], [3], [4],
etc.), flexible links manipulators ([11], [13], [12], [14], [7], [15], [8], etc.), manipulators with
flexible joints ([9], [6], etc.), and their different combinations. This is according to the
structure and the mechanical models. And what about according to the computations.
In the recent years symbolic computations and parallel algorithms are widely used for
efficient modeling and computations. On the one hand the symbolic computations give
the possibilities for analytical evaluation, discussions and corrections, on the other hand
the parallel algorithms reduce the computational time which is quite important for on-
line simulations and control. Having in mind this study, namely modeling of flexible
link manipulators, the main algorithms are based on the following models: the finite
element method, the Ritz method and using Lagrange, Newton-Euler and Hamilton
equations of motions. In the present work, an approach for defining the displacements of
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an elastic link in open-loop kinematical chain (manipulator) is presented, supposing that
the displacements are small. It is based on the differential equation of an elastic line of
a bent beam and the D’Alembert principle. An example of two-link plain manipulator,
where the second link is flexible, is given.

2. Problem Statement. Let us consider an example of a cantilever with a fixed
point mass at its end (Fig. 1). If the beam stiffness is high enough, then it could be
supposed that the beam is massless, and the only force which loads, it is the gravity
force of a point mass. We accept that the beam stiffness is big enough if the beam does
not undergo deformation under the influence only of its own mass. If the displacements
are small, then the elastic line of the beam are defined as follows

EIz
d2y

dx2
= −Mz, Mz = mg(l − x),(1)

where Mz is the bending moment, l is the length of the beam, Iz is the inertia moment
of the beam section, m is the mass of the point mass, and g is the gravitational constant.

Fig. 1. Cantilever with a fixed point mass at its end

If the beam moves around some fixed point, then according to the principle of
D’Alembert an additional inertia force Φ is added. This force is oriented out from the
point mass trajectory, it is equal to the product of the mass and its accelerations, and it
exists during the whole motion. If the movement is given or known in advance, then the
inertia force can be found in every moment. The displacements of the beam can also be
obtained.

The main idea of this algorithm is: 1. to find acceleration of the point mass supposing
that the link is undeformable (rigid). This idea is based on the assumption that the
elastic displacements are small; 2. to compose an expression of the inertia force of the
point mass; 3. to compose a differential equation of the bent elastic line of flexible link;
4. to find the elastic displacements. Further on, the simplest cases of movement of a
massless beam with a fixed point mass are briefly analyzed.

3. Movement of a Massless Beam with a Fixed Point.We consider the following
four cases:

CASE 1. Rotation of a Flexible Link in Vertical Plane with Constant Velocity.
Let us consider Fig. 2. A flexible link with fixed point mass rotates around Oz axis in

the vertical plane. The mass of the link is neglected and the elastic displacements of the
link are accepted to be small. Φ does not generate a moment since there is no vertical
component in the movable coordinate system Ox′y′z′, i.e.

Φy′ = 0.(2)
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The only force which generates a moment with respect to the point of hanging O is
the gravity force of the point mass. Its vertical components are

Gy′ = G cos θ = mg cos θ.(3)

Fig. 2. Rotation of a flexible link in
vertical plane with constant velocity

Fig. 3. Rotation of an elastic link in
vertical plane with variable velocity

The equation of the elastic line with the initial conditions is as follows:

EIz′
d2y′

dx′2
= −mg cos θ(l − x′), x′ = 0, y′ = 0;

dy′

dx′
= 0.(4)

Then, the first and the second integral are

EIz′
dy′

dx′
= mg cos θ (

(l − x′)2

2
− l2

2
), y′ = −mg cos θ

EIz′
(l

x′2

2
− x′3

6
).(5)

In this way, an equation that describes the elastic line of the link at a fixed time moment
is obtained. Then, during the whole motion, the elastic displacements can be described
with the following system

θ = θ(t), y′ = −mg cos θ

EIz′
(l

x′2

2
− x′3

6
).(6)

Using the corresponding rotation matrix R(rot.axis, angle), the elastic displacements in
the absolute coordinate system seem like

0δ = R(z, θ)′δ,(7)
where 0δ = [0x 0y]T and ′δ = [′x ′y]T and the upper left index shows according to which
coordinate system we have described the respective quantity.

CASE 2. Rotation of an Elastic Link in Vertical Plane with Variable Velocity.
This case (Fig. 3) is a similar one to CASE 1, but here the movement is accelerating

and the angular velocity is not constant. The admissions are the same as in the previous
case, but here we have introduced an acceleration constrains, namely ε is continuous and
smooth, i.e. ε̇ exists for every t and it is necessary the first derivative of the acceleration of
the mass point to be fixed at every moment. The forces Φ and G have vertical components
in the movable coordinate system Ox′y′z′, hence they generate moments with respect to
the hang point of the link. Φy′ is nothing else but Φτ = mεl, where ε = ε(t) is a known
function of the acceleration. The equation of the elastic line is

EIz′
d2y′

dx′2
= (mεl −mg cos θ)(l − x′).(8)
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We follow the same procedure given in CASE 1. After double integration and taking into
account the initial conditions, which are the same as before, we obtain the system that
describes the elastic displacements of the link throughout the whole motion:

θ = θ(t), θ̈ = θ̈(t), y′ =
mεl −mg cos θ

EIz′

(
l
x′2

2
− x′3

6

)
.(9)

CASE 3. Rotation of the Elastic Link in Horizontal Plane with Constant Velocity.

Fig. 4. Rotation of an elastic link in horizontal plane with constant velocity

In this case (Fig. 4) the motion is a constant rotation around the immovable axis Oy.
Let us attach again a local coordinate system Ox′y′z′ to the link . The two acting forces
are the gravity force G and the inertia force Φ. Moments are generated by their vertical
components

Gy′ = G cos θ = mg cos θ, Φy′ = Φsin θ = maO sin θ = mω2l cos θ sin θ,

where aO is the centrifugal acceleration of the point mass. In this case θ does not depend
on the time and appears to be constant during the whole motion.

The elastic beam, after reaching its maximum deformations, behaves itself as if it is
a rigid body making pure rotation. The equation of the elastic line is

EIz
d2y′

dx′2
= −Φy′(l − x′)−Gy′(l − x′).(10)

This equation describes the form of the elastic line of the beam at a fixed time moment.
But when ω = const, then Φ = mω2h = const, i.e. the equation is valid for every time
moment.

The solution of the equation of the elastic line at a fixed time moment is

y′ = −mg cos θ + mω2l cos θ sin θ

EIz′

(
l
x′2

2
− x′3

6

)
.(11)

Due to the constant velocity of the link rotation, the above equation describes in the
local coordinate system the displacements not only at a definite moment, but also during
the whole motion.

CASE 4. Rotation of the Elastic Link in Horizontal Plane with Variable Velocity.
The case is a similar to the previous one, but now the angular velocity of the elastic

link is not a constant quantity. The admissions are the same as in the previous case, but
here we have introduced an acceleration constrains, namely ε is continuous and smooth,
i.e. ε̇ exists for every t, and it is necessary the first derivative of the acceleration of the
mass point to be fixed at every moment. The link is related around the immovable axis
Oy with a non-constant velocity, i.e. θ = const and z ≡ z′ only at the initial moment.
During the motion axis Oy′ describes a circular cone whose axis of symmetry coincides
with axis Oy. The vertex angle of the cone is 2θ. If the movement is not accelerating, the
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case will coincide with the previous one. However, as a result of tangential acceleration,
here we obtain an additional component of the inertia force. This component loads the
link of bending in the plane that contains the axis Ox′ and the acceleration aτ itself.
Let us define the displacements of the point mass in this plane, and once we have found
the displacements in the vertical plane, containing the gravity force G and centrifugal
acceleration aO, we can obtain the total displacement. So that, the tangential component
of the inertia force in the plain Ox′y′ is

Φτ = maτ = mεl.(12)

Fig. 5. Rotation of an elastic link in horizontal plane with variable velocity

The equation of the elastic line of the link in this plane at a fixed time moment with
the initial conditions is

EIy′
d2z′

dx′2
= mεl(l − x′), x′ = 0, z′ = 0,

dz′

dx′
= 0.(13)

The solution is

z′ =
mεl

EIy′

(
l
x′2

2
− x′3

6

)
.(14)

The form of the elastic line in the plain Ox′y′ may be obtained as in the previous case.
The difference here, is that the ω is not constant. The form of the elastic line during the
whole motion is described by the following system of equations

θ = θ(t), θ̇ = θ̇(t), θ̈ = θ̈(t)

z′ =
mεl

EIy′

(
l
x′2

2
− x′3

6

)
, y′ = −mg cos θ −mω2l cos θ sin θ

EIz′

(
l
x′2

2
− x′3

6

)
.(15)

The total displacement and the direction cosines respectively are

′δ =
√
′δ2

z′ + ′δ2
y′ , γ =

′δz′√
′δ2

z′ + ′δ2
y′

, β =
′δy′√

′δ2
z′ + ′δ2

y′

.(16)

4. General Motion of a Manipulator. In this section we consider an open-loop
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kinematic chain (manipulator) that consists of n joints with one degree of freedom and
n + 1 links (the base is denoted with 0). The last link (link n) is flexible, the rest
ones are rigid. A point mass is immovably connected to the free end of the last link. A
coordinate system oriented according to the Denavit-Hartenberg notation is attached to
each link. It is convenient the axes of the n-th coordinate system to be oriented along the
principal inertia axes of the link. In case that the above mentioned system doesn’t coincide
with the respective one of link n oriented according to Denavit-Hartenberg formalism,
the transformation matrix between the two coordinate systems has to be composed.
Further on, let us suppose, that the both systems coincide. In this right-hand frame
(Ox′y′z′) coinciding with coordinate system n, the elastic displacements are calculated.
The movement of the link is calculated in the inertial coordinate system Oxyz, which is
fixed to the base of a manipulator. Axis Ox′ appears to be a tangent to the elastic line of
the link in the hang point of the link after its deformation; the axis Oz′ is perpendicular
to the axis Ox′ and oriented along the rotation (translation) joint axis. With respect to
the local coordinate system of the elastic link, its joint end is immovable and does not
complete elastic displacements, since it is connected to the previous link which is rigid.
From the other hand, the actual displacements of the point mass are due to its absolute
acceleration and its weight. This procedure is given below (elements of this procedure
may be found also in [2], [10], [8]). It consists of the following steps:

1. Description of the geometrical and mechanical characteristics of the links like: size,
mass of point mass, elasticity module of link n.

2. Forming of the motion laws of the links (joint variables) together with cycle of the
manipulator (the duration of manipulator motion).

3. Composing of the transformation matrices in the form

i−1
i T =




cos θi − sin θi 0 αi−1

sin θi cos αi−1 cos θi cos αi−1 − sin αi−1 − sinαi−1di

sin θi sin αi−1 cos θi sin αi−1 cos αi−1 cosαi−1di

0 0 0 1


 ,(17)

where θ, a, α, d are the Denavit-Hartenberg parameters.
4. Calculation of angular and linear velocities.
4.1. For joint (i + 1) rotational, they are

i+1ωi+1 = i+1
i R iωi + θ̇i+1

i+1Zi+1,
i+1vi+1 = i+1

i R (ivi +i ωi ×i Pi+1).(18)

4.2. For joint (i + 1) prismatic, they are
i+1ωi+1 = i+1

i R iωi,
i+1vi+1 = i+1

i R (ivi +i ωi ×i Pi+1) + ḋi+1
i+1Zi+1,(19)

where we have denoted
i+1
i R – the inverse rotation matrix with dimension (3× 3);
iPi+1 – the distance from the origin of coordinate system {i} to the origin of coordinate
system {i + 1};
i+1Zi+1 – the unit vector along the axis Z, i.e. θ̇i+1

i+1Zi+1 = i+1
[

0 0 θ̇i+1

]T
.

5. Calculation of angular and linear accelerations.
5.1. For joint (i + 1) rotational, they are

i+1ω̇i+1 = i+1
i R iω̇i +i+1

i R iωi × θ̇i+1
i+1Zi+1 + θ̈i+1

i+1Zi+1,(20)
i+1v̇i+1 = i+1

i R [iω̇i ×i Pi+1 +i ωi × (iωi ×i Pi+1) +i v̇i].(21)
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5.2. For joint (i + 1) prismatic, they are
i+1ω̇i+1 = i+1

i R iω̇i,(22)
i+1v̇i+1 = i+1

i R [iω̇i ×i Pi+1 +i ωi × (iωi ×i Pi+1) +i v̇i] +

+2 i+1ωi+1 × ḋi+1
i+1Zi+1 + d̈i+1

i+1Zi+1.(23)
6. The inertia force of the point mass is composed

nΦn = m i+1v̇i+1.(24)
7. The gravity force of the point mass with respect to the coordinate system n is calculated

nGn =

(
n∏

i=0

i
i+1R

)T

0Gn.(25)

8. The differential equations of the elastic line in the both plains are given

EIz′
d2y′

dx′2
=

∑
Mz′ = ( ′Φy′ + ′Gy′)(l − x′);

EIy′
d2z′

dx′2
=

∑
My′ = ( ′Φz′ + ′Gz′)(l − x′).(26)

9. The displacements in the both plains are found and the total displacement, as well as
the direction cosines, are obtained

′δ =
√
′δ2

z′ + ′δ2
y′ , γ =

′δz′√
′δ2

z′ + ′δ2
y′

, β =
′δy′√

′δ2
z′ + ′δ2

y′

.(27)

10. The displacements with respect to the absolute coordinate system are

0Pn =
n∏

i=1

i−1
i T nPn,(28)

where nPn is (4× 1) vector and represents the elastic displacement of the characteristic
point (for example the end-effector) from the last link n in time and i−1

i T is the (4 ×
4) homogeneous transformation matrix that represents the description of frame {i}
relatively to the frame {i− 1}.

5. Example. We consider a 2R plane manipulator (Fig. 6) consisting of two movable
links and two rotational joints, and a point mass at the free end of the second link, having
the following characteristics: length of link 1: L[1] = 1 m; length of link 2: L[2] = 0.5 m;
mass of the point mass at the end of the link 2: m = 5 kg; the section of link 2 is a circle
with radius: r = 0.01 m and elasticity module of link 2 (steel): E = 2.1 1011 Pa.

The joint motion laws are expressed through five-degree polynomials in time inter-
val 10s.

θ[1](t) = −5t2

2
+

(1840 + 20π)t3

2000
+

(−2220− 30π)t4

20000
+

(880 + 12π)t5

200000
,(29)

θ[2](t) = −π

2
− 5t2

2
+

(1840 + 20π)t3

2000
+

(−2220− 30π)t4

20000
+

(880 + 12π)t5

200000
.(30)

The largest displacements are obtained at the end of the elastic link, i.e. at the point
mass which coordinates are (0.5, 0, 0) with respect to the frame Ox′y′z′.

Figure 7 shows the mode of the vertical components of the inertia force (continuous
line) and of the gravity force of the point mass during the motion, i.e. the components
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Fig. 6. 2R plane manipulator

Gy′ and Φy′ depend on time t. Figure 8 shows the displacements of the elastic link
(where the point mass is fixed) during the motion. The maximum positive and negative
displacements of the point mass are respectively 0.0019 m when t = 1.89 s, and −0.002 m
when t = 5.8 s with the link length 0.5 m. These results coincide with the assumption
that the displacements are small.

2 4 6 8 10
t, s

-60

-40

-20

20

40

60
Forces, N

Fig. 7. Gy′ and Φy′ depending on time t

2 4 6 8 10
t, s

-0.002

-0.001

0.001

0.002
Displacements, m

Fig. 8. Displacements of the elastic link (where
the point mass is fixed) during the motion

6. Concluding Remarks. The considered algorithm can be used also in cases of
more than one point masses arbitrary attached to the flexible link, as well as in cases
of distributed loads, concentrated forces and moments. The mass of the link can be also
included.

It is possible also, the contact points of the forces and concentrated moments, as well
as the length of the link, to be changed with respect to the time. In its base part, the
algorithm doesn’t change. It is only necessary to correct the differential equation of the
elastic line of link n.

The presented algorithm allows also a check of the maximum normal stresses of the
elastic link to be included, for example the quotient of the maximum bending moment,
and the moment of resistance to be calculated. However, it is necessary to take into
account the force cyclicity, since only this kind of check could not be a strength criterion.
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To minimize the vibrations of the elastic link, there shouldn’t be jerk change of the
acceleration, i.e. the acceleration to be fixed at each time moment, except in trivial cases,
when the acceleration is constant or doesn’t exist. The presented algorithm is valid only
for cases of small displacements. When the displacements are large, it has to be taken into
account that the contact point of the forces moves during the link deformation. Besides,
Eq.(1) is obtained on the assumption that the quantity dy/dx is small compared to unity.
In order to obtain large displacements, it is necessary the changes of the link curve to
be considerable. But if the strains are not bigger than the limit of elasticity, that is
possible only with small height of the section, then the link should be in the form of a
thin band or a thin wire. The algorithms for generating laws of motion, kinematics of
the manipulator and for calculating of the elastic displacements are modelled by software
packages (Mathematica Package) in Mathematica 4.2. More information may be found
in [10].
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ПРЕМЕСТВАНЕ НА ЕЛАСТИЧНО ЗВЕНО ОТ ОТВОРЕНА
КИНЕМАТИЧНА ВЕРИГА (МАНИПУЛАТОР)

Иван Г. Рашков, Клементина Д. Младенова

Представен е подход за определяне на преместванията на еластично звено от
отворена кинематична верига (манипулатор) при предположение, че премества-
нията са малки. Подходът е базиран на диференциалното уравнение на еластич-
ната линия на огъната греда и на принципа на Даламбер. Законът за движение и
уравнението на еластичната линия се записват и решават съвместно. Разгледани
са случаите на най-простите движения на еластично звено с фиксирана тежка
точка в свободния му край, както и общият случай, когато еластичното звено се
явява последно в структурата на манипулационна система. Приведен е пример
на двузвенен равнинен 2R манипулатор, второто звено на който е еластично.
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