MATEMATUKA U MATEMATUHECKO OGEPA3OBAHUWE, 2007
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2007
Proceedings of the Thirty Sixth Spring Conference of
the Union of Bulgarian Mathematicians
St. Konstantin & Elena resort, Varna, April 2-6, 2007

CONTRACTIBILITY OF PARETO SOLUTIONS SETS IN
CONCAVE VECTOR MAXIMIZATION"
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In present paper we study the Pareto solutions in concave vector maximization with
compact and convex domain. One of the most important problems in this optimization
is the investigation of the topological structure of the Pareto solutions sets. We
consider the problem of construction of a retraction from the feasible domain onto
Pareto-optimal set, if the objective functions are concave and one of them is strictly
quasi-concave on feasible domain. Using this result, it is also proved that the Pareto-
optimal and Pareto-front sets are homeomorphic and contractible.

1. Introduction. The basic aim of this paper is first to show how we can construct a
retraction from the feasible domain onto Pareto-optimal set in concave vector maximiza-
tion problem. Next, using this function we prove that the Pareto-optimal and Pareto-front
sets are homeomorphic and contractible.

The general vector maximization problem is to find x € X C R™, m > 1, so that
to maximize F (z) = (f1(x), f2(x),..., fn(z)) subject to € X, where the feasible
domain X is nonempty, J = {1,2,...,n} is the index set, n > 2, f; : X — R is a given
continuous objective function for all i € J.

Since the objective functions { f; };.L:l may be conflicting with each other, it is usually
difficult to obtain the global maximum for each objective function at the same time.
Therefore, the target of the vector maximization problem is to achieve a set of solutions
that are Pareto-optimal.

Definition 1. A point © € X is called Pareto-optimal solution if and only if there
does not exist a point y € X such that f; (y) > f; (x) for alli € J and fi (y) > fr (x) for
some k € J. The set of the Pareto-optimal solutions of X is denoted by Max (X, F) and
is called Pareto-optimal set. The set F (Max (X, F)) is called Pareto-front set.

One of the most important problems of vector maximization is the investigation of the
topological structure of the Pareto solutions sets (Pareto-optimal set and Pareto-front
set). The investigation of the topological properties of Pareto solutions sets is started by
[7], see also [2] and [5].

A well-known open problem in vector optimization is the contractibility of the Pareto
solutions sets. The basic results are as follows:
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In [1], it is proved that the Pareto-optimal set in strictly quasi-concave vector maximi-
zation with compact and convex feasible domain is contractible.

In [4], it is proved that the Pareto-optimal and the Pareto-front sets in strictly quasi-
concave vector maximization with convex domain are contractible, if any intersection of
level sets of the objective functions with the feasible domain is a compact set.

The paper is organized as follows: In Section 2 some definitions and notions from
topology and optimization theory are given. In Section 3 a retraction from the feasible
domain onto the Pareto-optimal set is constructed and it is proved that the Pareto-
optimal and Pareto-front sets are homeomorphic and contractible.

2. General definitions and notions. Let a function dis : X x X — R, be a metric
on X. In a metric space (X, dis), let 7 be the topology induced by dis. In a topological
space (X, 1), for Y C X we recall some topological definitions:

Definition 2. The set Y is a retract of X if and only if there exists a continuous
function r : X — Y such that r(z) = x for all x € Y (the restriction of r is the identity
function on'Y). The function r is called a retraction.

Definition 3. 4 continuous function d : X x [0;1] — X is a deformation retraction
of X onto Y C X if and only if d(z,0) = z, d(z,1) € Y, and d(a,t) = a for all x € X,
a€Y, andt € [0;1]. The setY is called a deformation retract of X .

From a more formal viewpoint, a retraction is a function » : X — Y such that
ror(xz) =r(z) for all z € X, since this equation says exactly that r is the identity on its
image. Retractions are the topological analogs of projection operators in other parts of
mathematics. Clearly, every deformation retract is a retract, but in generally the converse
does not hold [3].

Definition 4. The set Y is contractible if and only if there exist a continuous function
c:Y x[0;1] =Y and a €Y such that ¢(x,0) = a and c(z,1) =x forallz €Y.

Of course, the set Y is contractible if there exists a deformation retract of Y onto a
point. In other words, any set having a deformation retract onto a point is contractible.
However, the converse is false. There are examples of contractible sets which have not
deformation retract onto any point.

It is known that: convexity implies contractibility, contractibility implies path-connec-

tedness and path-connectedness implies connectedness. But, in general, the converses do
not hold [3], [6].

Definition 5. Let X andY be topological spaces and let h : X — Y be bijective. Then,
h is called a homeomorphism if and only if the functions h and h™' are continuous.
If such a homeomorphism h exists, then X and Y are called homeomorphic (or X is
homeomorphic to Y).

It is clear that the contractibility of sets is preserved under homeomorphisms.

In addition, we also introduce the following notations: for every two vectors =,y € R",
z(x1, e, ... xn) > y(y1,Y2,...,Yn) means x; > y; for all i € J, z(x1,22,...,2,) >
y(y1,92,...,Yn) means x; > y; for all ¢ € J, and z(z1,22,...,2n) = y(Y1,Y2,- -, Yn)
means z; > y; for all i € J and zy > y; for some k € J.

Concavity and quasi-concavity of functions play a central role in optimization theory.
We use the definitions of concave, quasi-concave and strictly quasi-concave functions in
the usual sense:
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(1) A function f; is concave on X if and only if for any xz,y € X and t € [0;1],
filtr+ (1 =t)y) > tfi(z) + (1 1) fi (v).

(2) A function f; is quasi-concave on X if and only if for any z,y € X and t € [0; 1],
fi(te + (1 = t)y) = min(f; (z), fi (y))-

(3) A function f; is strictly quasi-concave on X if and only if for any z,y € X, z £ y
and t € (0;1), f; (tz + (1 —t)y) > min(f; (x), fi (v))-

3. Main result. Now, under our assumptions, the functions { fj}?:l are concave and
a function fy of {f; };.L:l is strictly quasi-concave on the compact and convex feasible
domain X, we prove that the Pareto-optimal set is a retract of the feasible domain and
the Pareto solutions sets are homeomorphic and contractible.

Define a function f: X — R by f(z) =>7_, f; (2) for all z € X. It is clear that the
function f is concave on X, and Argmax (f, X) C Max (X, F).

Define also a point-to-set mapping ¢ : X = X by ¢ () = {y € X|F(y) > F(z)} for
all z € X. It can be shown that the set ¢ (z) is a nonempty, compact and convex set
for all z € X and z € 1 (z). Hence, the point-to-set mapping 1) is compact-valued and
convex-valued on X.

These notes allow to present the main theorem of our paper:

Theorem 1. (a) There exists a retraction v : X — Max(X, F) such that r (X) =
Max (X, F) and r(z) = Argmax(f,¢(x)) for all x € X; (b) Max(X,F) and
F(Max (X, F)) are homeomorphic and contractible.

Proof. We prove (a) in two steps. In the first step the retraction r : X — Max (X, F)
is constructed. In the second step continuity of r is shown.

First step.

Let fix £ € X. Consider an optimization problem with single objective function as
follows: maximize f(y) subject to y € ¥(x). We show that this problem has a unique
solution Z € Max (X, F'). Thus, a retraction Z = r(x) will be constructed.

Lemma 1. Ifz € X, then |Arg max(f,¢¥(z))| =1 and Arg max(f, ¥ (x))CMax (X, F).

Proof. Clearly |Arg max(f,#(x))| > 1. Suppose that there exist y1,y2 € Arg max
(f,(x)), y1 # yo2, and take t € (0;1) and z = ty; + (1 — t)y2. It is clear that the set
Argmax(f,v(z)) is convex, therefore, z € Arg max(f,1(x)). Thus, we obtain f(z) =
fy) = fy2).

On the other hand, for each i € J we have f;(z) > tf;(y1) + (1 — t) fi(y2). By using
this result we derive that f(z) > tf(y1) + (1 — ¢)f(y2) = f(y1). Since f(z) = f(y1),
we get fi(z) = tfi(y1) + (1 —¢)fi(y2) for all 4+ € J and for all ¢ € (0;1). As a result
fi(z) = fily2) +t(fi(y1) — fi(y2)) for all t € (0;1), therefore, we find that f;(y1) = fi(y2)
for all i € J.

Now, fix t € (0;1). As it was described earlier, the function fy is strictly quasi-concave,
therefore we obtain fx(z) > min(fs(41), fr(u)) = fr(s). But fi(z) > tfilyn) + (1 -
t)fi(y2) for all i € J and by using this result we derive that f(z) > tf(y1)+(1—1)f(y2) =
f(y1). This leads to a contradiction, therefore, we obtain |Argmax(f, ¢ (z))| = 1.

Let us choose y € Arg max(f,v¢(z)) and assume that y ¢ Max(X, F). From the
assumption y ¢ Max (X, F') it follows that there exists z € X such that F'(z)=F(y). As a
result we have z € ¢(x) and f(z) > f(y). Again, this leads to a contradiction, therefore,
we obtain y € Max (X, F'). The lemma is proved.
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Using the results of Lemma 1, we are in a position to construct a function r : X —
Max (X, F') such that r (x) = Arg max (f,¢(z)) for all z € X.

Lemma 2. Ifx € X, then © € Max (X, F) is equivalent to {x} = ¥(x).

Proof.Let € Max (X, F) and assume that {x} # ¢(x). From the both conditions
x € Y(x) and {z} # ¢(z) it follows that there exists y € ¢ (z)\{x} such that F'(y) = F(z).
Let us choose t € (0;1) and z =tz + (1 — t)y, then z € ¢(z). But = # y implies fi(z) >
fa(z), which contradicts the condition 2 € Max (X, F'). Then, we obtain {z} = ¢(z).

Conversely, let {z} = ¢(x) and assume that x ¢ Max (X, F'). From the assumption
x ¢ Max (X, F) it follows that there exists y € X such that F(y) » F(z). Thus, we
deduce that y € ¥(x) and = # y, which contradicts the condition {x} = ¢ (x). Then, we
obtain x € Max (X, F'). The lemma is proved.

Now, by applying the previous lemma we have that if x € Max (X, F'), then = r(z)
and if z € X\Max (X, F), then z # r(z). It is easily verified that ror =r.

Lemma 3.7 (X) = Max (X, F).

Proof. From Lemma 1 it follows that » (X) C Max (X, F). Applying Lemma 2, we
deduce r (Max (X, F')) = Max (X, F'). This means that r (X) = Max (X, F). The lemma
is proved.

Lemmas 1, 2 and 3 have shown that the function r fixes every point of Max (X, F').

Second step.

We will analyze the point-to-set mapping 1. Using the Maximum Theorem, one of the
fundamental results of optimization theory, we will show that the function r is continuous.

Lemma 4. The point-to-set mapping ¢ is continuous on X.

Proof. First, we prove that if {a:k}iozl,{yk}zil C X is a pair of sequences such
that klim zr = x0 € X and yi € ¥ (x) for all k£ € N, then there exists a convergent
—00

subsequence of {yy} -, whose limit belongs to 9 (o).

The assumption yi € 9 (zy) for all k& € N implies F (y;) > F (x) for all £k € N.
From the condition {yx};-, C X it follows that there exists a convergent subsequence
{ar}ie; C {yr}i—, such that hm qgr = yo € X. Therefore, there exists a convergent

subsequence {py}re; C {Zk}rey such that g, € ¢ (pr) and hm pr = xo. Thus, we find

that F' (qi) > F (px) for all k& € N. Taking the limit as k — oo, we obtaln F (yo) > F (x0).
This implies yo € ¥ (zp). This means that the point-to-set mapping v is upper semi-
continuous on X [6].

Second, we prove that if {zy},—, C X is a convergent sequence to zy € X and
Yo € 1 (x0), then there exists a sequence {yy}r—; C X such that y, € ¢ (x) for all
k € N and kli_)n;@ Yk = Yo-

As usually, let us denote the distance between the point yo € X and the set ¢ (z) C X
by di, = inf {dis (yo,z) |z € ¥ (x)}. As it was described earlier, ¢ (zx) is a nonempty,
compact and convex set, therefore, if yo ¢ ¥ (z1), then there exists a unique § € ¥ (z)
such that dy, = d (7, yx)-

There are two cases as follows: if yo € 1 (x1), then dr = 0 and let yr = yo; if
Yo ¢ ¥ (xy), then di, > 0 and let yp = 3.

So that, we get a sequence {dx},-, C Ry and a sequence {yx},., C X such that
yr € ¥ (xg) for all k € N and dy = dis(yo,yx). Since lerr;Oxk = 1z, the sequence
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{dy} 5=, is convergent and klim di = 0. Finally, we obtain klim Yk = Yo. This means that
— 00 — 00

the point-to-set mapping ¢ is lower semi-continuous on X [6]. Hence, the point-to-set
mapping v is continuous on X. The lemma is proved.

Lemma 5 [8, Theorem 9.14 — The Maximum Theorem]. Let S C R", ©® C R™,
g: S X0 — R be a continuous function, and let D : © = S be a compact-valued and
continuous point-to-set mapping. Then, the function gx : © — R defined by g x (0) =
max {g (z,0) |x € D (0)} is continuous on O, and the point-to-set mapping Dx : © = S
defined by D x (0) = {x € D(0)|g(z,0) =g=*(0)} is compact-valued and upper semi-
continuous on ©.

Lemma 6. The function r is continuous on X.

Proof. Applying Lemma 5 for S = © = X and ¢ = D, we derive that the function f
is continuous on X. As it was mentioned before, the point-to-set mapping v is
compact-valued and continuous on X (Lemma 4). According to Lemma 1, from
|Arg max(f,¥(x))] = 1 we deduce that r is upper semi-continuous point-to-point map-
ping. An upper semi-continuous point-to-point mapping is continuous when viewed as a
function. Hence, the function r is continuous on X. The lemma is proved.

Lemma 7 [1, Proposition 2.1]. If B C A C R™ and B is a retract of A, then the
contractibility of A implies the contractibility of B.

This shows that contractibility of sets is preserved under retractions.
Lemma 8. Max (X, F) is homeomorphic to F(Max (X, F)).

Proof. As it is well-known, every continuous image of a compact set is compact.
In fact, the set X is compact and the function r is continuous on X. Hence, the set
Max (X, F)) = r(X) is compact.

Since the function F' : X — R"™ is continuous, it follows that the restriction A :
Max(X, F) — F(Max(X, F')) of F is continuous too. Applying Lemma 2, we deduce that
if x,y € Max(X, F) and x # y, then h(x) # h(y). As a result we obtain that the function
h is bijective. Consider the inverse function h™! : F(Max(X, F)) — Max(X, F) of h.
As it was proved before, the set Max (X, F') is compact, therefore, the function A~ is
continuous too. Finally, we obtain that the function h is homeomorphism. The lemma is
proved.

We are now in a position to prove the main result of this paper.

Proof of Theorem 1. (a) From Lemmas 1, 3 and 6 it follows that there exists a
continuous function r : X — Max (X, F) such that r (X) = Max (X, F) and r(z) =
Argmax (f,9(x)) for all z € X.

(b) This follows by applying of Theorem 1(a), and Lemmas 7 and 8. The theorem is
proved.

We have shown the contractibility of the Pareto solutions sets in concave vector
maximization under the condition that at least one component of the function F' is
strictly quasi-concave. The proof of Theorem 1 cannot be extended to the general case
when all the components of F' are concave.

In particular, it can be seen that, by applying Lemmas 6 and 8, that both sets
Max (X, F') and F(Max (X, F')) are compact, path-connected and connected.
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CBUBAEMOCT HA MHO2KECTBATA HA PEIITEHUATA IIO
ITAPETO B'bB BAJIbEHATATA BEKTOPHATA MAKCUMM3AIINA

3apasko /1. CiaBos

B npencrasenara cratus nydyapame pernenusTa Ha [lapeTo BbB BrbOHaTATA BEKTOD-
Ha MaKCHMM3aIHs ¢ KOMIIAKTHA 1 N3I'bKHAJA 00s1acT. Eaun or Haii-BakauTe 1Ipobite-
MM B Ta3W ONTHUMU3AILNS € U3CJIEIBAHETO HA TOIOJOTMYHATA CTPYKTYypa Ha MHOXKEC-
TBaTa OT pemeHudATa 1o Ilapero. Hue pasriexxname mpobiema 3a KOHCTPYHPAHE HaA
peTpaknys OT JOIycTHMaTa 06JIacT BbPXY ONTHMAJIHOTO MHOXKecTBO 110 Ilapero, ako
KPUTEPHATHUTE (DYHKIINK Ca BIBLOHATH W €IHA OT TSIX € CTPOrO KBa3W-BIIHOHATA
BBPXY JOIYCTHMOTO MHOXKECTBO. /I3I0/I3BaliKi TO3M pe3yJsITaT JOKa3BaMe ChIIO, Ue
JIBeTe MHOXKeCTBa — ontuMaJsIHoTo 1o Ilapero n ppourst Ha [lapero ca xomeomopdHI
U CBUBAEMU.
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