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INFLUENCE OF SURFACE-ACTIVE SOLUTES ON
MARANGONI INSTABILITY IN LIQUID-LIQUID SYSTEMS"

Slavtcho G. Slavtchev, Penka G. Kalitzova-Kurteva

The onset of Marangoni instability in partially miscible liquid-liquid systems, such
as organic-aqueous systems, is studied in the presence of surface-active solutes.
Marangoni convection may be induced by interfacial tension gradients, due to the
heat of solution released or absorbed on the interface between the liquids and to
the interfacial solute gradients. A linear stability analysis is carried out to predict
marginal instability for solutes decreasing or increasing the interfacial tension.

1. Introduction. Marangoni convection is often observed during the transfer of a
surface-active solute across an interface between two immiscible liquids, i.e. in ternary
systems (see [1] and references therein). The instability is driven by tangential forces
induced by interfacial tension gradients, due to local variations in the interfacial concen-
tration of the solute.

When the liquids are partially miscible, mass transfer may also be accompanied by
Marangoni convection, even in the absence of surface-active agents, due to temperature
fluctuations produced by the heat of solution that absorbs or releases at the interface
between both liquids [2]. Thermal Marangoni instability in binary liquid-liquid systems
was considered in [2-3| where the stability criteria were derived. The effect of surface-
active solutes on Marangoni convection in partially miscible liquid-liquid systems was
investigated experimentally in [4] and theoretically in [5-6]. The presence of surface-
tension-decreasing-solutes was considered in [5] while the case of surface-tension-increa-
sing-solutes was studied in [6].

In the present paper, basing on the solutions of the stability problem obtained in
[6-6], we summarize and compare the instability conditions for both types of solutes. We
show their effects on the onset of Marangoni instability in partially miscible liquid-liquid
systems.

2. Formulation of the stability problem. Consider a system of two semi-infinite
layers of an organic liquid (upper phase 1) and water (lower phase 2) which are in contact
along a plane horizontal interface. The organic liquid is initially pre-saturated with water
and it dissolves in the aqueous phase. Since the mass dissolution process is much more
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slower than the heat transfer, for relatively long time there exists a very thin mixing zone
between both liquids which can be modelled as a two-dimensional Newtonian surface.
The aqueous phase contains a small amount of a surface-active solute which is soluble
in the organic one and, therefore, it is transferring from phase 2 to phase 1 in direction
opposite to the mass transfer. Solutes that decrease or increase the interfacial tension are
considered.

The dissolution of one liquid in another may be accompanied by release or absorption
of heat at the interface. Under external isothermal conditions, the released heat will be
transferred from the interface into both bulks or in the opposite directions when the heat
is absorbed. The heat fluxes cause temperature gradients along the interface resulting in
variation of the interfacial tension. Due to the transfer of the surface-active solute across
the interface, the interfacial excess-solute concentration I' will vary along the interface
and will differ from its initial value I'°.

The interfacial tension of the liquid-liquid system depends on the interfacial tempera-
ture Ty, and the interfacial excess-solute concentration by the linear expression

_ do do
(1) o=o00—or (TZTS) —Oor (F—FO), or = <_(‘9T>07 or = <_51—‘>0’

where o7 and or are interfacial tension coefficients and Tg is the reference temperature.
Both coefficients assume positive and negative values. The coefficient o > 0 for surface-
tension-decreasing-solutes and o < 0 for surface-tension-increasing-solutes. Considering
very dilute solutions, the Gibbs adsorption isotherm is assumed to be valid at the
interface, i.e. one has I' = §255,01515, where §; are called Gibbs layer depths. These
equations relate the interfacial excess-solute concentration to the bulk solute concentra-
tions S;x (¢ = 1,2) from both sides of the interface. According to the Gibbs theory, the
concentration I' has the same sign as or. It also satisfies a solute balance equation along
the interface.

The phase concentrations at the interface are assumed to be equilibrium ones which
correspond to the interfacial temperature, i.e. C;s = R;Tx;, where R; are constants. The
solute and heat fluxes at the interface satisfy the heat balance equation [2-3]

0Ty c0Cs o1y c0Ch
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where k; is the heat conductivity of phase i, DS is the diffusivity of the organic liquid
in water, ()2 is the heat of solution of the organic liquid in water per mole of organic
liquid, D¢ and @ are the corresponding diffusivity and heat of solution of water in the
organic phase. The heats of solution @); are taken to be positive when heat is released
and negative for heat absorption.

The linear stability theory is applied to the equations of motion, convective mass and
solute diffusion, and energy. The details of the stability analysis are given in [5-6]. In
the steady-state of the liquid-liquid system when the fluids are in rest, the temperature
and the mass and solute concentrations are presented by linear functions of the vertical
coordinate z (the axis z is directed from phase 2 to phase 1). The temperature gradients
BT and BT have opposite signs depending on the heat process going on at the interface.
When heat is liberated, the heat fluxes are directed from the interface to the bulks, so
BT < 0and B > 0. In the case of heat absorption, the fluxes are directed to the interface
and ST > 0 and 37 < 0. The positive mass concentration gradient 3§ is related to the
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last quantities, due to the heat balance equation (2). The solute concentration gradients
(—B7) and (—B5) are negative for transfer of solute from the aqueous to the organic
phase, i.e. 57 > 0.

The solution of the hydrodynamic stability problem is searched in normal modes for
the vertical components of the liquid velocities w;, the mass concentrations C;, the solute
concentrations S;, the liquid temperatures T; (¢ = 1,2), and the interfacial concentra-
tion I':

(3) [wi7 Ci? Sivﬂv F] = [Wl(z)a Cl(z)v 51(2)7 TI(Z)7 'Y] €xXp [Z (ax:c + ayy) +w t} .

The unknown functions W;(z), C;(2), Si(2), T;(z) and the constant y are amplitudes of
an infinitesimal disturbance, t is the time, w is a time growth constant and a = /a2 + afl
is a wavenumber. The growth constant is, in general, a complex number w = wr + it wy.
The neutral (marginal) instability of the system to the disturbance is characterized by
wgr = 0. When wr = 0 implies that w; = 0, then the marginal instability is stationary as
the disturbance does not grow or decay. When w = i@ is a pure imaginary number with a
positive quantity w (called wave frequency), then the instability is oscillatory. Both cases
of stationary and oscillatory instability are considered.

The stability problem is reduced to solving a system of linear equations for the

amplitudes [6]
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Here, the following dimensionless parameters are introduced:
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where Pr; is the Prandtl number for phase i, LeS is the Lewis number for transfer of
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organic liquid in aqueous phase, Scj is the Schmidt number for solute diffusion in water,
v; = w;/p; is the kinematic viscosity, u; is the dynamic viscosity, p; is the density, x; is
the thermal diffusivity, e? is the kinematic viscosity ratio, h? is the heat diffusivity ratio,
r? is the mass diffusivity ratio and r% is the solute diffusivity ratio.

The boundary conditions at the interface are (at z = 0)

W1(0) = W(0) =0, DW,(0) = DW»(0),

Prz 5502
(6) 6_'1(0) = 1%1:]_"1(0)7 02(0) = R2T2(0)> = %SI(O) = %§2(0)7

7,(0) = T5(0), ~DT(0) + DCo(0) = ~kDTi(0) + 2DC(0),

r2Sc5wy — DS1(0) + r£DS5(0) = 0.

The following dimensionless parameters are defined
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Here, Mag and Mar are the solutal and thermal Marangoni numbers and Ng is their
ratio. The solutal Marangoni number assumes positive and negative values depending
on the sign of or. The sign of the thermal Marangoni number Mar coincides with that
of the product o7 Q2. The so-called adsorption number H is positive for or > 0 and
negative for op < 0.

The solution of system (4) must vanish far from the interface, i.e.

(8) Wl,DWhC’l,Sl,Tlﬁo at Z — OQ; W27DW2,CQ,S2,T2_>O at z — —oo.

The problem (4), (6) and (8) consists of many physical parameters which vary for
different liquids. Typical values of some parameters are: Pro = 6.15 (for water), Le§ =
150, Sc5 =103, |[Ns| = 107, |H| =102, 3= 0.8, k = 0.3, h? = 4, r? = 0.45, u = 0.5 and
|6] = 0.9. As the problem is an eigenvalue one, the solutions exist on some surfaces in the
phase space (a,w, Mag), at given values of the other parameters. In the stationary case
(w = 0), the solutions exist on curves Ma¥ = Mag(a) named neutral stability curves.

3. Results. The characteristic equations for both cases of stationary and oscillatory
instability were obtained and studied numerically in [5-6]. The numerical analysis shows
that the instability conditions depend mainly on the solute activity (the sign of or), on
the heat of solution (the sign of o7 Q2), on the solute diffusivity ratio 7% and on the
kinematic viscosity ratio e?. The possible combinations of the last ratios corresponding
to many liquid-liquid systems are: A1) e* > r% > 1, A2) r% > e? > 1, A3) r% > 1 > €2,
Bl)e? <713 <1,B2)r:i <e?<1,B3)ri<1<e? Cl)ri=1<¢e?and C2)
e? < 1 = r% [5-6]. Results were obtained for the following values: 4) 72 = 1.2 and ¢?
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equal to 2 (case Al), 1.1 (case A2) and 0.25 (case A3); B) r2 = 0.6 and e? equal to 0.25
(case B1), 0.9 (case B2) and 2 (case B3); C) r =1 and e = 2 (case C1) or €* = 0.6
(case C2). The wavenumber was ranged between 10~7 and 10.

Liquid-liquid systems with positive and negative product o7 Q5 are considered separa-
tely. In the stationary case, the neutral curves Ma¥ = Mag(a) turn out to be of two
types. They consist of either two positive and negative branches, or one negative branch
only. In the former case, the positive branch starts from zero and goes to infinity in a
finite interval and, therefore, systems with positive Marangoni numbers are stationary
unstable. The negative branch increases from minus infinity to some negative value (say,
MaZ’) as the wavenumber varies from zero to infinity. The asymptotic value Ma%® is
the instability threshold and systems with negative Marangoni numbers are unstable
for Mag < Ma% . On the contrary, the negative branch of the second type starts from
zero at a = 0 and decreases slowly approaching asymptotically Ma% from above. The
instability is expected to occur for MaZ < Mag < 0.

Systems with orQ2 > 0
or >0 or <0

Conditions on | Stationary | Oscillatory | Marginal | Stationary | Oscillatory | Marginal

diffusivity and | disturbances| disturbances| instability | disturbances| disturbances| instability

viscosity

ratios

Al and A2 Stable Unstable Unstable | Unstable Stable Unstable

A3 Stable Unstable Unstable | Unstable Stable or Unstable
unstable

B1 Unstable Stable Unstable | Stable Stable or Stable or
unstable unstable

B2 and B3 Unstable Stable Unstable | Stable Stable Stable

C1 Unstable Unstable Unstable | Stable Stable Stable

C2 Unstable Stable Unstable | Stable Stable or Stable or
unstable unstable

Table 1. Instability conditions for systems with orQ2 > 0

In the case of oscillatory instability (w = iw), the characteristic equation represents
the solutal Marangoni number as a complex function Ma2’ = Fr(s;a)+ i Fi(s;a) of a
real positive variable s = w/a?, at given a. As by definition the Marangoni number is a
real number, we look for the roots s of the equation Fy(s;a) = 0 for fixed values of the
wavenumber and the other physical parameters. There are some rare cases as case C2
for systems with or@Q2 < 0 in the presence of surface-tension-decreasing solutes, where
the solution does not exist for physically reasonable values of the parameters involved,
and the corresponding systems are stable to any oscillatory disturbance.

Results for both cases of stationary and oscillatory disturbances as well as for the
general marginal instability are shown in Tables 1 and 2. In cases Al and A2, the
conditions for stationary and oscillatory instability depend on the sign of o only, indepen-
dently of the sign of o7 @Q2, but marginal instability can finally occur in all cases. Systems
with or@Q2 > 0 are predicted to be unstable for all combinations of the diffusivity and
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Systems with Q2 > 0
or >0 or <0

Conditions on | Stationary | Oscillatory | Marginal | Stationary | Oscillatory | Marginal

diffusivity and | disturbances| disturbances| instability | disturbances| disturbances| instability

viscosity

ratios

Al and A2 Stable Unstable Unstable | Unstable Stable Unstable

A3 Stable Stable Stable Unstable Unstable Unstable

B1 Unstable Stable Unstable | Stable Stable  or | Stable or
unstable unstable

B2 Unstable Stable Unstable | Stable Stable  or | Stable or
unstable unstable

B3 Unstable Stable Unstable | Stable Stable Stable

C1 Stable Unstable Unstable | Unstable Stable Unstable

C?2 Stable Stable Stable Unstable Unstable Unstable

Table 2. Instability conditions for systems with orQ2 < 0

viscosity ratios when surface-tension-decreasing solutes (or > 0) are present (Table 1).
For surface-tension-increasing solutes (or < 0), the systems are unstable for r% > 1,
nevertheless what is the solute diffusivity ratio (all cases A). When r% < 1, then they
are stable if the viscosity ratio is larger than the solute diffusivity one (cases B2, B3
and C'1) and could be stable or unstable when the viscosity ratio is smaller (in cases B1
and C2).

Systems with orQ2 < 0 (Table 2), in the presence of surface-tension-decreasing
solutes, are unstable in all cases, except for cases A3 and C2 where r3 > 1 > €2,
If surface-tension-increasing solutes are present, then the systems are predicted to be
unstable for r% > 1, independently of the solute diffusivity ratio (cases A1, A2, A3, C1
and C2). They are stable for r3 < 1 < e? (case B3) and can be stable or unstable for
cases B1 and B2 when both ratios are less than one.

The theoretical result and experimental observation are in good agreement for the
isobutanol-water system, but there is disagreement for the ethylacetate-water system [5].
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BJINAHNE HA IIOBbPXHOCTHO-AKTNUBHUI BEINIECTBA BbPXY
MAPAHTOHUEBATA HEYCTOMYNBOCT B TEUHO-TEUYHUI
CUCTEMMUA

Caasuo I'. CnaBues, Ilenka I'. Kanunosa-KypreBa

N3yuaBa ce Bb3umkBaHeTo Ha MapaHroHmeBa HEYCTONYIUBOCT B YACTHIHO CMECBAIU
ce TeYHO-TEYHU CUCTEMH, KATO HaIlpUMep OpraHnYHa TE€YHOCT U BOJa, IIPU HAJIUYUETO
Ha TOBbPXHOCTHO-aKTUBHO BEIECTBO. MapaHronueBaTa HEyCTOMYUBOCT CE€ UHYIIPA
OT I'pa/IMeHTa Ha IIOBbPXHOCTHOTO HAlIpEXKEHUE BCJIEJACTBYE HA N3MEHEHNE Ha ITOBbPX-
HOCTHATa TeMIIepaTypa, MOPOJAEHO OT OTJesIeHaTa UJIU IOI'bJIHATATa TOIIMHA Ha Pa3-
TBapsiHe BbPXY MeXKIy(da3zoBaTa MOBbPXHOCT U OT U3MEHEHNETO Ha KOHIIEHTPAIUATA
Ha BemiecTBOTO 1o Hest. [IpoBenen e ananns Ha JIMHEHHATA YCTONYIHUBOCT 34 IIPEJICKA3-
BaHe Ha HeyTpaJlHATA HEYCTOMYMBOCT 3a BEIeCTBAa HaMAaJIABAIIM WJIM ITOBUIIABAIIN
IIOBBbPXHOCTHOTO HAITPEYKEHUE.
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