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Slavtcho G. Slavtchev, Penka G. Kalitzova-Kurteva

The onset of Marangoni instability in partially miscible liquid-liquid systems, such
as organic-aqueous systems, is studied in the presence of surface-active solutes.
Marangoni convection may be induced by interfacial tension gradients, due to the
heat of solution released or absorbed on the interface between the liquids and to
the interfacial solute gradients. A linear stability analysis is carried out to predict
marginal instability for solutes decreasing or increasing the interfacial tension.

1. Introduction. Marangoni convection is often observed during the transfer of a
surface-active solute across an interface between two immiscible liquids, i.e. in ternary
systems (see [1] and references therein). The instability is driven by tangential forces
induced by interfacial tension gradients, due to local variations in the interfacial concen-
tration of the solute.

When the liquids are partially miscible, mass transfer may also be accompanied by
Marangoni convection, even in the absence of surface-active agents, due to temperature
fluctuations produced by the heat of solution that absorbs or releases at the interface
between both liquids [2]. Thermal Marangoni instability in binary liquid-liquid systems
was considered in [2–3] where the stability criteria were derived. The effect of surface-
active solutes on Marangoni convection in partially miscible liquid-liquid systems was
investigated experimentally in [4] and theoretically in [5–6]. The presence of surface-
tension-decreasing-solutes was considered in [5] while the case of surface-tension-increa-
sing-solutes was studied in [6].

In the present paper, basing on the solutions of the stability problem obtained in
[5–6], we summarize and compare the instability conditions for both types of solutes. We
show their effects on the onset of Marangoni instability in partially miscible liquid-liquid
systems.

2. Formulation of the stability problem. Consider a system of two semi-infinite
layers of an organic liquid (upper phase 1) and water (lower phase 2) which are in contact
along a plane horizontal interface. The organic liquid is initially pre-saturated with water
and it dissolves in the aqueous phase. Since the mass dissolution process is much more

*The work is partially supported by the Bulgarian Ministry of Education and Science (contract
KI-1-02/03).

2000 Mathematics Subject Classification: 76E06, 76E17
Key words: liquid-liquid systems, surface-active solute, Marangoni instability

305



slower than the heat transfer, for relatively long time there exists a very thin mixing zone
between both liquids which can be modelled as a two-dimensional Newtonian surface.
The aqueous phase contains a small amount of a surface-active solute which is soluble
in the organic one and, therefore, it is transferring from phase 2 to phase 1 in direction
opposite to the mass transfer. Solutes that decrease or increase the interfacial tension are
considered.

The dissolution of one liquid in another may be accompanied by release or absorption
of heat at the interface. Under external isothermal conditions, the released heat will be
transferred from the interface into both bulks or in the opposite directions when the heat
is absorbed. The heat fluxes cause temperature gradients along the interface resulting in
variation of the interfacial tension. Due to the transfer of the surface-active solute across
the interface, the interfacial excess-solute concentration Γ will vary along the interface
and will differ from its initial value Γ0.

The interfacial tension of the liquid-liquid system depends on the interfacial tempera-
ture TΣ and the interfacial excess-solute concentration by the linear expression

(1) σ = σ0 − σT
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where σT and σΓ are interfacial tension coefficients and T 0
Σ is the reference temperature.

Both coefficients assume positive and negative values. The coefficient σΓ > 0 for surface-
tension-decreasing-solutes and σΓ < 0 for surface-tension-increasing-solutes. Considering
very dilute solutions, the Gibbs adsorption isotherm is assumed to be valid at the
interface, i.e. one has Γ = δ 2S

=
2Σδ1S1Σ, where δi are called Gibbs layer depths. These

equations relate the interfacial excess-solute concentration to the bulk solute concentra-
tions SiΣ (i = 1, 2) from both sides of the interface. According to the Gibbs theory, the
concentration Γ has the same sign as σΓ. It also satisfies a solute balance equation along
the interface.

The phase concentrations at the interface are assumed to be equilibrium ones which
correspond to the interfacial temperature, i.e. CiΣ = RiTΣ, where Ri are constants. The
solute and heat fluxes at the interface satisfy the heat balance equation [2–3]
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where ki is the heat conductivity of phase i, DC
2 is the diffusivity of the organic liquid

in water, Q2 is the heat of solution of the organic liquid in water per mole of organic
liquid, DC

1 and Q1 are the corresponding diffusivity and heat of solution of water in the
organic phase. The heats of solution Qi are taken to be positive when heat is released
and negative for heat absorption.

The linear stability theory is applied to the equations of motion, convective mass and
solute diffusion, and energy. The details of the stability analysis are given in [5–6]. In
the steady-state of the liquid-liquid system when the fluids are in rest, the temperature
and the mass and solute concentrations are presented by linear functions of the vertical
coordinate z (the axis z is directed from phase 2 to phase 1). The temperature gradients
βT

1 and βT
2 have opposite signs depending on the heat process going on at the interface.

When heat is liberated, the heat fluxes are directed from the interface to the bulks, so
βT

1 < 0 and βT
2 > 0. In the case of heat absorption, the fluxes are directed to the interface

and βT
1 > 0 and βT

2 < 0. The positive mass concentration gradient βC
2 is related to the
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last quantities, due to the heat balance equation (2). The solute concentration gradients
(−βS

1 ) and (−βS
2 ) are negative for transfer of solute from the aqueous to the organic

phase, i.e. βS
i > 0.

The solution of the hydrodynamic stability problem is searched in normal modes for
the vertical components of the liquid velocities wi, the mass concentrations Ci, the solute
concentrations Si, the liquid temperatures Ti (i = 1, 2), and the interfacial concentra-
tion Γ:
(3) [wi, Ci, Si, Ti,Γ] = [W̄i(z), C̄i(z), S̄i(z), T̄i(z), γ] exp [i (axx + ayy) + ω t] .

The unknown functions W̄i(z), C̄i(z), S̄i(z), T̄i(z) and the constant γ are amplitudes of
an infinitesimal disturbance, t is the time, ω is a time growth constant and a =

√
a2

x + a2
y

is a wavenumber. The growth constant is, in general, a complex number ω = ωR + i ωI .
The neutral (marginal) instability of the system to the disturbance is characterized by
ωR = 0. When ωR = 0 implies that ωI = 0, then the marginal instability is stationary as
the disturbance does not grow or decay. When ω = iω̄ is a pure imaginary number with a
positive quantity ω̄ (called wave frequency), then the instability is oscillatory. Both cases
of stationary and oscillatory instability are considered.

The stability problem is reduced to solving a system of linear equations for the
amplitudes [6]: (
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Here, the following dimensionless parameters are introduced:
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where Pri is the Prandtl number for phase i, LeC
2 is the Lewis number for transfer of
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organic liquid in aqueous phase, ScS
2 is the Schmidt number for solute diffusion in water,

νi = µi/ρi is the kinematic viscosity, µi is the dynamic viscosity, ρi is the density, κi is
the thermal diffusivity, e2 is the kinematic viscosity ratio, h2 is the heat diffusivity ratio,
r2 is the mass diffusivity ratio and r2

S is the solute diffusivity ratio.
The boundary conditions at the interface are (at z = 0)

W̄1(0) = W̄2(0) = 0, DW̄1(0) = DW̄2(0),

µ
(
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The following dimensionless parameters are defined
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Here, MaS and MaT are the solutal and thermal Marangoni numbers and NS is their
ratio. The solutal Marangoni number assumes positive and negative values depending
on the sign of σΓ . The sign of the thermal Marangoni number MaT coincides with that
of the product σT Q2. The so-called adsorption number H is positive for σΓ > 0 and
negative for σΓ < 0.

The solution of system (4) must vanish far from the interface, i.e.
(8) W̄1, DW̄1, C̄1, S̄1, T̄1 → 0 at z →∞; W̄2, DW̄2, C̄2, S̄2, T̄2 → 0 at z → −∞.

The problem (4), (6) and (8) consists of many physical parameters which vary for
different liquids. Typical values of some parameters are: Pr2 = 6.15 (for water), LeC

2 =
150, ScS

2 = 103, |NS | = 107, |H| = 102, β = 0.8, k = 0.3, h2 = 4, r2 = 0.45, µ = 0.5 and
|δ| = 0.9. As the problem is an eigenvalue one, the solutions exist on some surfaces in the
phase space (a,$, MaS), at given values of the other parameters. In the stationary case
($ = 0), the solutions exist on curves Mast

S = MaS(a) named neutral stability curves.

3. Results. The characteristic equations for both cases of stationary and oscillatory
instability were obtained and studied numerically in [5–6]. The numerical analysis shows
that the instability conditions depend mainly on the solute activity (the sign of σΓ), on
the heat of solution (the sign of σT Q2), on the solute diffusivity ratio r2

S and on the
kinematic viscosity ratio e2. The possible combinations of the last ratios corresponding
to many liquid-liquid systems are: A1) e2 > r2

S > 1, A2) r2
S > e2 > 1, A3) r2

S > 1 > e2,
B1) e2 < r2

S < 1, B2) r2
S < e2 < 1, B3) r2

S < 1 < e2, C1) r2
S = 1 < e2 and C2)

e2 < 1 = r2
S [5–6]. Results were obtained for the following values: A) r2

s = 1.2 and e2
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equal to 2 (case A1), 1.1 (case A2) and 0.25 (case A3); B) r2
s = 0.6 and e2 equal to 0.25

(case B1), 0.9 (case B2) and 2 (case B3); C) r2
S = 1 and e2 = 2 (case C1) or e2 = 0.6

(case C2). The wavenumber was ranged between 10−7 and 10.
Liquid-liquid systems with positive and negative product σT Q2 are considered separa-

tely. In the stationary case, the neutral curves Mast
S = MaS(a) turn out to be of two

types. They consist of either two positive and negative branches, or one negative branch
only. In the former case, the positive branch starts from zero and goes to infinity in a
finite interval and, therefore, systems with positive Marangoni numbers are stationary
unstable. The negative branch increases from minus infinity to some negative value (say,
Ma∞S ) as the wavenumber varies from zero to infinity. The asymptotic value Ma∞S is
the instability threshold and systems with negative Marangoni numbers are unstable
for MaS ≤ Ma∞S . On the contrary, the negative branch of the second type starts from
zero at a = 0 and decreases slowly approaching asymptotically Ma∞S from above. The
instability is expected to occur for Ma∞S ≤ MaS < 0.

Systems with σT Q2 > 0

σΓ > 0 σΓ < 0

Conditions on
diffusivity and
viscosity
ratios

Stationary
disturbances

Oscillatory
disturbances

Marginal
instability

Stationary
disturbances

Oscillatory
disturbances

Marginal
instability

A1 and A2 Stable Unstable Unstable Unstable Stable Unstable
A3 Stable Unstable Unstable Unstable Stable or

unstable
Unstable

B1 Unstable Stable Unstable Stable Stable or
unstable

Stable or
unstable

B2 and B3 Unstable Stable Unstable Stable Stable Stable
C1 Unstable Unstable Unstable Stable Stable Stable
C2 Unstable Stable Unstable Stable Stable or

unstable
Stable or
unstable

Table 1. Instability conditions for systems with σT Q2 > 0

In the case of oscillatory instability (ω = i$), the characteristic equation represents
the solutal Marangoni number as a complex function Maos

S = FR(s ; a) + i FI(s ; a) of a
real positive variable s ≡ $/a2, at given a. As by definition the Marangoni number is a
real number, we look for the roots s of the equation FI(s ; a) = 0 for fixed values of the
wavenumber and the other physical parameters. There are some rare cases as case C2
for systems with σT Q2 < 0 in the presence of surface-tension-decreasing solutes, where
the solution does not exist for physically reasonable values of the parameters involved,
and the corresponding systems are stable to any oscillatory disturbance.

Results for both cases of stationary and oscillatory disturbances as well as for the
general marginal instability are shown in Tables 1 and 2. In cases A1 and A2, the
conditions for stationary and oscillatory instability depend on the sign of σΓ only, indepen-
dently of the sign of σT Q2, but marginal instability can finally occur in all cases. Systems
with σT Q2 > 0 are predicted to be unstable for all combinations of the diffusivity and
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Systems with σT Q2 > 0

σΓ > 0 σΓ < 0

Conditions on
diffusivity and
viscosity
ratios

Stationary
disturbances

Oscillatory
disturbances

Marginal
instability

Stationary
disturbances

Oscillatory
disturbances

Marginal
instability

A1 and A2 Stable Unstable Unstable Unstable Stable Unstable
A3 Stable Stable Stable Unstable Unstable Unstable
B1 Unstable Stable Unstable Stable Stable or

unstable
Stable or
unstable

B2 Unstable Stable Unstable Stable Stable or
unstable

Stable or
unstable

B3 Unstable Stable Unstable Stable Stable Stable
C1 Stable Unstable Unstable Unstable Stable Unstable
C2 Stable Stable Stable Unstable Unstable Unstable

Table 2. Instability conditions for systems with σT Q2 < 0

viscosity ratios when surface-tension-decreasing solutes (σΓ > 0) are present (Table 1).
For surface-tension-increasing solutes (σΓ < 0), the systems are unstable for r2

S > 1,
nevertheless what is the solute diffusivity ratio (all cases A). When r2

S ≤ 1, then they
are stable if the viscosity ratio is larger than the solute diffusivity one (cases B2, B3
and C1) and could be stable or unstable when the viscosity ratio is smaller (in cases B1
and C2).

Systems with σT Q2 < 0 (Table 2), in the presence of surface-tension-decreasing
solutes, are unstable in all cases, except for cases A3 and C2 where r2

S ≥ 1 > e2.
If surface-tension-increasing solutes are present, then the systems are predicted to be
unstable for r2

S ≥ 1, independently of the solute diffusivity ratio (cases A1, A2, A3, C1
and C2). They are stable for r2

S < 1 < e2 (case B3) and can be stable or unstable for
cases B1 and B2 when both ratios are less than one.

The theoretical result and experimental observation are in good agreement for the
isobutanol-water system, but there is disagreement for the ethylacetate-water system [5].
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ВЛИЯНИЕ НА ПОВЪРХНОСТНО-АКТИВНИ ВЕЩЕСТВА ВЪРХУ
МАРАНГОНИЕВАТА НЕУСТОЙЧИВОСТ В ТЕЧНО-ТЕЧНИ

СИСТЕМИ

Славчо Г. Славчев, Пенка Г. Калицова-Куртева

Изучава се възникването на Марангониева неустойчивост в частично смесващи
се течно-течни системи, като например органична течност и вода, при наличието
на повърхностно-активно вещество. Марангониевата неустойчивост се индуцира
от градиента на повърхностното напрежение вследствие на изменение на повърх-
ностната температура, породено от отделената или погълнатата топлина на раз-
тваряне върху междуфазовата повърхност и от изменението на концентрацията
на веществото по нея. Проведен е анализ на линейната устойчивост за предсказ-
ване на неутралната неустойчивост за вещества намаляващи или повишаващи
повърхностното напрежение.
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