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The paper presents a new approach for obtaining local linear perturbation bounds
for the discrete Hoo synthesis problem based on linear matrix inequalities (LMI). The
sensitivity analysis of the perturbed LMI is done by introducing a suitable slightly
perturbed right-hand part. This approach leads to tight local linear perturbation
bounds for the LMI solutions of the Hoo synthesis problem. Numerical example
illustrating the theoretical results is presented.

1. Introduction. In many control problems the design constraints have a simple
reformulation in terms of linear matrix inequalities (LMI) [1,6]. The H, control problem
is an example of this in this field. Indeed, the H,, constraints can be expressed as a
single matrix inequality via the bounded real lemma [4]. It must be stressed that the
Hoo control problem has a solution in terms of Riccati equations [7], the LMI approach
remains valuable.

In this paper we propose a new approach to the local sensitivity analysis of the
LMI based H., synthesis problem by introducing a suitable right-hand part in the
corresponding matrix inequalities.

The paper is organized as follows. In Section 2 we shortly present the problem setup
and objective. Section 3 describes the performed local linear sensitivity analysis of the
LMI based Hyo synthesis problem. Section 4 presents a numerical example. Section 5
contains some final remarks.

2. Problem Statement. Consider the discrete-time autonomous linear control sys-
tem

Tpr1 = Az + Biwg + Boug,
(1) zp = Chizp + Duywg + Diouy,
yr = Chay + Doywy + Dogug,

where zj, € R™ is the state vector, w, € R! is the exogenous input vector, u, € R™ is
the control input vector, z; € RP is the error vector, y; € R” is the measurement vector
and A, By, By, C1, Co, D11, D12, Doy, Doy are constant matrices of compatible size.
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The formulation and solution of corresponding H, control problems are well-known, see
e.g. [7].

We consider an LMI approach to solve the Ho, synthesis problem, as stated in [2].
More precisely, we are interested in the solution of the LMI [2, 6]
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where N2 and N are the orthonormal bases of the null-spaces of [BQT DlgT] and
[Cg Doy ], respectively. Here we assume that the optimal closed-loop performance yop¢
of the system (1) is already obtained.

The main objective point of the paper is to perform a local linear sensitivity analysis
of the LMI system (2)—(3) near the optimal value of ~.

Suppose that the matrices A, By, Ba, C1, Ca, D11, D12, Doy, Doy are subject to
perturbations AA, ABy, ABy, ACy, ACy, AD11, ADqs, ADs1, ADss and assume that
these perturbations do not change the sign of the LMI (2)—(3).

3. Linear Sensitivity Analysis. First, we perform a sensitivity analysis of the LMI
(3). The structure of this LMI allows to consider only the part

(Na1 4+ ANop) T

(A+AA)T(S* + AS)(A+ AA) — (S* + AS) 0
*{[ (B1 +AB;)T(S* + AS)(A + AA) 0 ]

L]0 (A+AA)T(S* + AS) (B + ABy)
0 _70ptI - A’Yopt—[ + (Bl + ABl)T(S + AS)(Bl + ABl)

(5) *(Nzl + A/\[21) =H"+AH; < 0,
and to study the effect of the perturbations AA, ABy, ABy, ACy, ACs, AD11, ADqo,
AD31, AD3y and Avepy on the perturbed LMI solution S* + AS, where S* and AS are
the nominal solution of LMI (3) and the perturbation. The essence of our approach is to
perform sensitivity analysis of the LMI (3) in a similar manner as for a proper matrix
equation after introducing a suitable right—-hand part, which is slightly perturbed. The
matrix H* is obtained using the nominal LMI
+[ATS*A - 5% ATS*B, o
(6) Noy B,TS*A o] + B, TS B, Noy = H* <0.
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The matrix H; is due to the data and closed-loop performance perturbations, the
rounding errors during the numerical solution and the sensitivity of the interior—point
method used to solve the LMI. It is important to mention that the (1,2), (2,1), (2,2)
blocks of the LMI (2) and (3) pose constraints on the size of the perturbations ABj,
ACy, AD11 and Avyepe, since the introduced right-hand part matrix must be negatively
definite.

The perturbed relation (5) may be written as
(7) NleVNzl +N21TVAN21 + ANQlTVN21 + ANQlTVANzl =H* + A’Fh,
where
Vo [ATS*A —S*+ ATASA—AS+ ATS*AA+AATS*A 0 ]
By "S*A+ BiASA+ B, TS*AA+ AB, TS*A 0
n [0 ATS*B; + ATASB, + ATS*AB, + AATS*B; }
0 —Yopt — Ayope] + By TS*By + By TAS*By + B, S*AB, + AB, T S*By |’

Here the terms of second and higher order are neglected. Next, we use relation (6) to
obtain the expression

(8)

where

Not TWgNoy + Noy T (H* + Ug) AN+
+ANo T (H* + Ug)Nog + ANy T (H* + W) ANy = AHy,
_ ATASA—AS ATASB
* Tayx o _ 1
H* =Noy ' H'Nai, ¥s=0g5+Ag, Og = B,TASA B, TASB, ],
ATS*AA+AATS*A ATS*AB; + AATS*B, ]

A =
ST | BITS*AA+ AB,TS*A B,TS*AB) + AB; T S* By — Avyopil

Since we are going to obtain linear perturbation bounds for the LMI based Ho,
synthesis problem, the terms of second and higher order in (8) will be neglected. Hence,
(8) yields
9) Nat T OsNat + Not TAsNay + ANy TH Nay + Noy TH* ANy = AL
We use the setting H*No; = Nop, Nog T H* = /\72*1 ATS* = Shr, S*A =83, By TS =
Sg 7, 5" B1 = S, . In this way relation (9) may be written in a vector form as

(10) (/\le—r ®N21T)V6C(@S) + (J\f21T ®N21T)V8C(As) + Nsevec(ANzy) = vec(AH;),

where

AT @ AT — 1,2
BlT ® AT
vec(Og) = AT o B, T vec(AS) = NAs,
BlT ® BlT
(I®8%:)+ (5% @ L,e 0 0
vec(As) = (Sp, @ DL, (I®S%) 0 Vveecc((AA;))
§) = (I®Sy ) (8% ® NIl 0 A !
0 (I® Sy )+ (S, ® DIl —ep Topt

=[Na Ne2 Neg | Ajab, = NeAsavy, Nso = Not " @ DI ypynz + TR NG 7).
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Further, we obtain the expression
(11) NgAs + Nigivec(AA) + Nigavec(ABy) + NigsAy + Nsevec(ANyp) = vec(AH;),
where
Ny = (No1" @ Na1 ")N, Negt = (Nor | @ Nag TNy,
Nisz = (Nor T @ Na1 )Nz Nigs = (No1 | @ Nap ') Ns.
It is well-known [5] that the perturbation bound for the projector N2; may be written as
(12) IANS1 [l < [I[C2, D2 [[[AC2, ADay|lo-

Using also the fact that ||vec(M)||2 = ||M]|#, we can finally obtain that the relative
perturbation bound for the solution S* of the LMI (3) has the form

[Aslla 1 <Nab1IIAAIIf 1ABillF | o IA%pt|>

+ Nab2

> b3
15*]| 15%]| 7 1Al # 1B1]l# [Yopt|
1 ACy, AD AH
(13) P (chH[ 2 allz o | *1||;)’
15* | I[C2; Darlll# IH*)| 7
where
Nabt_ [INIl2l Nesall2[[Allz~ Nave NS ll2[[Nusola[[vee(B1)|l2
15| 15%]| 7 SEllF [15%]|# ’
Nabs _ [Ndll2[[Nessll2ly] -~ N1 _ [Nl H* |+
15*]| # 15*]|# 15*]| # 15*]|#
Nea _ [INl2lNsell2][C2, Dail||£][C2; DoallF
15| 15| ’

may be considered as individual relative condition numbers of the LMI (3) with respect
to the perturbations AA, ABl, ABQ, ACl, ACQ7 ADll, AD127 ADQl and A’YOpt-

In a similar way the relative perturbation bounds for the solution R* of the LMI (2)
may be obtained using the expression

[[Ar|2 1 ( |AA|# [AC ||+ | A%opt |
T o=l S Macl + Mac27 + ||Ma03||2
[Fand P2 [ R*|| 1All# 1C1 |7 [Yopt|
1 [[AB: T, AD1y ]|+ A& ||+
(14) + . (Mbd + My~ ,
IR+ I[B2T, Di2"]ll# 1€+l 7
Macl MaCQ MaCB Ml Mbd

, , s " and »
IR |l=" 1R*|l=" IR+ [|B*|» (PeadiF2

relative condition numbers of the LMI (2) with respect to the perturbations AA, ABy,
ABy, ACy, ACy, ADq1, ADia, ADy; and Avgp:. These condition numbers can be
Nabl Nab2 NabS Nl and ch

1= =" 1= ll=" I1S* 1" 15*[l# 1511

where may be considered as individual

obtained in a similar way to

4. Numerical Example. Consider the following system description

0 1 0 0 0 0
A = —k/m —c/m ] » Bie = [ —pm —pc/m —pk/m ] » Bae = [ 1/m ] ’
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—k/m —c/m —pm —pc/m  —pk/m
Olc: 0 c aCQC:[]- O}aDllc: 0 0 0 )
k 0 0 0 0
1/m
D1o. = 0 , Doyie=10 0 0]
0

andm=3,¢c=1, k=2, pm = 04, pc = 0.2, pk = 0.3. Here A., By, Bs., Cic, Co,
D11c, Dise, Do1. are the system matrices of a continuous-time system, which for the aim
of the analysis is turned into a discrete one using sampling time of 0.01s.

The perturbations in the system matrices of the system are chosen as

AA=Ax10"%, AB; = By x 107", ABy = By x 107,
ACl = Cl X 10_i, ACQ = CQ X 10_i,AD11 = D11 X 10_i, AD12 = D12 X 10_i7
Avopt = 107" % yope, AHy = 107" H*, A& = 107" x £,
The perturbed solutions R* + AR and S* + AS are computed based on the method
derived in [2] and using the software [3]. In our experiments we obtain y,p = 0.4191.
The relative perturbation bounds for the solutions R* and S* of the LMIs (2)—(3) are

obtained by the linear bounds (14) and (13), respectively.
The results obtained for different values of ¢ are shown in the following table:

. [As]l2 [Ar]2

i Tvec(S" s I'pannma (13) Tvec(B) I'pannna (14)
8| 0110°° 0.510°° 0.710°° 6.310°°

7] 011075 0.510°14 0.7107° 6.310°14

6| 0110°1% 0.510°3 0.710° 1% 6.310°3

5] 011073 0.5102 0.71073 6.3 102

41 011072 0.510° T 0.7 1072 6.3 1071

5. Conclusions. A complete local linear sensitivity analysis of the discrete LMI
based on H, synthesis problem is done. Tight perturbation bounds, which are linear
functions of the data perturbations, are obtained for the matrix inequalities determining
the problem solution. A numerical example is presented which explicitly reveals the
performance and applicability of the proposed approach to analyze the sensitivity of
discrete LMI based H, synthesis problems.

REFERENCES

[1] S. Boyp, L. EL GHaoul, F. FERON, V. BALAKRISHNAN. Linear Matrix Inequalities in
Systems and Control Theory. SIAM Philladelphia, 41, No 3 (1996), 358-367.

[2] P. GAHINET, P. APKARIAN. A Linear Matrix Inequality Approach to Ho. Control. Int. J.
Robust Non. Contr., 4 (1994), 421-448.

[3] P. GAaHINET, A. NEMIROVSKI, A. LauB, M. CHiLaLl. LMI Control Toolbox for Use with
MATLAB. The MathWorks, Inc., 2000.

[4] 1. R. PETERSON, B. D. O. ANDERSON, E. A. JONKHEERE. A first principles solution to
the non-singular Hoe control problem. Int. J. Robust Non. Contr., 1 (1991), 171-185.

[5] G. STEWARD AND J. G. SUN, Matrix Perturbation Theory. Academic Press, N.Y., 1990.

316



[6] A. YoncHEV, M. KonsTANTINOV, P. PETKOV. Linear Matrix Inequalities in Control
Theory. Demetra — Sofia, 2005, ISBN 954-9526-32-1 (in Bulgarian).

[7] K. Znou, J. C. DoyLE, K. GLOVER. Robust and Optimal Control. PrenticeHall, Upper
Saddle River, New Jersey 07458, 1995.

A. S. Yonchev M. M. Konstantinov

P. H. Petkov Department of Mathematics
Department of Systems and Control University of Architecture
Technical University of Sofia Civil Engineering and Geodesy
1756 Sofia, Bulgaria e-mail: mmk_fte@uacg.bg

e-mail: ajonchev@mail.bg
php@tu-sofia.bg

ITEPTYPBAIIMMOHHU I'PAHUIIN 3A JIVNCKPETHATA Ho, 3AJAYA
3A CUHTES3

.
Awngpeii C. UonueB, Muxaua M. Koucrantuuon, Ilerko X. Ilerkos

B paGorara ca HaMepeHU JUHEHHU NepTypOaIMOHHE TPAHUIU 32 JAUCKPETHATA 3a/a-
9a 3a CMHTE3a, OCHOBaHa Ha JIMHeiiHW Marpuvnu Hepasenctsa (JIMH). Hampasen e
AHAJIN3 Ha 9yBCTBUTE/JIHOCTTA Ha CMYTEHUTE MAaTPUYIHU ypaBHEHUA CJIE€ BbBEXKIaHe
Ha MOJXOJ/IAII0 U30paHNd CMyTeHa JFCHa CTPaHa.

317



