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The paper presents a new approach for obtaining local linear perturbation bounds
for the discrete H∞ synthesis problem based on linear matrix inequalities (LMI). The
sensitivity analysis of the perturbed LMI is done by introducing a suitable slightly
perturbed right-hand part. This approach leads to tight local linear perturbation
bounds for the LMI solutions of the H∞ synthesis problem. Numerical example
illustrating the theoretical results is presented.

1. Introduction. In many control problems the design constraints have a simple
reformulation in terms of linear matrix inequalities (LMI) [1, 6]. The H∞ control problem
is an example of this in this field. Indeed, the H∞ constraints can be expressed as a
single matrix inequality via the bounded real lemma [4]. It must be stressed that the
H∞ control problem has a solution in terms of Riccati equations [7], the LMI approach
remains valuable.

In this paper we propose a new approach to the local sensitivity analysis of the
LMI based H∞ synthesis problem by introducing a suitable right-hand part in the
corresponding matrix inequalities.

The paper is organized as follows. In Section 2 we shortly present the problem setup
and objective. Section 3 describes the performed local linear sensitivity analysis of the
LMI based H∞ synthesis problem. Section 4 presents a numerical example. Section 5
contains some final remarks.

2. Problem Statement. Consider the discrete–time autonomous linear control sys-
tem

xk+1 = Axk + B1wk + B2uk,

zk = C1xk + D11wk + D12uk,(1)
yk = C2xk + D21wk + D22uk,

where xk ∈ Rn is the state vector, wk ∈ Rl is the exogenous input vector, uk ∈ Rm is
the control input vector, zk ∈ Rp is the error vector, yk ∈ Rr is the measurement vector
and A, B1, B2, C1, C2, D11, D12, D21, D22 are constant matrices of compatible size.
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The formulation and solution of corresponding H∞ control problems are well-known, see
e.g. [7].

We consider an LMI approach to solve the H∞ synthesis problem, as stated in [2].
More precisely, we are interested in the solution of the LMI [2, 6]

(2)



N12

... 0
. . . . . . . . .

0
... I


>




ARA> −R ARC1
> ... B1

C1RA> −γI + C1RC1
> ... D11

. . . . . . . . . . . .

B1
> D11

> ... −γI






N12

... 0
. . . . . . . . .

0
... I


 < 0,

(3)



N21

... 0
. . . . . . . . .

0
... I


>




A>SA− S A>SB1

... C1
>

B1
>SA −γI + B1

>SB1

... D11
>

. . . . . . . . . . . .

C1 D11

... −γI






N21

... 0
. . . . . . . . .

0
... I


 < 0,

(4)
[

R I
I S

]
> 0,

where N12 and N21 are the orthonormal bases of the null-spaces of
[
B2

> D12
> ]

and[
C2 D21

]
, respectively. Here we assume that the optimal closed–loop performance γopt

of the system (1) is already obtained.
The main objective point of the paper is to perform a local linear sensitivity analysis

of the LMI system (2)–(3) near the optimal value of γ.
Suppose that the matrices A, B1, B2, C1, C2, D11, D12, D21, D22 are subject to

perturbations ∆A, ∆B1, ∆B2, ∆C1, ∆C2, ∆D11, ∆D12, ∆D21, ∆D22 and assume that
these perturbations do not change the sign of the LMI (2)–(3).

3. Linear Sensitivity Analysis. First, we perform a sensitivity analysis of the LMI
(3). The structure of this LMI allows to consider only the part

(N21 + ∆N21)>

∗
{[

(A + ∆A)>(S∗ + ∆S)(A + ∆A)− (S∗ + ∆S) 0
(B1 + ∆B1)>(S∗ + ∆S)(A + ∆A) 0

]

+
[

0 (A + ∆A)>(S∗ + ∆S)(B1 + ∆B1)
0 −γoptI −∆γoptI + (B1 + ∆B1)>(S + ∆S)(B1 + ∆B1)

]}

∗(N21 + ∆N21) = H̄∗ + ∆H̄1 < 0,(5)
and to study the effect of the perturbations ∆A, ∆B1, ∆B2, ∆C1, ∆C2, ∆D11, ∆D12,
∆D21, ∆D22 and ∆γopt on the perturbed LMI solution S∗ + ∆S, where S∗ and ∆S are
the nominal solution of LMI (3) and the perturbation. The essence of our approach is to
perform sensitivity analysis of the LMI (3) in a similar manner as for a proper matrix
equation after introducing a suitable right–hand part, which is slightly perturbed. The
matrix H̄∗ is obtained using the nominal LMI

(6) N21
>

[
A>S∗A− S∗ A>S∗B1

B1
>S∗A −γoptI + B1

>S∗B1

]
N21 = H̄∗ < 0.
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The matrix H̄1 is due to the data and closed–loop performance perturbations, the
rounding errors during the numerical solution and the sensitivity of the interior–point
method used to solve the LMI. It is important to mention that the (1, 2), (2, 1), (2, 2)
blocks of the LMI (2) and (3) pose constraints on the size of the perturbations ∆B1,
∆C1, ∆D11 and ∆γopt, since the introduced right-hand part matrix must be negatively
definite.

The perturbed relation (5) may be written as
(7) N21

>VN21 +N21
>V∆N21 + ∆N21

>VN21 + ∆N21
>V∆N21 = H̄∗ + ∆H̄1,

where
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]

+
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]
.

Here the terms of second and higher order are neglected. Next, we use relation (6) to
obtain the expression

(8)
N21

>ΨSN21 +N21
>(H∗ + ΨS)∆N21+

+∆N21
>(H∗ + ΨS)N21 + ∆N21

>(H∗ + ΨS)∆N21 = ∆H̄1,

where

H̄∗ = N21
>H∗N21, ΨS = ΘS + ΛS , ΘS =

[
A>∆SA−∆S A>∆SB1

B1
>∆SA B1

>∆SB1

]
,

ΛS =
[

A>S∗∆A + ∆A>S∗A A>S∗∆B1 + ∆A>S∗B1

B1
>S∗∆A + ∆B1

>S∗A B1
>S∗∆B1 + ∆B1

>S∗B1 −∆γoptI

]
.

Since we are going to obtain linear perturbation bounds for the LMI based H∞
synthesis problem, the terms of second and higher order in (8) will be neglected. Hence,
(8) yields
(9) N21

>ΘSN21 +N21
>ΛSN21 + ∆N21

>H∗N21 +N21
>H∗∆N21 = ∆H̄1.

We use the setting H∗N21 = Ñ21, N21
>H∗ = Ñ ∗
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. In this way relation (9) may be written in a vector form as
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Further, we obtain the expression
(11) Ns∆s + Nts1vec(∆A) + Nts2vec(∆B1) + Nts3∆γ +NSΘvec(∆N21) = vec(∆H̄1),
where

Ns = (N21
> ⊗N21

>)N, Nts1 = (N21
> ⊗N21

>)Nt1,

Nts2 = (N21
> ⊗N21

>)Nt2 Nts3 = (N21
> ⊗N21

>)Nt3.

It is well-known [5] that the perturbation bound for the projector N21 may be written as
(12) ‖∆N21‖2 ≤ ‖[C2, D21]†‖2‖[∆C2, ∆D21]‖2.
Using also the fact that ‖vec(M)‖2 = ‖M‖F , we can finally obtain that the relative
perturbation bound for the solution S∗ of the LMI (3) has the form

‖∆s‖2
‖S∗‖F ≤ 1

‖S∗‖F

(
Nab1

‖∆A‖F
‖A‖F + Nab2

‖∆B1‖F
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|∆γopt|
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)

+
1
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(
Ncd
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)
,(13)

where
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may be considered as individual relative condition numbers of the LMI (3) with respect
to the perturbations ∆A, ∆B1, ∆B2, ∆C1, ∆C2, ∆D11, ∆D12, ∆D21 and ∆γopt.

In a similar way the relative perturbation bounds for the solution R∗ of the LMI (2)
may be obtained using the expression

‖∆r‖2
‖R∗‖F ≤ 1

‖R∗‖F

(
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‖∆A‖F
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‖∆Ē1‖F
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)
,(14)

where
Mac1

‖R∗‖F ,
Mac2

‖R∗‖F ,
Mac3

‖R∗‖F ,
M1

‖R∗‖F and
Mbd

‖R∗‖F may be considered as individual

relative condition numbers of the LMI (2) with respect to the perturbations ∆A, ∆B1,
∆B2, ∆C1, ∆C2, ∆D11, ∆D12, ∆D21 and ∆γopt. These condition numbers can be

obtained in a similar way to
Nab1

‖S∗‖F ,
Nab2

‖S∗‖F ,
Nab3

‖S∗‖F ,
N1

‖S∗‖F and
Ncd

‖S∗‖F .

4. Numerical Example. Consider the following system description

Ac =
[

0 1
−k/m −c/m

]
, B1c =

[
0 0 0

−pm −pc/m −pk/m

]
, B2c =

[
0

1/m

]
,
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C1c =



−k/m −c/m

0 c
k 0


 , C2c =

[
1 0

]
, D11c =



−pm −pc/m −pk/m

0 0 0
0 0 0


 ,

D12c =




1/m
0
0


 , D21c =

[
0 0 0

]

and m = 3, c = 1, k = 2, pm = 0.4, pc = 0.2, pk = 0.3. Here Ac, B1c, B2c, C1c, C2c,
D11c, D12c, D21c are the system matrices of a continuous-time system, which for the aim
of the analysis is turned into a discrete one using sampling time of 0.01s.

The perturbations in the system matrices of the system are chosen as
∆A = A× 10−i, ∆B1 = B1 × 10−i, ∆B2 = B2 × 10−i,

∆C1 = C1 × 10−i, ∆C2 = C2 × 10−i, ∆D11 = D11 × 10−i, ∆D12 = D12 × 10−i,

∆γopt = 10−i ∗ γopt, ∆H̄1 = 10−i ∗ H̄∗, ∆Ē1 = 10−i ∗ Ē∗.
The perturbed solutions R∗ + ∆R and S∗ + ∆S are computed based on the method

derived in [2] and using the software [3]. In our experiments we obtain γopt = 0.4191.
The relative perturbation bounds for the solutions R∗ and S∗ of the LMIs (2)–(3) are
obtained by the linear bounds (14) and (13), respectively.

The results obtained for different values of i are shown in the following table:

i
‖∆s‖2

‖vec(S∗)‖2 Граница (13)
‖∆r‖2

‖vec(R∗)‖2 Граница (14)

8 0.1 10−6 0.5 10−5 0.7 10−6 6.3 10−5

7 0.1 10−5 0.5 10−4 0.7 10−5 6.3 10−4

6 0.1 10−4 0.5 10−3 0.7 10−4 6.3 10−3

5 0.1 10−3 0.5 10−2 0.7 10−3 6.3 10−2

4 0.1 10−2 0.5 10−1 0.7 10−2 6.3 10−1

5. Conclusions. A complete local linear sensitivity analysis of the discrete LMI
based on H∞ synthesis problem is done. Tight perturbation bounds, which are linear
functions of the data perturbations, are obtained for the matrix inequalities determining
the problem solution. A numerical example is presented which explicitly reveals the
performance and applicability of the proposed approach to analyze the sensitivity of
discrete LMI based H∞ synthesis problems.
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ПЕРТУРБАЦИОННИ ГРАНИЦИ ЗА ДИСКРЕТНАТА H∞ ЗАДАЧА
ЗА СИНТЕЗ

Андрей С. Йончев, Михаил М. Константинов, Петко Х. Петков

В работата са намерени линейни пертурбационни граници за дискретната зада-
ча за синтеза, основана на линейни матрични неравенства (ЛМН). Направен е
анализ на чувствителността на смутените матрични уравнения след въвеждане
на подходящо избрани смутена дясна страна.
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