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THE INVERSE PROBLEM OF GALOIS THEORY*

Ivo M. Michailov, Nikola P. Ziapkov

In this survey we outline the milestones of the Inverse Problem of Galois theory
historically up to the present time. We summarize as well the contribution of the
authors to the Galois Embedding Problem, which is the most natural approach to
the the Inverse Problem in the case of non-simple groups.

1. Introduction. Let G be a finite group, and let K be a field. The Inverse Problem
of Galois Theory consists of two parts:

i: Existence. Determine whether there exists a Galois extension M/K such that the
Galois group Gal(M/K) is isomorphic to G.

ii: Actual construction. If G is realisable as a Galois group over K, construct
explicitly either Galois extensions or polynomials over K having G as a Galois
group.

The classical Inverse Problem of Galois Theory is the existence problem for the field
K = Q of rational numbers. The question of whether all finite groups can be realized
over Q is one of the most challenging problems in mathematics, and it is still unsolved. In
this connection, an especially interesting version of the Inverse Problem concerns regular
extensions: Let t = (t1, t2, . . . , tn) be indeterminates. A finite Galois extension M/Q(t)
is called regular, if Q is relatively algebraically closed in M, i.e., if every element in
M \ Q is transcedental over Q. The Regular Inverse Galois Problem asks: Is every
finite group realisable as the Galois group of a regular extension of Q(t)? Whenever we
have a regular Galois extension M/Q(t), by the Hilbert Irreducibility Theorem there is
a ’specialization’ M/Q with the same Galois group. Moreover, we get such specialized
extensions M/K over any Hilbertian field in characteristic 0.

The above Inverse Problems have been solved in the affirmative in some cases, e.g.:
(1) If K = C(t), where t is an indeterminate, then any finite group G occurs as a Galois

group over K. This follows basically from the Riemann Existence Theorem. More
generally, the absolute Galois group of the function field K(t) is free pro-finite with
infinitely many generators, whenever K is algebraically closed, cf. [2].

(2) If K = Fq is a finite field, then the Galois group of every polynomial over K is a
cyclic group.

(3) If K is a p-adic field, then any polynomial over K is solvable.
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There are several monographs devoted to the Inverse Problems, and containing an ex-
tensive survey, e.g. [14, 43, 39, 4]. In the following section we briefly discuss some of the
most significant results in this area.

2. Milestones of the Inverse Problem. In the early nineteenth century, the
following result was established:

Theorem 2.1 (Kronecker-Weber).Any finite abelian group G occurs as a Galois
group over Q. Furthermore, G can be realized as the Galois group of a subfield of the
cyclotomic field Q(ζ), where ζ is an n-th root of unity for some natural number n.

The proof can be found in most books on class field theory.

The first systematic study of the Inverse Galois Problem started with Hilbert in 1892.
Hilbert used his Irreducibility Theorem to establish the following result:

Theorem 2.2.For any n ≥ 1, the symmetric group Sn and the alternating group An

occur as Galois groups over Q.

The first explicit examples of ploynomials with the alternating group An as a Galois
group were given by Schur [36] in 1930.

In 1916, E. Noether [33] raised the following question:

THE NOETHER PROBLEM. Let M = Q(t1, . . . , tn) be the field of rational functions
in n indeterminates. The symmetric group Sn of degree n acts on M by permuting the
indeterminates. Let G be a transitive subgroup of Sn, and let K = MG be the subfield
of G-invariant rational functions of M . Is K a rational extension of Q? I.e., is K
isomorphic to a field of rational functions over Q?

If the Noether Problem has an affirmative answer, then G can be realised as a Galois
group over Q, and in fact over any Hilbertian field of characteristic 0.

The next important step was taken in 1937 by A. Scholz and H. Reichard [37, 35]
who proved the following existence result:

Theorem 2.3.For an odd prime p, every finite p-group occurs as a Galois group over
Q.

It is not known whether there is a regular Galois extension of Q(t) with Galois group
G for an arbitrary p-group G.

The final step concerning solvable groups was done by Shafarevich [40], although
with a gap when the prime 2 divides the order of the group. In the notes appended to
his Collected papers, p. 752, Shafarevich sketches a method to correct this. For a full
correct proof, the reader is referred to the book by Neukirch, Schmidt and Wingberg [34,
Chapter IX].

Theorem 2.4 (Shafarevich).Every solvable group occurs as a Galois group over Q.

Of the finite simple groups, the projective groups PSL(2, p) for some odd primes p
were among the first to be realized. The existence was established by Shih in 1974 and
later polynomials were constructed by Malle and Matzat:

Theorem 2.5 (Shih [41]). Let p be an odd prime such that either 2, 3 or 7 is a
quadratic non-residue modulo p. Then PSL(2, p) occurs as a Galois group over Q.

18



Theorem 2.6 (Malle & Matzat [13]). Let p be an odd prime with p 6≡ ±1 ( mod 24).
Then explicit families of polynomials over Q(t) with Galois group PSL(2, p) can be con-
structed.

For the 26 sporadic simple groups, all but possibly one, namely, the Mathieu group
M23, have been shown to occur as Galois groups over Q by Matzat and his collaborators.

The Fischer-Griess group M , known as the “Monster”, is the largest of the sporadic
simple groups. Its order is

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71.

In 1984, Thompson succeeded in proving the following existence theorem:

Theorem 2.7 (Thompson [42]). The monster group occurs as a Galois group over Q.

For the proof of the latter Theorem, however, one is forced to rely upon the classifi-
cation theorem for the finite simple groups. (Some doubts remain as to whether a proof
of the classification theorem, spread over 500-odd articles, is complete and correct, not
to mention that the part on “quasi-thin” groups has never been published.)

Later several families of simple linear groups were realized as Galois groups over Q

(see [14]).

It should be noted that all these realization results of simple groups were achieved via
the rigidity method and the Hilbert Irreducibility Theorem. For a detailed exposition of
this approach, the readers are referred to the books [14, 39].

Another noteworthy approach to the Inverse Problem, applicable for specific non-
simple groups, is based on trace forms, i.e., quadratic forms of the type x 7→ TrL/K(x2)
defined on a field extension L/K. Given a finite Galois extension M/K with Galois group
G, we can consider G as a transitive subgroup of the symmetric group Sn for some natural
number n. Let S̃n be the stem cover of Sn, i.e., the double cover

1 → {±1} → S̃n → Sn → 1

in which transpositions lift to elements of order 2, and products of two disjoint trans-
positions lift to elements of order 4. Then we get a double cover G̃ of G, and we can
ask: Can M/K be extended to a G̃-extension F/K? The answer to this question involves
the study of trace forms, and have been used by Mestre [17] and others to realise stem
covers of alternating groups as regular extensions over Q. Serre [38] studied the trace form
TrL/K(x2) in detail. This approach is sometimes applied to other groups, e.g. 2-groups,
in connection with the orthogonal Galois representations and Clifford groups.

Recently, there has been developed plenty of computational methods, aided by a
computer, determining the Galois groups of polynomials over Q. Some of these results
are published in Journal of Symbolic Computation, Volume 30, Issue 6 (Dec. 2000)
“Algorithmic methods in Galois Theory”, see e.g. [6], where Kluners and Malle show
that every transitive group of degree up to 15 is realisable as a Galois group over Q. In
another paper by the same authors [7] is announced the creation of a database for number
fields. It encompasses roughly 100 000 polynomials generating distinct number fields over
the rationals of degrees up to 15. The database contains polynomials for all transitive
permutation groups up to that degree, and is accessed via the computer algebra system
Kant. In the same paper is published a result by Serre, which states that if every finite
group is realisable as a Galois group over Q, then it is in fact possible to realise them
inside R. The applications of this result could lead potentially to a negative answer to
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the classical Inverse Galois Problem, if, for example, one discovers a group which does
not posses a real field that realises it over Q. That is another reason for the interest in
the explicit construction of all fields that realise a given group as a Galois group. Such
a negative result, however, is extremely difficult to discover. In fact, the only negative
result regarding realisability over Q (with an extra condition) known to us is due to Jan
Brinkuis:

Theorem 2.8 (Brinkuis, [1]). There is no Galois extension of Q with cyclic Galois
group of odd prime power order which has a normal integral basis over any proper
intermediate field.

3. The Embedding Problem. Let K/k be a Galois extension with Galois group
F , and let

(3.1) 1 → A → G
α−−−−→ F → 1,

be a finite group extension. Then the embedding problem (K/k, G, A) consists in deter-
mining whether there exists a Galois algebra (called also a weak solution), or a Galois
extension (called a proper solution) L/k, such that K ⊂ L, G ∼= Gal(L/k) and the
homomorphism of restriction to K of the automorphisms from G coincides with α.
The notion of Galois algebra was invented independently by Faddeev and Hasse as a
generalization of the Galois extension, which makes amends for the possible lack of Galois
extensions solving the split embedding problems. The group A is called the kernel of the
embedding problem.

Thus, the embedding problem becomes the main tool of investigations of the realisabi-
lity of a given group G over arbitrary fields. Today, the theory of embedding problems
is so developed, that one can deem it as an independent branch of Galois theory. For
a deeper acquaintance with the embedding problems and Galois algebras we refer the
reader to the excellent monograph [3].

A well known criterion for solvability is obtained by using the Galois group Ωk of the
separable closure ks over k.

Theorem 3.1 [3, Th. 1.15.1].The embedding problem (K/k, G, A) is weakly solvable
iff there exists a homomorphism δ : Ωk → G, such that the diagram

is commutative, where ϕ is the natural epimorphism. The embedding problem is properly
solvable iff among the homomorphisms Ωk → G, such that the above diagram is commu-
tative, there exists an epimorphism.

Given that the kernel A of the embedding problem is abelian, another well known
criterion holds.

Corollary 3.2 [3, Th. 13.3.2].Let A be an abelian group and let c be the 2-coclass
of the group extension (3.1) in H2(F, A). Then the embedding problem (K/k, G, A) is
weakly solvable iff infΩk

F (c) = 0, where infΩk

F : H2(F, A) → H2(Ωk, A) is the inflation
map.
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Yakovlev further invented cohomological exact sequences in order to replace the
splitting condition infΩk

F (c) = 0 with two conditions, one of which is equivalent to the
famous compatibility condition found by Faddeev and Hasse (see [44, 3]).

We give now one of its forms, when A = kerα is abelian, and the field K contains all
roots of unity of degree equal to the period of A. The kernel A becomes an F -module in

natural way: for f ∈ F and a ∈ A, we set af = f
−1

af , where f is arbitrary pre-image
of f in G. For any homomorphism χ : A → K∗ we denote by Fχ the subgroup of F ,
containing all f ∈ F such that χ(af ) = [χ(a)]f , and by Gχ the pre-image of Fχ in G.
Next, pick an element cχ ∈ H2(Fχ, A), related to the exact sequence

(3.2) 1 → A → Gχ
α−−−−→ Fχ → 1.

Then, the compatibility condition, which is necessary for the solvability of the embedding
problem, states: For every homomorphism χ : A → K∗, the image of the element cχ under
the map H2(Fχ, A) → H2(Fχ, K∗), induced by χ, is equal to 1.

In [49] A. Yakovlev and N. Ziapkov introduced a new type of fields – universally
compatible fields. Namely, we say that the Galois extension K/k is universally compatible
of period q, if the field K contains a primitive root of unity ξ of degree q, and for all
subgroups F0 of F , the homomorphisms H2(F0, 〈ξ〉) → H2(F0, K

∗), induced by the
inclusion 〈ξ〉 ↪→ K∗, are zero. Yakovlev and Ziapkov established the following results.

Theorem 3.3 [49]. The extension K/k, containing a primitive root of unity of degree
q, is universally compatible of period q if and only if the compatibility condition holds for
all embedding problems (K/k, G, A) with abelian kernel A of period q.

Theorem 3.4 [49]. Let K/k be a Galois extension with Galois group F , such that
K contains a primitive root of unity of degree q. Let ϕ : S → F be an epimorphism,
where S is a free group, put R = kerϕ, and let G = S/[R, R]Rq. Then K/k is universally
compatible of period q if and only if the compatibility condition is fulfilled for the embed-
ding problem (K/k, G, A), where A is the kernel of the epimorphism α : G → F , induced
by ϕ.

In this way, according to the latter theorem, it suffices to verify the compatibility
condition for only one problem, rather than for all embedding problems with abelian
kernel of period q. In [46] Ziapkov shows that the universally compatible extensions can
be reduced to p-extensions.

The next step is to consider universally compatible extensions which do not possess
a primitive p-th root of unity. The Galois extension K/k, not having a primitive p-th
root of unity (p is a prime), we call universally compatible of period pn, if the field K1,
obtained from K by adjoining a primitive pn-th root of unity, is universally compatible
of period pn. More generally, if K/k does not possess primitive roots of unity of degree
p1, p2, . . . , pm for distinct primes pi, then we call it universally compatible of period
pn1

1 pn2

2 · · · pnm
m if it is universally compatible for all periods p1, p2, . . . , pm. The following

results from [49] yield the solution of the Inverse Problem over algebraic number fields
for all groups of odd order. (Another proof of this theorem can be found in the paper by
Neukirch [33].)

Theorem 3.5.Let p1, p2, . . . , pm be different odd primes, and set q = pn1

1 pn2

2 · · · pnm
m .

Further, let K be an extension of Q of odd degree, and let K/k be universally compatible
of period q. Then for all embedding problems (K/k, G, A) with kernel A (not necessarily
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abelian) of period dividing q, there exists a proper solution.

Theorem 3.6.For every odd q = pn1

1 pn2

2 · · · pnm
m there exists a universally compatible

Galois extension of period q over Q.

Corollary 3.7.For every group G of odd order, and for every algebraic number field
K, there exists a Galois extension L/K with Galois group G.

In [49] a special type of universally compatible extensions is also defined: The Galois
extension K/k is called universally embeddable of period q, if all embedding problems
(K/k, G, A) with abelian kernel of period q are solvable.

Now, let K/k be a finite Galois extension of local fields, and let K contain a primitive
root of unity of degree q. According to [3], the compatibility condition for local fields is
also a sufficient condition for solvability of an embedding problem with abelian kernel.
Therefore, if K/k is universally compatible then it is also universally embeddable. It
follows from Kochendörffer reduction theorems that when the kernel is abelian, we
can reduce arbitrary embedding problem to a p-group embedding problem. Ziapkov
investigated this problem in [45]:

Theorem 3.8 [45].Let K/k be a universally embeddable extension of local fields of
period q = pn with Galois group F , and let K contain a primitive root of unity of degree
q. Let also α1 : F1 → F be an epimorphism of finite p-groups with kernel an elementary
abelian p-group, where F1 and F have the same number of generators. Then there exists a
universally embeddable extension of period q, which is a solution of the embedding problem
(K/k, F1, kerα1).

In [47, 48], Ziapkov gives more necessary and sufficient conditions about the universally
embeddable extensions.

When dealing with embedding problems, it is often useful to simplify the matters by
constructing equivalent or attendant (called also associate) embedding problems, which
are related to ’smaller’ group extensions (i.e., the groups have smaller orders). The papers
[28, 30] contain such results.

Since the compatibility condition is not always sufficient, Yakovlev [44, 3] proposed an
additional condition (as we mentioned above), so that the compatibility condition to be
satisfied. This purely homological approach was extended by us in [29], where we found
the connection between the obstructions (the elements attached to the two conditions) of
the original embedding problem and the associated embedding problems of the first and
second kind. The obstructions are interpreted as elements of the groups H1, H2, Ext1

and Ext2. This brought a number of new results and new proofs of well-known facts, e.g.
the second Kochendörffer reduction theorem, which states that every embedding problem
can be reduced to an equivalent embedding problem for p-groups.

The realisability of p-groups as Galois groups is a quite common topic in many recent
papers, especially for p = 2. Apart from the almost folklore results regarding small 2-
groups (e.g., the cyclic group C4 of order 4, the dihedral and quaternion groups of order
8), the first significant advance about the realisability of 2-groups as Galois groups was
made in the nineties of the 20th century in the works of Kiming and Ledet [5, 8]. Kiming
used explicit cohomology to obtain necessary and sufficient conditions for realisability of
some groups of order 16, and also described the Galois extensions that realised them.
His method, however, utilizes a huge amount of explicit cohomological calculations and
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leads to very complicated conditions. Ledet was the first to make a complete study
of the realisability of all groups of order 16 by applying more refined cohomology and
the theory of quaternion algebras as well. He obtained quite clear and easy to apply
obstructions in terms of quaternion algebras, which made possible to develop the theory of
2-groups as Galois groups into much bigger depths. This was the main topic of Michailov’s
dissertation [18]. Most of Michailov’s results concerning groups of order 16 over arbitrary,
rational and local fields are published in the papers [31, 20, 21]. The embedding of
biquadratic extensions of the type Q(p, q) for arbitrary primes p and q into fields that
realise groups of order 16 was the main topic of [20], where the quaternion algebras
are transformed into diophantine equations, and which in turn are solved by the means
of congruences and quadratic residues. Michailov also used in [21] the description of the
relative Brauer groups over local fields to calculate the quaternion algebras, participating
in the obstructions.

The explicit description of all Galois extensions that realise small 2-groups by the
means of quadratic forms is another important contribution of Ledet in [10, 11, 12]. His
method, however, is working only if the obstruction is equivalent to a product of two
quaternion algebras, and it is impossible to apply it to the quaternion group of order
16, whose obstruction is a product of three quaternion algebras. Michailov succeeded in
extending Ledet’s results to be applicable for the mentioned group in [22], unfortunately
not in the general case, but with some extra conditions on the field properties.

Ledet also suggested in [9] a way of computing the obstructions to embedding problems
with kernel 4 which are applied to the quaternion, dihedral and quasidihedral (known
also as semidihedral) groups of order 32. His results were generalized by Michailov in
[19, 25] and applied to the quaternion (Q2n), dihedral (D2n), semidihedral (SD2n) and
modular (M2n) groups of order 2n for arbitrary n ≥ 4. Although Ledet’s proof of the main
theorem in [9] can not be generalized, Michailov applied other cohomological methods
to make such a generalization for an arbitrary cyclic kernel. We shall describe now the
main points of this generalization.

Assume again that we have an embedding problem (K/k, G, A) with an abelian kernel
A, and define the homomorphisms e and f from F = Gal(K/k) in {+1,−1} by: σa =
σ̄−1aσ̄ = aeσ and σi = ifσ for σ ∈ F, a ∈ A and i =

√
−1 ∈ K. In [19, 25] the following

results are proved.

Theorem 3.9.Let K/k be a finite Galois extension with Galois group F , and let
ζ ∈ K be a primitive 2nth root of unity (n > 1). Consider the group extension

1 → C2n → G →
π

F → 1,

such that eσ , fσ ∈ {+1,−1} for all σ ∈ F . Let k1 be the fixed field of N = Kerg. Then
the embedding problem (K/k, G, C2n) is solvable, if and only if the embedding problems
(K/k1, π

−1(N), µ2n) and (K/k, G/C2n−1 , µ2) are solvable.

Corollary 3.10.Let K/k be a finite Galois extension with Galois group F , and let
ζ be a primitive 2nth root of unity (n > 1), such that ζ + ζ−1 ∈ k, i(ζ − ζ−1) ∈ k and
i /∈ K. Let

1 → C2n → G →
π

F → 1

be a group extension. Extend the elements σ ∈ F to K(i) by σi = i, and let κ be the
generator of Gal(K(i)/K). Let k(

√
b) be the fixed field of N = Kerg and k1 = k(i

√
b).
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Then Gal(K(i)/k1) ∼= F , and the embedding problem (K/k, G, C2n) is solvable, if and
only if the embedding problems (K(i)/k1, G, µ2n) and (K/k, G/C2n−1 , µ2) are solvable.

With the aid of the latter two results, Michailov managed to calculate the obstructions
of embedding problems, which are not Brauer. The obstruction of the Brauer problem,
however, requires a ’brute force’ calculations in the related crossed product algebras.
We give now the description of the obstructions of the Brauer problems related to the
quaternion, dihedral and semidihedral 2-groups.

Let K/k be a D8 extension, let ζ ∈ K be a primitive 2n-th root of unity, such that
ζ /∈ k, ζ + ζ−1 ∈ k and i(ζ − ζ−1) ∈ k. Then K/k = k( 4

√
a, i) for some a ∈ k \ k2, and D8

is generated by elements σ and τ , given by:

σ : 4
√

a 7→ i 4
√

a, i 7→ i; τ : 4
√

a 7→ 4
√

a, i 7→ −i.

Assume that G is a group generated by elements s and t, such that s is of order
2n+2, t2 = ε1 and ts = ε2s

−1t, where ε2
1 = ε2

2 = 1. Since ts4 = s−4t, we can put s4 = ζ,
and get the group extension

(3.3) 1 → µ2n →
ζ 7→s4

G →
s7→σ
t7→τ

D8 → 1,

where we identify the cyclic group 〈s4〉 with the group of 2n-th roots of unity µ2n .
Therefore we have s4 = ζ, t2 = ε1 and ts = ε2ζ

−1s3t, where ε1, ε2 ∈ {+1,−1}. The
group G has an element of order 2n+2, hence G is isomorphic either to the dihedral,
semidihedral or quaternion group of order 2n+3.

Theorem 3.11 [19, Th. 3.2].For the solvability of the embedding problem (K/k, G, µ2n)
for n ≥ 1, it is necessary that there exists α1 ∈ k∗ and β1 ∈ k, such that α2

1 + aβ2
1 =

2 − ζ − ζ−1. In that case the obstruction to the embedding problem (K/k, G, µ2n) is

(−1, ε1)(2 + ζ + ζ−1, α1β1)

(
a, ε2α1

(
2α1 −

ζ − ζ−1

i

))
∈ Br(k).

In [24] Michailov studied the groups of order 32 as Galois groups over arbitrary fields
of characteristic 6= 2. With the aid of the computer algebra GAP 3+, Michailov calculated
the obstructions to the solvability of embedding problems with kernels 2 or 4, related to
those groups of order 32, for which previously nothing or little was known from Galois
theory perspective. In some cases there is given a description of the Galois extensions that
realise the groups under consideration, and also some new automatic realisability results,
i.e., when from the realisability of a given group follows the realisability of another group.

As for the p-groups for p-odd, the matter is more complicated, because of the much
heavier calculations in the crossed product algebras. On the other hand, the p-cyclic
algebras are a very good replacement of the quaternion algebras, so there is a hope that
one can calculate the obstructions as products of p-cyclic classes in the Brauer group.
This approach was used by Michailov in [23], and can be briefly described as follows:

Let p be a prime. Assume that F is arbitrary field of characteristic not equal top,
containing the full group of p-th roots of unity µp = 〈ζ〉, where ζ is a fixed primitive p-th
root of unity. When p = 2, the 2-nd root of unity −1 is, of course, always in F . Next,
consider a central embedding problem with cyclic kernel Cp of order p. Since the kernel
lies in the centre of the given group G, we can identify Cp with µp. In this way, we can
link the solvability of the embedding problem to an element in Brp(F ) – the p-torsion
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of the Brauer group, called the obstruction, which is the crossed product algebra related
to the embedding problem with kernel µp. Then the embedding problem is solvable if
and only if the obstruction is split in Brp(F ). If p = 2, then by Merkurjev theorem [15]
it follows that the obstruction, as a class in the Brauer group, is equal to a product
of classes of quaternion algebras. Merkurjev theorem, however, does not give explicit
formulae. This is one of the key issues in the considerations of small 2-groups. If p is
odd, then Merkurjev’s proof can not be generalized, but nevertheless the generalization
is true, which is the well-known Merkurjev-Suslin theorem, see [16].

According to a special case of this theorem, every class in Brp(F ) is equal to a
product of p-cyclic algebras. We denote the equivalence class of the p-cyclic algebra
(called sometimes generalized quaternion algebra) by (a, b; ζ), which is generated by i1
and i2, such that ip1 = b, ip2 = a and i1i2 = ζi2i1. For p = 2 we have the quaternion class
(a, b;−1), commonly denoted by (a, b). The following Theorem gives us a formula for the
obstruction of an embedding problem related to a group extension of a group having a
direct factor the cyclic group of order p. In spite of the differences between the properties
of the p-cyclic algebras for p–odd and for p = 2, we are able to unite both of the variants:

Theorem 3.12 [23, Th. 2.1], [25, Th. 4.1].Let H be a p-group and let

(3.4) 1 → µp
∼= 〈ζ〉 → G →

π
H× Cp → 1

be a non-split central group extension with characteristic 2-coclass γ ∈ H 2(H× Cp, µp).
Let σ1, σ2, . . . , σm be a minimal generating set for the maximal elementary abelian factor
group of H; and let τ be the generator of the direct factor Cp. Finally, let s1, s2, . . . , sm, t ∈
G be the pre-images of σ1, σ2, . . . , σm, τ , such that tp = ζj and tsi = ζdisit, where i ∈
{1, 2, . . . , m}; j, di ∈ {0, 1, . . . , p − 1}.

Let K/F be a Galois extension with Galois group H and let L/F = K( p
√

b)/F be a
Galois extension with Galois group H×Cp (b ∈ F× \F×p). Choose a1, a2, . . . , am ∈ F×

such that σk
p
√

ai = ζδik p
√

ai (δik is the Kronecker delta). Then the obstruction to the
embedding problem given by L/F and the group extension (3.4) is

[K,H, resHγ](b, ζj
m∏

i=1

adi

i ; ζ).

With the aid of the latter criterion, Michailov calculated in [23] the obstructions
for embedding problems related to four non-abelian groups of order p4 and the two
non-abelian groups of order p3. This enabled him to describe the Galois extensions
that realise these groups, and to find automatic realisations between them. Finally, the
circle of p-groups, whose obstructions can be calculated will be significantly broadened
in Michailov’s future publications [26, 27] by the means of the transfer (corestriction)
map, Kummer theory, and some other ’ad-hoc’ cohomological criteria.
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ОБРАТНА ЗАДАЧА НА ТЕОРИЯ НА ГАЛОА

Иво Михайлов, Никола Зяпков

В тази обзорна статия открояваме в исторически план най-важните постижения
отнасящи се до Обратната Задача в теорията на Галоа до наши дни. Също така
резюмираме приноса на авторите към Задачата за Вложимост в теорията на
Галоа, която се явява най-естественият подход към Обратната Задача в случаите
на групи, които не са прости.
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