MATEMATИKA И MATEMATИЧЕСКО ОБРАЗОВАНИЕ, 2008 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2008 Proceedings of the Thirty Seventh Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 2–6, 2008

EXISTENCE OF SOLUTIONS OF ODE'S IN WATER WAVE MODELS*

Meline Onik Aprahamian, Stepan Agop Tersian

We prove existence results for solutions of boundary value problems for fourth-order differential equation arising in water wave models. Variational approach is applied to considered problems.

1. Introduction. In this paper we investigate the existence of travelling wave solutions of fifth-order Korteweg-de-Vries equation of the form

(1)
$$w_t + \gamma w_{xxxxx} + \beta w_{xxx} = (\mu (2ww_{xx} + w_x^2) + f(w))_x,$$

which appear in the classical water wave problem with gravity and capillarity (see [3], [4]). In (1) subscripts denote partial differentiation, $\beta, \mu \in \mathbb{R}, \gamma > 0$ and f(w) is a polynomial. Looking for travelling waves w(x,t) = u(x - ct), we obtain after appropriate scaling an equation of the form

(2)
$$\gamma u^{(4)} = u'' + \mu (2uu'' + u'^2) + g(u),$$

where g(u) = f(u) + cu. In [1] existence and symmetry of homoclinic solutions of the equation

(3)
$$\gamma u^{(4)} = u'' + \mu (2uu'' + u'^2) + u - u^2,$$

are studied via shooting method.

In this paper we study the existence of periodic solutions of Eq.(2) via variational method. Let L > 0. We consider the boundary value problems (P_1) and (P_2) as follows

(P₁)
$$\begin{cases} \gamma u^{(4)} = u'' + \mu(2uu'' + u'^2) + u - u^3, \quad 0 < x < L, \\ u(0) = u(L) = u'(0) = u'(L) = 0. \end{cases}$$

and

(P₂)
$$\begin{cases} \gamma u^{(4)} = u'' + \mu (2uu'' + u'^2) - u - u^2, \quad 0 < x < L, \\ u(0) = u(L) = u'(0) = u'(L) = 0. \end{cases}$$

Note that Eq.(3) turns to

(4)
$$\gamma u^{(4)} = u'' + \mu (2uu'' + u'^2) - u - u^2,$$

117

^{*2000} Mathematics Subject Classification: Primary 34C37.

Key words: Water waves, minimization theorem, mountain passtheorem.

after an appropriate change of the variables (see [1]). We obtain 2L-periodic solutions which are symmetric with respect to x = 0 and x = L taking 2L-periodic extension of the even extension

$$\overline{u}(x) = \begin{cases} u(x), & 0 \le x \le L, \\ u(-x), & -L \le x \le 0 \end{cases}$$

Note that if u(x) is a solution of the equation

 $\gamma u^{(4)} = u'' + \mu (2uu'' + u'^2) + u - u^3,$

or Eq.(4), then u(-x) is also a solution.

Both problems (P_1) and (P_2) have a variational structure and their weak solutions in the space $X = H_0^2(0, L)$ are critical points of the functionals

$$I(u;L) = \int_{0}^{L} \left(\frac{\gamma}{2}u''^{2} + \frac{1}{2}u'^{2} + \mu u \ u'^{2} - \frac{1}{2}u^{2} + \frac{1}{4}u^{4}\right) dx$$

and

(5)

$$J(u;L) = \int_{0}^{L} \left(\frac{\gamma}{2}u''^{2} + \frac{1}{2}u'^{2} + \mu u \ u'^{2} + \frac{1}{2}u^{2} + \frac{1}{3}u^{3}\right) dx.$$

We prove existence of nontrivial solutions using minimization and mountain-pass theorems. Our main results are as follows:

Theorem 1. Let $0 < \mu < \min(1, 2\gamma)$. Then, problem (P_1) has a solution u which is a minimizer of the functional $I : X \to \mathbb{R}$. If L is sufficiently large, then this solution is nontrivial. Suppose that u is a nonnegative minimizer of I(., L) for sufficiently large L. Then, u(x) > 0 for every $x \in (0, L)$. Moreover, for every natural number $n \ge 2$, there exists a solution u_n of Eq. (5) subject to the boundary conditions u(0) = u(nL) = u'(0) =u'(nL) = 0 and

(6)
$$\limsup_{n \to \infty} \frac{1}{L} \int_{0}^{L} |u_n(nt)| dt \le \left(\frac{8\gamma - 3\mu}{2\left(1 - \mu\right)\left(2\gamma - \mu\right)}\right)^{1/2}$$

Theorem 2. Let $0 < \mu < 2\gamma$. Then, problem (P_2) has a nontrivial solution u which is a mountain pass point of the functional $J : X \to \mathbb{R}$.

2. Proofs of the main results. We study the solvability of the problem (P_1) . Let $X = H_0^2(0, L)$ be the Sobolev space with the norm $||u||^2 = \int_0^L u''^2 dx$, which is equivalent to the usual norm $||u||^2_{H^2} = \int_0^L (u''^2 + u'^2 + u^2) dx$ by Poincare inequalities. We have

Proposition 3. The functional $\Phi: X \to \mathbb{R}$, $\Phi(u; L) = \int_{0}^{L} uu'^2 dx$ is differentiable and $\langle \Phi'(u), v \rangle = \int_{0}^{L} (2u \ u'v' + u'^2v) dx = -\int_{0}^{L} (2u \ u'' + u'^2) v dx.$

118

Consider now the functional $I: X \to \mathbb{R}$,

$$I(u;L) = \int_{0}^{L} \left(\frac{\gamma}{2}u''^{2} + \frac{1}{2}u'^{2} + \mu u \ u'^{2} - \frac{1}{2}u^{2} + \frac{1}{4}u^{4}\right) dx.$$

By Proposition 3, the functional I is differentiable and

$$\langle I'(u;L),v\rangle = \int_{0}^{L} \gamma u''v'' - u'v' - (\mu(2uu''+u'^2) + u - u^3)vdx,$$

i.e. critical points of functional I are weak solutions of problem (P_1) . Note that, since the embedding $X \subset C^1([0,L])$ is continuous, if u is a critical point of I and u'' has generalized second derivative $u^{(4)} \in L^2(0,L)$, then $u \in H^4(0,L)$ and u''' and u'' are continuous functions. Therefore, $\gamma u^{(4)} = u'' + \mu(2uu'' + u'^2) + u - u^3$ a.e. in [0,L], $u^{(4)}$ is continuous function and u is a classical solution of (P_1) .

To obtain critical points of I we use general minimization theorem for weak lower semi-continuous functionals on reflexive Banach spaces (see [2, p. 301]). The functional I(u) is weakly lower semi-continuous on a reflexive Banach space X if $I(u) = I_1(u) + I_2(u)$ where $I_1(u)$ is convex and $I_2(u)$ is sequentially weakly continuous, i.e. if $u_n \to u$ weakly, then $I_2(u_n) \to I_2(u)$ as $n \to \infty$. Let

$$I_1(u;L) = \int_0^L \frac{\gamma}{2} u''^2 dx, \quad I_2(u;L) = \int_0^L (\frac{1}{2}u'^2 + \mu u u'^2 - \frac{1}{2}u^2 + \frac{1}{4}u^4) dx.$$

Proposition 4. Let $\mu < \min(1, 2\gamma)$. Then, the functional $I : X \to \mathbb{R}$ is coercive and weakly lower semi-continuous.

Proof. Since the embedding $X \subset C^1([0, L])$ is continuous, it is clear that $I_2(u; L)$ is sequentially weakly continuous. $I_1(u; L)$ is convex, and then I(u; L) is weakly lower semi-continuous on X. Observe that

$$\int_{0}^{L} uu'^{2} dx = \int_{0}^{L} uu' du = -\int_{0}^{L} \left(uu'^{2} + u^{2}u'' \right) dx$$

and

(7)
$$\left| 2\int_{0}^{L} uu'^{2}dx \right| = \left| -\int_{0}^{L} u^{2}u''dx \right| \le \frac{1}{2}\int_{0}^{L} \left(u^{4} + u''^{2} \right)dx$$

I is coercive functional by $\mu < \min(1, 2\gamma)$, (7) and $_{L}$ $_{L}$ $_{L}$ $_{L}$

$$\begin{split} I(u,L) &\geq \quad \frac{2\gamma - \mu}{4} \int\limits_{0}^{L} u''^2 dx + \frac{1}{2} \int\limits_{0}^{L} u'^2 dx + \int\limits_{0}^{L} \left(-\frac{u^2}{2} + \frac{1 - \mu}{4} u^4 \right) dx \\ &\geq \quad \frac{2\gamma - \mu}{4} \|u\|^2 - \frac{L}{4(1 - \mu)}. \end{split}$$

Proposition 5. Let $\mu < \min(1, 2\gamma)$. Then, for sufficiently large L $\inf\{I(u, L) : u \in X\} < 0.$

119

Proof. Let us take a test function $v(x) = \varepsilon \sin^2\left(\frac{\pi x}{L}\right)$ which satisfies the boundary conditions. A direct calculation shows that

$$I(v,L) = \varepsilon^2 L \left(\frac{\pi^3 \gamma}{4L} + \frac{\pi^2}{4L^2} - \frac{\mu \pi \varepsilon}{4L} + \frac{35\varepsilon^2}{512} - \frac{3}{16}\right)$$

Then, taking $\varepsilon : \varepsilon^2 < \frac{96}{35}$ and L sufficiently large such that

$$(96 - 35\varepsilon^2)L^3 + 128\pi^2(\varepsilon\mu - 1)L > 128\pi^3\gamma$$
we obtain that $I(v, L) < 0$. Then, $\inf\{I(u, L) : u \in X\} < 0$. \Box

Proof of Theorem 1. Existence part directly follows from a general minimization theorem and Propositions 4 and 5. The maximum principle and (6) follow by tedious computations. \Box

Consider now the problem (P_2) and corresponding functional

$$J(u;L) = \int_{0}^{L} \left(\frac{\gamma}{2}u''^{2} + \frac{1}{2}u'^{2} + \mu u \ u'^{2} + \frac{1}{2}u^{2} + \frac{1}{3}u^{3}\right) dx,$$

on the space X. As before the critical points of J are classical solutions of (P_2) . We prove that J satisfies the assumptions of mountain-pass theorem (see [5, p. 7]).

Proposition 6. The functional $J : X \to \mathbb{R}$ satisfies (PS) condition, i.e. if $(u_n)_n$ is a sequence in X such that $J(u_n)$ is bounded and $J'(u_n) \to 0$, then $(u_n)_n$ has a convergent subsequence.

Proof of Theorem 2. It follows from Proposition 6 and geometric assumptions of mountain-pass theorem as: (i) There exists r > 0 such that $J(u, L) \ge 0$ for $u : ||u|| \le r$. (ii) There exists $v \in X$ such that J(v, L) < 0. We have

$$J(u,L) \ge \frac{2\gamma - \mu}{4} \int_{0}^{L} u''^{2} dx + \int_{0}^{L} \left(\frac{u^{2}}{2} - \frac{|u|^{3}}{3} - \frac{\mu}{4}u^{4}\right) dx$$

Let k be the embedding constant $X \subset C([0, L]) : |u|_C \leq k ||u||$. Taking ||u|| sufficiently small we have $\frac{u^2}{2} - \frac{|u|^3}{3} - \frac{\mu}{4}u^4 \geq 0$ and $J(u, L) \geq 0$. To show (ii) let us take $u_0 \in X$ such that $3\mu u_0 u_0'^2 + u_0^3 < 0$ in (0, L). It may be $u_0 = -\sin^2\left(\frac{\pi x}{L}\right)$. Then, from

$$J(tu_0, L) = t^2 \int_0^L (\gamma u_0''^2 + u_0'^2 + u_0^2) dx + t^3 \int_0^L (3\mu u_0 \ u_0'^2 + u_0^3) dx,$$

taking t sufficiently large negative, we obtain that for $v = tu_0$, $J(tu_0, L) < 0$. \Box

REFERENCES

[1] M. APRHAMIAN, D. SOUROJON, S. TERSIAN. On homoclinic solutions of a fourth-order differential equations arrising in water wave models. *Mathematics and Education in Mathematics*, **36** (2007), 144–148.

[2] M. BERGER. Nonlinearity and Functional Analysis. Academic Press, N.Y., 1977. 120 [3] A. R. CHAMPNEYS, M. D. GROVES. A global investigation of solitary waves solutions to a two-parameter model for water waves. J. Fluid Mech. **342** (1997), 199–229.

[4] W. CRAIG, M. D. GROVES. Hamiltonian long-wave approximations to the water-wave problem. *Wave Motion*, **19** (1994), 367–389.

[5] P. RABINOWITZ. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Reg. Conf. Series in Mathematics, vol. **65**, AMS, R.I., 1986.

Meline Onik Aprahamian Technical University of Varna Department of Mathematics, 1, Studentska Str. 9010 Varna, Bulgaria e-mail: m_aprahamian@abv.bg

Stepan Agop Tersian University of Rousse Department of Mathematical Analysis 8, Studentska Str. 8 7017 Rousse, Bulgaria e-mail: sterzian@ru.acad.bg

СЪЩЕСТВУВАНЕ НА РЕШЕНИЯ НА ОБИКНОВЕНИ ДИФЕРЕНЦИАЛНИ УРАВНЕНИЯ В МОДЕЛИ ЗА ВОДНИ ВЪЛНИ

Мелине О. Апрахамиян, Степан А. Терзиян

Доказани са две теореми за съществмуване на решения на гранични задачи за диференциални уравнения от четвърти ред в теорията на водните вълни. Приложени са вариационни методи за доказване на резултатите.