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EXISTENCE OF SOLUTIONS OF ODE’S IN WATER WAVE

MODELS*

Meline Onik Aprahamian, Stepan Agop Tersian

We prove existence results for solutions of boundary value problems for fourth-order
differential equation arising in water wave models. Variational approach is applied to
considered problems.

1. Introduction. In this paper we investigate the existence of travelling wave
solutions of fifth-order Korteweg-de-Vries equation of the form

(1) wt + γwxxxxx + βwxxx = (µ(2wwxx + w2
x) + f(w))x,

which appear in the classical water wave problem with gravity and capillarity (see [3], [4]).
In (1) subscripts denote partial differentiation, β, µ ∈ R, γ > 0 and f(w) is a polynomial.
Looking for travelling waves w (x, t) = u (x − ct), we obtain after appropriate scaling an
equation of the form

(2) γu(4) = u′′ + µ(2uu′′ + u′2) + g(u),

where g(u) = f(u) + cu. In [1] existence and symmetry of homoclinic solutions of the
equation

(3) γu(4) = u′′ + µ(2uu′′ + u′2) + u − u2,

are studied via shooting method.
In this paper we study the existence of periodic solutions of Eq.(2) via variational

method. Let L > 0.We consider the boundary value problems (P1) and (P2) as follows

(P1)

{

γu(4) = u′′ + µ(2uu′′ + u′2) + u − u3, 0 < x < L,

u(0) = u(L) = u′(0) = u′(L) = 0.

and

(P2)

{

γu(4) = u′′ + µ(2uu′′ + u′2) − u − u2, 0 < x < L,

u(0) = u(L) = u′(0) = u′(L) = 0.

Note that Eq.(3) turns to

(4) γu(4) = u′′ + µ(2uu′′ + u′2) − u − u2,
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after an appropriate change of the variables ( see [1]). We obtain 2L- periodic solutions
which are symmetric with respect to x = 0 and x = L taking 2L-periodic extension of
the even extension

u(x) =

{

u(x), 0 ≤ x ≤ L,

u(−x), −L ≤ x ≤ 0.

Note that if u(x) is a solution of the equation

(5) γu(4) = u′′ + µ(2uu′′ + u′2) + u − u3,

or Eq.(4), then u(−x) is also a solution.
Both problems (P1) and (P2) have a variational structure and their weak solutions in

the space X = H2
0 (0, L) are critical points of the functionals

I(u; L) =

L
∫

0

(

γ

2
u′′2 +

1

2
u′2 + µu u′2 −

1

2
u2 +

1

4
u4

)

dx

and

J(u; L) =

L
∫

0

(

γ

2
u′′2 +

1

2
u′2 + µu u′2 +

1

2
u2 +

1

3
u3

)

dx.

We prove existence of nontrivial solutions using minimization and mountain-pass
theorems. Our main results are as follows:

Theorem 1.Let 0 < µ < min(1, 2γ). Then, problem (P1) has a solution u which is

a minimizer of the functional I : X → R. If L is sufficiently large, then this solution is

nontrivial. Suppose that u is a nonnegative minimizer of I(., L) for sufficiently large L.

Then, u(x) > 0 for every x ∈ (0, L). Moreover, for every natural number n ≥ 2, there

exists a solution un of Eq. (5) subject to the boundary conditions u(0) = u(nL) = u′(0) =
u′(nL) = 0 and

(6) lim sup
n→∞

1

L

L
∫

0

|un(nt)|dt ≤

(

8γ − 3µ

2 (1 − µ) (2γ − µ)

)1/2

.

Theorem 2.Let 0 < µ < 2γ. Then, problem (P2) has a nontrivial solution u which

is a mountain pass point of the functional J : X → R.

2. Proofs of the main results. We study the solvability of the problem (P1). Let

X = H2
0 (0, L) be the Sobolev space with the norm ‖u‖2 =

L
∫

0

u′′2dx, which is equivalent

to the usual norm ‖u‖2
H2 =

L
∫

0

(u′′2 + u′2 + u2)dx by Poincare inequalities. We have

Proposition 3.The functional Φ : X → R, Φ(u; L) =
L
∫

0

uu′2dx is differentiable and

〈Φ′(u), v〉 =

L
∫

0

(2u u′v′ + u′2v)dx = −

L
∫

0

(2u u′′ + u′2)vdx.
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Consider now the functional I : X → R,

I(u; L) =

L
∫

0

(

γ

2
u′′2 +

1

2
u′2 + µu u′2 −

1

2
u2 +

1

4
u4

)

dx.

By Proposition 3, the functional I is differentiable and

〈I ′(u; L), v〉 =

L
∫

0

γu′′v′′ − u′v′ − (µ(2uu′′ + u′2) + u − u3)vdx,

i.e. critical points of functional I are weak solutions of problem (P1). Note that, since
the embedding X ⊂ C1([0, L]) is continuous, if u is a critical point of I and u′′ has
generalized second derivative u(4) ∈ L2(0, L), then u ∈ H4(0, L) and u′′′ and u′′ are
continuous functions. Therefore, γu(4) = u′′ + µ(2uu′′ + u′2) + u − u3 a.e. in [0, L], u(4)

is continuous function and u is a classical solution of (P1) .

To obtain critical points of I we use general minimization theorem for weak lower
semi-continuous functionals on reflexive Banach spaces ( see [2, p. 301]). The functional
I(u) is weakly lower semi-continuous on a reflexive Banach space X if I(u) = I1(u)+I2(u)
where I1(u) is convex and I2(u) is sequentially weakly continuous, i.e. if un → u weakly,
then I2(un) → I2(u) as n → ∞. Let

I1(u; L) =

L
∫

0

γ

2
u′′2dx, I2(u; L) =

L
∫

0

(
1

2
u′2 + µuu′2 −

1

2
u2 +

1

4
u4)dx.

Proposition 4.Let µ < min(1, 2γ).Then, the functional I : X → R is coercive and

weakly lower semi-continuous.

Proof. Since the embedding X ⊂ C1([0, L]) is continuous, it is clear that I2(u; L)
is sequentially weakly continuous. I1(u; L) is convex, and then I(u; L) is weakly lower
semi-continuous on X. Observe that

L
∫

0

uu′2dx =

L
∫

0

uu′du = −

L
∫

0

(

uu′2 + u2u′′
)

dx

and

(7)

∣

∣

∣

∣

∣

∣

2

L
∫

0

uu′2dx

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−

L
∫

0

u2u′′dx

∣

∣

∣

∣

∣

∣

≤
1

2

L
∫

0

(

u4 + u′′2
)

dx

I is coercive functional by µ < min(1, 2γ), (7) and

I(u, L) ≥
2γ − µ

4

L
∫

0

u′′2dx +
1

2

L
∫

0

u′2dx +

L
∫

0

(

−
u2

2
+

1 − µ

4
u4

)

dx

≥
2γ − µ

4
‖u‖2 −

L

4(1 − µ)
. �

Proposition 5.Let µ < min(1, 2γ). Then, for sufficiently large L

inf{I(u, L) : u ∈ X} < 0.
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Proof. Let us take a test function v(x) = ε sin2
(πx

L

)

which satisfies the boundary

conditions. A direct calculation shows that

I(v, L) = ε2L

(

π3γ

4L
+

π2

4L2
−

µπε

4L
+

35ε2

512
−

3

16

)

Then, taking ε : ε2 <
96

35
and L sufficiently large such that

(96 − 35ε2)L3 + 128π2(εµ − 1)L > 128π3γ

we obtain that I(v, L) < 0. Then, inf{I(u, L) : u ∈ X} < 0. �

Proof of Theorem 1. Existence part directly follows from a general minimization
theorem and Propositions 4 and 5. The maximum principle and (6) follow by tedious
computations. �

Consider now the problem (P2) and corresponding functional

J(u; L) =

L
∫

0

(

γ

2
u′′2 +

1

2
u′2 + µu u′2 +

1

2
u2 +

1

3
u3

)

dx,

on the space X. As before the critical points of J are classical solutions of (P2). We prove
that J satisfies the assumptions of mountain-pass theorem ( see [5, p. 7]).

Proposition 6. The functional J : X → R satisfies (PS) condition, i.e. if (un)n is a

sequence in X such that J (un) is bounded and J ′ (un) → 0, then (un)n has a convergent

subsequence.

Proof of Theorem 2. It follows from Proposition 6 and geometric assumptions of
mountain-pass theorem as: (i) There exists r > 0 such that J(u, L) ≥ 0 for u : ‖u‖ ≤ r.
(ii) There exists v ∈ X such that J(v, L) < 0. We have

J(u, L) ≥
2γ − µ

4

L
∫

0

u′′2dx +

L
∫

0

(

u2

2
−

|u|3

3
−

µ

4
u4

)

dx.

Let k be the embedding constant X ⊂ C([0, L]) : |u|C ≤ k‖u‖. Taking ‖u‖ sufficiently

small we have
u2

2
−

|u|3

3
−

µ

4
u4 ≥ 0 and J(u, L) ≥ 0. To show (ii) let us take u0 ∈ X

such that 3µu0u
′2
0 + u3

0 < 0 in (0, L). It may be u0 = − sin2
(πx

L

)

. Then, from

J(tu0, L) = t2
L

∫

0

(γu′′2
0 + u′2

0 + u2
0)dx + t3

L
∫

0

(3µu0 u′2
0 + u3

0)dx,

taking t sufficiently large negative, we obtain that for v = tu0, J(tu0, L) < 0. �
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СЪЩЕСТВУВАНЕ НА РЕШЕНИЯ НА ОБИКНОВЕНИ

ДИФЕРЕНЦИАЛНИ УРАВНЕНИЯ В МОДЕЛИ ЗА ВОДНИ ВЪЛНИ

Мелине О. Апрахамиян, Степан А. Терзиян

Доказани са две теореми за съществмуване на решения на гранични задачи за
диференциални уравнения от четвърти ред в теорията на водните вълни. При-
ложени са вариационни методи за доказване на резултатите.
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