MATEMATUKA W MATEMATUYECKO OGEPA30OBAHWE, 2008
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2008
Proceedings of the Thirty Seventh Spring Conference of
the Union of Bulgarian Mathematicians

Borovetz, April 2-6, 2008

SEMILINEAR WAVE EQUATION IN SCHWARZSCHILD
METRIC®

Davide Catania, Vladimir Georgiev

We study the semilinear wave equation in Schwarzschild metric (3 + 1 dimensional
space-time). First, we annonce the blow up of the solution for every p €]1,14+/2[ and
non-negative non-trivial initial data. Further, we discuss suitable resolvent estimates
for the corresponding Helmholtz equation crucial for the local energy decay of radially
symmetric data.

1. Introduction. Consider the manifold
M=R x Q, Q= {(r,w):r>2M,we S} =]2M, co[xS?,

equipped with the Schwarzschild metric having the form (see chapter V in [1] or chapter
31 in [4]):

(1.1) g=F(r)dt* — F(r)~' dr* — 1% dw?.
Here
2M
Firy=1—-—
m=1-22

the constant M > 0 has the interpretation of mass and dw? is the standard metric on
the unit sphere S2.
The D’Alembert operator associated with the metric g is

1 F F
Dg = F (8? — T—QQT(TQF)(?T — T_2A82> R
where Ag2 denotes the standard Laplace-Beltrami operator on S2.
Our goal is to study the existence of global solution to the corresponding Cauchy

problem for the semilinear wave equation
(1.2) Ogu = |ul” in [0, co[x €.

This problem can be considered as a natural analogue of the classical semilinear wave
equation in the flat Minkowski metric
(1.3) go = dt* — dr® — 1% dw?.
It is well-known that for any space dimension n > 2, there exists a critical value pg =
po(n) > 1 such that the Cauchy problem for (1.2) with the metric go admits a global
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small data solution provided p > pg(n), while for subcritical values of p < po(n), a blow-
up phenomenon is manifested. In the case of space dimension n = 3, the critical exponent
is po(3) = 1 + V2.

Our first goal in this work is to prove that the semilinear wave equation in the presence
of Schwarzschild metric blows up for 1 < p < 1+ v/2. The main obstacle is related to
the fact that (according to the knowledge of the authors) the proof of some concrete
dispersive estimates for the wave equation in Schwarzschild metric meets the essential
difficulty that there is no simple explicit representation of the corresponding fundamental
solution to the D’Alambert operator in Schwarzschild metric.

We introduce the Regge-Wheeler coordinate

(1.4) s(r) =r+2Mlog(r — 2M)
and restrict (with no loss of generality) our considerations to the case of solutions of the
form u = u(t, s). Making further the substitution

wlt.s) = v(t, s)
(1) = 22,

we obtain the semilinear problem

2MF
r3

(1.5) 02v — Pv = Fr'= Py, P=0?-
First, we study the local existence of the solution to the Cauchy problem
020 — Pv = Fri=Ph|?,
v(0, 8) = vo(s), (0, 8) = v1(s).

To study the maximal time interval of existence of solutions to the wave equation in
Schwarzschild metric

(1.6)

(17) {Dgu = [ul” in [0, co[x 2,

U(O) = Uo, U’t(o) =u in Qa
we suppose that our initial data are radial, i.e.
ug = uo(r), wur =ui(r), (uo,u1) € H*(]2M,00]) x H'(]2M, oo[)

and that there exists a compact interval B = B(rg, R) = {|r — ro| < R} CJ2M, 00[ so
that

uo(r), ur(r) =0 almost everywhere,
(1.8) uop(r) =ui(r) =0 for |r—ro| > R,
Jongui(r)dr > e ji=0,1

for positive constants €, R > 0 and ro = ro(g,p) € 2. We also assume that rg is near 2M
for p €]2,1 + V/2[, far from it for p €]1,2[ (we make no assumption in the case p = 2).

Now we can state the main result.

Theorem 1.1. For any p, 1 < p < 14++/2, there exists a positive number o such that
for any € €]0,eq] there exists rog = ro(p,€) and R = R(p,e) so that for any initial data

Ug = UO(r)a Uy = ul(r)v (UOaul) € H2(]2Ma OOD X Hl(]2Ma OOD>
satisfying (1.8) in B = B(rg, R), there exists a positive number T = T(g) < oo and a
solution
u € MEo€° ([0, T[; H~*(]2M, c0])
123



of (1.7) such that
fim [w(®) L2 2,00 = 00

The above result means that the wave equation in Schwarzschild metric has a similar
critical exponent to the free wave equation.

2. Multiplication technique. In this section we assume that v € §(R) satisfies the
equation

(2.1) zv+ Pv =g, z =M+ e, s €R,
where A is a fixed positive number, € > 0 is a sufficiently small number and
(2.2) P =0, —Wi(s).
We assume further that W (s) is a real-valued €' potential satisfying
(2.3) (5 — 50)0s W (s) < —(s — 50)% e~ =0l =0l Vs # s
for a suitable sy € R, as well as the estimate
Co
24 0<W(s) < ———, a>2,
(2.4) (s) (ENEE
for any s € R.
Further, we assume that there exists sy = s4(A\) > sg so that
)\2
(2.5) W(s) < oX Vs € (s4,00).
Similarly, there exists s = s_(\) < sg, so that
)\2
(2.6) W(s) < = Vs € (—o0,s_).

It is clear that without loss of generality we can assume
(2.7) Yo=581 —8p=580—S_.
Consider the quantity

(28) B(s) = 5h/ () + () — 5 W (o(s)
It is clear that
2 2
(2.9 SO + ) < Bls) < gl ()2 + Slu(s)P

for s > sy and s < s_.
One can verify the relation

(2.10) E’(s) = Rev”(s)v'(s) + \’Rev/(s) v(s) — % W'(s)|v(s)|? — W(s)Rev'(s) v(s).
Taking into account the fact that u satisfies the equation (2.1), we find

(2.11) E'(s) =Reg(s)v'(s) — % W'(s) [v(s)|? F Reicv(s)v'(s),

so we have the relation

(2.12) E'(3) + 5 W(s) o(s)? = Re g(s) (5] F <o/ (s) 0(s),

In a similar way, we can multiply the equation (2.1) by v(s), take the real part and find
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that

(2.13) % Dss|v(s)|? — |0sv(s)[* = W(s) [o(s)]* + A[v(s)[* = Reg(s) v(s).
Taking the imaginary part, we have

(2.14) telu(s)? + (Im v/ (s) o(s) ) = Img(s) v(s).

Using the fact that v(s) is rapidly decreasing function, we integrate the last inequality
on (—oo,00) and obtain

(2.15) E[ $)[2ds < c/

Lemma 2.1. We have the estimate

(2.16) 5/0;|()|ds+ A2/ v/ (s)|2ds < c/ ()] [0(5)]ds.

Turning back to the relation (2.12), we take o > sg, integrate from o to +oo and
derive

E(o) — % /00 W' (1) [v(T)|*dT = —Re /00 g(T)v'(t)dr £ 5/00 Im ' (1) v(7)dr,

Setting

(2.17) K= ¢u42/ IWI®+/mMMW%W&

—00

s)|v(s)|ds.

we apply Lemma 2.1 and get

(2.18) E(o) < CK Yo > sp.
Taking o > sy, we can use the inequality (2.9) and find
1 A2
(2.19) §|’u'(0)|2 + Z|’u(0)|2 < CK VYo > sy.
In a similar way, we get
1 / 2 )‘2 2
(2.20) §|v (o)* + Z|v(0)| <CK VYo <s_.

Consider the operator

(2.21) L =p5(s)0s + = [(5)0s + 7(s),

where (3(s) is a suitable real-valued € function that will be defined later on and v = (35 /2.

The operator L is formally anti self-adjoint so satisfies the relation

(2.22) (Lhy, he) = —(h1, Lha),

where hy, hy € §(R) and here and below (-, -) is the standard L2-product in R.. Note also

that the operator P in (2.2) is formally self-adjoint operator so

(2.23) (Phq, ha) = (h1, Phs),

It is easy to combine the equation (2.1) and the relations (2.22), (2.23), deducing the

relation

(2.24) 2 Re(zLv,v) =2 Re (Lg,v) + Re ([P, L]v,v),

where [A, B] denotes the commutator of the operators A and B, i.e. [A, B] = AB — BA.
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For the commutator in the right side of the above relation, we have the representation

1
(2-25) [Laass - W] = _Qﬁsass - Qﬁssas - (§ﬁsss + BWa) .
This operator is formally symmetric, since can be represented in the form
1
(2.26) [L,0ss — W] = —2050505 — <§ﬂsss + BWS) .

Since z = A? & ie, we have also the relation
(2.27) 2 Re (zLv,v) = F2e Im (6050, v).

Hence, the relation (2.24) can be rewritten as follows:
1
(2.28) F2e Im (8050, v) + 2(B:05v, Osv) — 5((6858 +26Ws)v,v) =2 Re (Lg,v).

Taking into account the symmetry assumption (2.7), we can choose

(2:29) B(s) = (s = so)p+(s — To)p— (s + o).
Here and below ¢ (s) is a smooth decreasing function, such that
1, if s <0;
(2.30) Pr(s) = { 0, ifs>1.
Similarly, ¢_(s) is a smooth increasing function, such that
1, ifs>0;
(2:31) o-(s) = { 0, ifs<—L
The function (3(s) satisfies the properties
(232) /6(8) =S5 — S0, ﬂl(s) = 17 /6”/(8) = 03 Vs € (S,, SJr)a
(2.33) B(s) = p'(s) = 3" (s) =0, Vs outside (s_ — 1,54 + 1),
(2.34) 1B(s)] +18/(5)] +18" ()| < C{So), Vse€ (s-—1sp+1),

where (x) = /1 + |z|2.

Now, using Lemma 2.1, we find
(2.35) le Im (B0sv,v)| + |Re (Lg,v)| < C (Xo) K,
where K is defined in (2.17).

From these estimates we find
(2.36) / (s — s0)" 1/ o/ (5)2ds+
By <|s—s0]|<Zo
+ / (s — s0)"1/9(s — s9)2 e c0ls=%0l |y(s)|2ds < CK,
By <|s—s0]|<Zo

where (s — s9) = /1 + |s — s0/?.

Moreover, for any positive 31 < g it follows that

1> 1>
(2.37) ﬁ/z [v/(s)|2ds + = /E (s — sg)2 e cols=%0l |y(s)|2ds < CK.

Now we can use the estimate (2.19), (2.6) together with the last two estimates (2.36)
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and (2.37), choose ¥; = X3, § > 0, small enough and derive

(2.38) /oo (s — so) "V |/ (s)|%ds + /oo (s — sg)2 e 2e0ls=s0l |y(5)|%ds < C (B K

—00 —o00
One can see that the weight (s — sg)? e—2cols=sol in the above inequality can be replaced
by e—3<0ls=sol Indeed, the estimate

v =l o /010 (w4 7)dr < v(z+10) + V10 (/ W' (z + T)|2d7') :

implies
11 11
/ [v(z)] da:<C’/ lv (:c)|2da:+C/ [v/ (x)|*da.
0

Thus, we modify (2.38) as follows

(2.39) / (s — s0) "3 |0/ (s)Pds +/ e=3e0ls=s0l [y(5)2ds < O (20) K
Using (2.39), we obtain
2 2
(2.40) e vl|72 + | e vs[|72 < C (|Re{Lg,v)| + e[Im(Bus, v)]).
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IMOJIVJIMHEITHO B'bJIHOBO YPABHEHUE B METPUKA HA
OIBAPIIITINJI,

HdaBune Karansa, Baagumup I'eopruesn

V3yuaBame N0y IMHENRHO BBJIHOBO ypaBHeHue B Merpuka Ha [[Isaprmmis (3+ 1 mep-
HO IIPOCTPAHCTBO — BpeMme). [I'bpBo aHoHCHpaMe pe3yTar 3a n3byXBaHe HA PEIICHUETO
3a Besiko p €)1, 1+ \/5[ ¥ HEOTPUIATEJIHN HETPUBUAJIHU HadaHu JaHHU. [lo-HaTaTbK
00CBbIKIaMe MOAXO/SAINa PE30IBEHTHA OICHKA Ha CHOTBETHOTO ypaBHEHHE Ha XeJ-
MXOJII, KOeTO € peIllaBalllo 3a JI0Ka3BaHe JIOKAJIHOTO HaMaJ/lsdBaHe Ha €HeprudaTa 3a
paJiuaJIHU JAHHU.
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