ONE CONNECTION ON A LOCALLY DECOMPOSABLE RIEMANNIAN SPACE*

Iva Roumenova Dokuzova

Let a Riemannian space M with a metric g admit an almost product structure J, which preserves the scalar product. By mean of the Riemannian connection of g we define another affine connection on M, and we find a subclass of the locally decomposable almost Einstein spaces with constant totally real curvature.

1. Introduction. We consider a Riemannian space $M(\operatorname{dim} M=n)$ with a metric g admitting an almost product structure J, which preserves the scalar product, i.e.

$$
\begin{equation*}
J^{2}=i d(J \neq i d), \quad g(J x, J y)=g(x, y), \quad x, y \in \chi M \tag{1}
\end{equation*}
$$

Let ∇ be the Riemannian connection of g. If

$$
\begin{equation*}
\nabla J=0, \tag{2}
\end{equation*}
$$

then M is a locally decomposable Riemannian space [2], [3], i.e. $M=M_{1} \times M_{2}$, where both M_{1}, M_{2} are Riemannian spaces. If $\operatorname{dim} M_{1}=p$ and $\operatorname{dim} M_{2}=q$, then $n=p+q$.
2. The Connection $\bar{\nabla}$. Now let M be a locally decomposable Riemannian space, and $\Gamma_{i j}^{k}$ be the Chrisoffel symbols of ∇. Analogously to the case of B-manifold [1], we define another affine connection $\bar{\nabla}$ by the condition

$$
\begin{equation*}
\bar{\Gamma}_{i j}^{k}=\Gamma_{i j}^{k}+T_{i j}^{k}, T_{i j}^{k}=-g_{i j} f^{k}-J_{i j} \tilde{f}^{k} \tag{3}
\end{equation*}
$$

where f is a smooth vector field on $M, J_{i j}=J_{i}^{p} g_{p j}$ and $\tilde{f}^{j}=J_{j}^{p} f^{p}$.
Theorem 2.1. Let M be a locally decomposable Riemannian space, and let ∇ and $\bar{\nabla}$ satisfy (3). Then, $\bar{\nabla}$ is a symmetric affine connection and

$$
\begin{equation*}
\bar{\nabla} J=0 . \tag{4}
\end{equation*}
$$

Proof. The conditions (3) imply that $\bar{\nabla}$ is a symmetric connection. By straightforward calculations from (3) we get $\bar{\nabla}_{i} J_{j}^{k}=\nabla_{i} J_{j}^{k}$. By using (2), we prove (4). So that J is a covariant constant.

We note that $J_{i j}=J_{j i}$, and from (2), (3) we find:

$$
\begin{aligned}
& \bar{\nabla}_{i} g_{j k}=f_{j} g_{i k}+f_{k} g_{i j}+\tilde{f}_{j} J_{i k}+\tilde{f}_{k} J_{i j}, \\
& \bar{\nabla}_{i} J_{j k}=f_{j} J_{i k}+f_{k} J_{i j}+\tilde{f}_{j} g_{i k}+\tilde{f}_{k} g_{i j},
\end{aligned}
$$

i.e. $\bar{\nabla}$ is not a metric connection.

[^0]For the curvature tensor fields \bar{R} of $\bar{\nabla}$ and R of ∇, it is well known the following identity:

$$
\begin{equation*}
\bar{R}_{i j k}^{h}=R_{i j k}^{h}+\nabla_{j} T_{i k}^{h}-\nabla_{k} T_{i j}^{h}+T_{i k}^{s} T_{s j}^{h}-T_{i j}^{s} T_{s k}^{h} \tag{5}
\end{equation*}
$$

From (3) and (5) we obtain

$$
\begin{equation*}
\bar{R}_{i j k}^{h}=R_{i j k}^{h}-J_{i k} \tilde{P}_{j}^{h}+J_{i j} \tilde{P}_{k}^{h}-g_{i k} P_{j}^{h}+g_{i j} P_{k}^{h} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{j}^{h}=\nabla_{j} f^{h}-f_{j} f^{h}-\tilde{f}_{j} \tilde{f}^{h} \tag{7}
\end{equation*}
$$

and $\tilde{P}_{j}^{h}=J_{s}^{h} P_{j}^{s}$. From (2) we have

$$
\begin{equation*}
\tilde{P}_{j}^{h}=\nabla_{j} \tilde{f}^{h}-f_{j} \tilde{f}^{h}-\tilde{f}_{j} f^{h} \tag{8}
\end{equation*}
$$

Theorem 2.2. Let M be a locally decomposable Riemannian space, and let $\bar{\nabla}$ and ∇ satisfy (3). Then, $\bar{\nabla}$ is an equiaffine connection if and only if the vector field f is gradient.

Proof. We know that ∇ is an equiaffine connection, so $R_{i j k}^{i}=0$. Then, contracting (6) by $h=i$, we get

$$
\begin{equation*}
\bar{R}_{i j k}^{i}=2\left(P_{k j}-P_{j k}\right), \quad P_{k j}=P_{k}^{s} g_{s j} \tag{9}
\end{equation*}
$$

From (9) we conclude that $\bar{\nabla}$ is equiaffine if and only if $P_{j k}=P_{k j}$. Due to (7) the last condition is satisfied, if and only if, $\nabla_{k} f_{j}=\nabla_{j} f_{k}$. The last equality is a necessary and sufficient condition for f to be gradient. The theorem is proved.

Theorem 2.3. Let M be locally decomposable Riemannian space, and let ∇ be the Riemannian connection of g. If f is a smooth vector field on M, and $\bar{\nabla}$ is a locally flat connection, defined by the relation (3), then the curvature tensor field R of M satisfies the identity:

$$
\begin{align*}
R(x, y, z, u) & =\frac{1}{A}\left[\left(2(1-n)(t r J) \tau^{*}+\left(n(n-2)+t r^{2} J\right) \tau\right)(g(x, u) g(y, z)\right. \\
& -g(y, u) g(x, z)+g(J x, u) g(J y, z)-g(J y, u) g(J z, x)) \tag{10}\\
& +\left(2(1-n)(t r J) \tau+\left(n(n-2)+t r^{2} J\right) \tau^{*}\right)(g(J x, u) g(y, z) \\
& -g(y, u) g(J x, z)+g(x, u) g(J y, z)-g(J y, u) g(z, x))]
\end{align*}
$$

where $x, y, z, u \in \chi(M), n-2 \neq \pm t r J, A=\left(n^{2}-t r^{2} J\right)\left((n-2)^{2}-t r^{2} J\right)$. Moreover, M is an almost Einstein space.

Proof. We consider a locally decomposable Riemannian space M, i.e. $\nabla J=0$. We assume that $\bar{\nabla}$ is a locally flat connection, for which it is necessary and sufficient that $\bar{R}=0$. From (6) we find:

$$
\begin{equation*}
R_{i j k}^{h}=J_{i k} \tilde{P}_{j}^{h}-J_{i j} \tilde{P}_{k}^{h}+g_{i k} P_{j}^{h}-g_{i j} P_{k}^{h} \tag{11}
\end{equation*}
$$

and from $R_{i j k}^{i}=0$ we get $P_{k j}=P_{j k}$. So f is a gradient vector field.
With the help of the identity $R_{h i j k}=R_{j k h i}$ and the equation (11), we find:

$$
J_{i k}\left(\tilde{P}_{j h}-\tilde{P}_{h j}\right)-J_{i j} \tilde{P}_{k h}+J_{k h} \tilde{P}_{i j}+g_{k h} P_{i j}-g_{i j} P_{k h}=0, \quad \tilde{P}_{j h}=\tilde{P}_{j}^{s} g_{s h}
$$

In the last equation we contract with $J^{i k}$, and obtain:

$$
\begin{equation*}
\tilde{P}_{j h}=\tilde{P}_{h j} . \tag{12}
\end{equation*}
$$

The equations (8), (12) imply that \tilde{f} is also a gradient vector field.
By using the equation (11), we find the Ricci tensor field $S_{i j}=R_{i j k}^{k}$ as follows:

$$
\begin{equation*}
S_{i j}=-\tilde{P} J_{i j}+2 P_{i j}-P g_{i j}, \quad P=P_{k}^{k}, \tilde{P}=\tilde{P}_{k}^{k} \tag{13}
\end{equation*}
$$

For the first scalar curvature $\tau=S_{i j} g^{i j}$ we get

$$
\begin{equation*}
\tau=(2-n) P-(\operatorname{tr} J) \tilde{P} \tag{14}
\end{equation*}
$$

On the other hand, contracting (11) with $g^{i j}$ and using (12), we have

$$
\begin{equation*}
S_{k h}=(2-n) P_{k h}-(\operatorname{tr} J) \tilde{P}_{k h} \tag{15}
\end{equation*}
$$

For the second scalar curvature $\tau^{*}=S_{i j} J^{i j}$ we get

$$
\begin{equation*}
\tau^{*}=(2-n) \tilde{P}-(\operatorname{tr} J) P \tag{16}
\end{equation*}
$$

If we denote $\tilde{S}_{i j}=S_{i p} J_{j}^{p}$, then from (15) we obtain

$$
\begin{equation*}
\tilde{S}_{i j}=(2-n) \tilde{P}_{i j}-(\operatorname{tr} J) P_{i j} . \tag{17}
\end{equation*}
$$

With the help of the identities (13), (15), and (17) we find

$$
\begin{aligned}
S_{i j} & =\frac{1}{n^{2}-\operatorname{tr}^{2} J}\left[\left(\left(n(2-n)+\operatorname{tr}^{2} J\right) P+((n-2) \operatorname{tr} J-n \operatorname{tr} J) \tilde{P}\right) g_{i j}\right. \\
& \left.+\left(\left(n(2-n)+\operatorname{tr}^{2} J\right) \tilde{P}+((n-2) \operatorname{tr} J-n \operatorname{tr} J) P\right) J_{i j}\right]
\end{aligned}
$$

From (14), (16), and the last equation we obtain

$$
\begin{equation*}
S_{i j}=\frac{1}{n^{2}-\operatorname{tr}^{2} J}\left(\left(n \tau-(\operatorname{tr} J) \tau^{*}\right) g_{i j}+\left(n \tau^{*}-(\operatorname{tr} J) \tau\right) J_{i j}\right) \tag{18}
\end{equation*}
$$

So we prove that M is an almost Einstein space.
From (11), (15), (17), and (18) we get (10) in finally local coordinates.
Corollary 2.4. If a connected space M satisfies the conditions of Theorem 2.3, then M is a space with constant totally real curvature.

Proof. For the totally real section $\sigma=\{x, y\}$ in $T_{p} M, p \in M$, we have that $g(x, J x)=$ $g(y, J y)=g(x, J y)=0$ and the sectional curvature μ of σ is

$$
\mu(\sigma)=\frac{R(x, y, x, y)}{g(x, x) g(y, y)-g^{2}(x, y)}
$$

Then by using (10) we get

$$
\mu(\sigma)=\frac{\left.\left.2(1-n)(\operatorname{tr} J) \tau^{*}+\left(n(n-2)+\operatorname{tr}^{2} J\right) \tau\right)\right)}{\left(\operatorname{tr}^{2} J-n^{2}\right)\left((n-2)^{2}-\operatorname{tr}^{2} J\right.}
$$

On the other hand we have $\nabla_{i} S_{k}^{i}=\frac{1}{2} \nabla_{k} \tau, \nabla_{i} \tilde{S}_{k}^{i}=\frac{1}{2} \nabla_{k} \tau^{*}$. From (18) and the last identities we obtain the system

$$
\begin{aligned}
& \left(\operatorname{tr}^{2} J+2 n-n^{2}\right) \tau_{i}-(\operatorname{tr} J) \tau_{i}^{*}+n \tilde{\tau}_{i}^{*}-(\operatorname{tr} J) \tilde{\tau}_{i}=0 \\
& -(\operatorname{tr} J) \tau_{i}+n \tau_{i}^{*}-(\operatorname{tr} J) \tilde{\tau}_{i}^{*}+\left(\operatorname{tr}^{2} J+2 n-n^{2}\right) \tilde{\tau}_{i}=0 \\
& -(\operatorname{tr} J) \tau_{i}+\left(\operatorname{tr}^{2} J+2 n-n^{2}\right) \tau_{i}^{*}-(\operatorname{tr} J) \tilde{\tau}_{i}^{*}+n \tilde{\tau}_{i}=0 \\
& n \tau_{i}-(\operatorname{tr} J) \tau_{i}^{*}+\left(\operatorname{tr}^{2} J+2 n-n^{2}\right) \tilde{\tau}_{i}^{*}-(\operatorname{tr} J) \tilde{\tau}_{i}=0
\end{aligned}
$$

where $\tau_{i}=\nabla_{i} \tau, \tau_{i}^{*}=\nabla_{i} \tau^{*}, \tilde{\tau}_{i}=J_{i}^{s} \tau_{s}, \tilde{\tau}_{i}^{*}=J_{i}^{s} \tau_{s}^{*}$. The determinant of this system is $D=\left(n^{2}-n-\operatorname{tr}^{2} J\right)^{2}\left(n^{2}-3 n-\operatorname{tr}^{2} J-2 \operatorname{tr} J\right)\left(n^{2}-3 n-\operatorname{tr}^{2} J+2 \operatorname{tr} J\right)$. We have that $D \neq 0$, and then the only solution is $\tau_{i}=\tau_{i}^{*}=\tilde{\tau}_{i}=\tilde{\tau}_{i}^{*}=0$, which implies $\tau=\tau^{*}=$ const. So μ 130
is a constant too.
Corollary 2.5. Let M satisfy the conditions of Theorem 2.3 and $\operatorname{tr} J=0$. Then the curvature tensor field R of M has the form:

$$
\begin{aligned}
R(x, y, z, u) & =\frac{\tau}{n(n-2)}((g(x, u) g(y, z)-g(y, u) g(x, z)+g(J x, u) g(J y, z) \\
& -g(J y, u) g(J z, x))+\frac{\tau^{*}}{n(n-2)}(g(J x, u) g(y, z)-g(y, u) g(J x, z) \\
& +g(x, u) g(J y, z)-g(J y, u) g(z, x)), \quad n-2 \neq 0
\end{aligned}
$$

REFERENCES

[1] G. D. Djelepov, I. R. Dokuzova. On an J-connection on a B-manifold. Proc. of Jubilee Sci. Session "30 years of the Faculty of Mathematics and Informatics at the University of Plovdiv", Plovdiv, (2000), 86-88.
[2] A. M. Naveira. A classification of Riemannian almost product manifolds. Rend. Math. Roma, no. 3, (1983), 577-592.
[3] K. Yano. Differential geometry on complex and almost complex spaces. New York, Pergamont Press, 1965.

University of Plovdiv
Branch "Ljuben Karavelov", 26, Belomorski Boul.
Kard jali, Bulgaria
e-mail: dokuzova@abv.bg

ЕДНА СВЪРЗАНОСТ ВЪРХУ ПРОСТРАНСТВО НА ЛОКАЛНА ДЕКОМПОЗИЦИЯ

Ива Руменова Докузова

Нека M е риманово пространство с метрика g, допускащо допълнителна структура на почти произведение J, която запазва скаларното произведение. С помощта на римановата свързаност ∇, породена от метриката g, дефинираме друга афинна свързаност и получаваме подклас на почти айнщайнови пространства с постоянна напълно реална секционна кривина.

[^0]: ${ }^{*} 2000$ Mathematics Subject Classification: 53C15, 53B05, 53C25.
 Key words: Almost product structure, affine connections.

