МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2008 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2008 Proceedings of the Thirty Seventh Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 2–6, 2008

APPLICATIONS OF THE SPACE SHAPE OF THE TRIANGLE^{*}

Radostina Petrova Encheva

We define affine shape coordinates of a point with respect to a fixed triangle. In conformity with the Kimberling's definition for a center and a center-function we determine a shape-center-function as a function of a space shape of a triangle. We apply this definition to solve the problem **axy** and to describe some loci in terms of shapes.

1.Affine shape coordinates of a point in the plane. J. Lester introduced a complex analytic formalism for the study of Euclidean plane in [6]. A main tool of this formalism is the shape of a triangle. We recall briefly her definition. Identify the Euclidean plane \mathbb{E}^2 with the field of the complex numbers. If a, b and c are three distinct points in \mathbb{E}^2 , then the shape of the triangle \triangle **abc** is the ratio

This means that, up to similarity, any triangle is determined completely by a single complex number.

In the paper [1] the notion of a shape of a triangle is carried over the three-dimensional Euclidean space \mathbb{E}^3 . A definition and some properties are given below. Let \mathbb{H} be the quaternion algebra. Identify \mathbb{E}^3 with the imaginary space Im \mathbb{H} of pure quaternions. The properties of quaternions and their applications are known from [4] and [5]. Three distinct points **a**, **b** and **c** in \mathbb{E}^3 determine a non degenerate or degenerate triangle \triangle **abc**.

Definition 1. Let \mathbf{a} , \mathbf{b} and \mathbf{c} be three points in \mathbb{E}^3 such that $\mathbf{a} \neq \mathbf{b}$. A space shape of the ordered triple of points \mathbf{a} , \mathbf{b} and \mathbf{c} is called the quaternion

$$p = S(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a} - \mathbf{c})(\mathbf{a} - \mathbf{b})^{-1}.$$

Triangles with the same vertices have generally different shapes, which can be determined from the properties: $S(\mathbf{b}, \mathbf{c}, \mathbf{a}) = (1 - p)^{-1}$, $S(\mathbf{c}, \mathbf{a}, \mathbf{b}) = 1 - p^{-1}$, $S(\mathbf{a}, \mathbf{c}, \mathbf{b}) = p^{-1}$ and $S(\mathbf{a}, \mathbf{b}, \mathbf{c})S(\mathbf{b}, \mathbf{c}, \mathbf{a})S(\mathbf{c}, \mathbf{a}, \mathbf{b}) = -1$. If $A = \not\triangleleft \mathbf{bac}$, $B = \not\triangleleft \mathbf{cba}$, $C = \not\triangleleft \mathbf{acb}$, then

$$p = \frac{|\mathbf{a} - \mathbf{c}|}{|\mathbf{a} - \mathbf{b}|} (\cos A + l. \sin A),$$

where $l = \frac{(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} - \mathbf{c})}{|(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} - \mathbf{c})|} \in \operatorname{Im} \mathbb{H} \text{ and } |l| = 1.$

Key words: Shape, center, quaternion algebra, affine invariants.

^{*}2000 Mathematics Subject Classification: 51M05, 51M15.

The research is partially supported by Shumen University under grant 8/2007. 132

The space shape of a triangle contains all the usual information about its angles and ratios of side lengths: for example, we have $\cos A = \frac{\operatorname{Re} p}{|p|}$, $\sin A = \frac{|\operatorname{Im} p|}{|p|}$, $\frac{|\mathbf{a} - \mathbf{c}|}{|\mathbf{a} - \mathbf{b}|} = |p|$. The normal vector to the triangle plane $\operatorname{Im} p$ determines an orientation in the same plane. If **a**, **b**, **c** are distinct and collinear points in \mathbb{E}^3 , then $S(\mathbf{a}, \mathbf{b}, \mathbf{c}) = p \in \mathbb{R}$ is the so called signed (or affine) ratio of the points \mathbf{c} , \mathbf{b} , \mathbf{a} , which is a fundamental affine invariant. The next lemma affords an opportunity to define affine shape coordinates of any point with respect to a non degenerate base triangle $\triangle abc$. It is proved in [1].

Lemma 1. Let \triangle **abc** be a non degenerate triangle with a space shape p, and let **d** be an arbitrary point in \mathbb{E}^3 . Then, the points **a**, **b**, **c** and **d** are coplanar if and only if there exists a unique ordered pair (α, β) of real numbers such that $S(\mathbf{a}, \mathbf{c}, \mathbf{d}) = \alpha + \beta p^{-1}$.

Definition 2. Let d be an arbitrary point lying in the plane of the triangle \triangle abc. Then, the ordered pair (α, β) of real numbers is called affine shape coordinates of **d** with respect to the triangle \triangle **abc** if $S(\mathbf{a}, \mathbf{c}, \mathbf{d}) = \alpha + \beta p^{-1}$.

It is clear that

- It is clear that (i) $\mathbf{d} \in \mathbf{ab} \iff \alpha = 0, \mathbf{d} \in \mathbf{bc} \iff \alpha + \beta = 1, \mathbf{d} \in \mathbf{ca} \iff \beta = 0;$ (ii) \mathbf{d} is an inner point of the triangle $\triangle \mathbf{abc}$ if and only if $\begin{vmatrix} 0 < \alpha < 1 \\ 0 < \alpha + \beta < 1 \end{vmatrix}$;

(iii) $\mathbf{a} - \mathbf{d} = \alpha(\mathbf{a} - \mathbf{c}) + \beta(\mathbf{a} - \mathbf{b}).$

The following properties can be easily checked : If the affine shape coordinates of a point **d** with respect to the triangle \triangle **abc** are (α, β) , then (β, α) are the affine shape coordinates of **d** with respect to the triangle $\triangle acb$, and $(\alpha, 1 - \alpha - \beta)$ are the affine shape coordinates of **d** with respect to the triangle \triangle **bac**.

Simple calculations imply the next Proposition about some triangle centers.

Proposition 1. Let \triangle **abc** be a non degenerate triangle with a space shape p and let **d** be an arbitrary point in the triangle plane. If (α, β) are the affine shape coordinates of the point **d** with respect to the triangle $\triangle \mathbf{abc}$, then

(i) **d** is the centroid of the triangle \triangle **abc** if and only if $\alpha = \frac{1}{3}$, $\beta = \frac{1}{3}$;

(ii) **d** is the orthocenter of the triangle \triangle **abc** if and only if

$$\alpha = \frac{\operatorname{Re} p(1 - \operatorname{Re} p)}{|\operatorname{Im} p|^2}, \quad \beta = \frac{\operatorname{Re} p(|p|^2 - \operatorname{Re} p)}{|\operatorname{Im} p|^2};$$

(iii) **d** is the circumcenter of the triangle \triangle **abc** if and only if

$$\alpha = \frac{|p|^2 - \operatorname{Re} p}{2|\operatorname{Im} p|^2}, \quad \beta = \frac{|p|^2(1 - \operatorname{Re} p)}{2|\operatorname{Im} p|^2};$$

(iv) **d** is the incenter of the triangle \triangle **abc** if and only if

$$\alpha = \frac{1}{|1-p|+|p|+1}, \quad \beta = \frac{|p|}{|1-p|+|p|+1}$$

The above statements can be directly assigned to the Gaussian plane and then $p \in$ $\mathbb{C} \setminus \mathbb{R}.$

2. Shape-center-function. The affine shape coordinates also afford an opportunity to determine a center of a triangle. We shall consider more general case of a triangle in Euclidean space. Let us recall Kimberling's definition for a center and a center-function in [3]:

Definition 3. Let \mathbb{T} be the set of all triples (a_1, a_2, a_3) of real numbers that are sidelengths of a triangle, *i.e.*

 $\mathbb{T} = \{ (a_1, a_2, a_3) : 0 < a_1 < a_2 + a_3, 0 < a_2 < a_1 + a_3, 0 < a_3 < a_1 + a_2 \}.$

On any subset \mathbb{U} of \mathbb{T} , define a center-function as a nonzero function $f(a_1, a_2, a_3)$ homogeneous with respect to a_1 , a_2 , a_3 and symmetric with respect to a_2 and a_3 (i. e. $f(a_1, a_2, a_3) = f(a_1, a_3, a_2)$ for all $(a_1, a_2, a_3) \in \mathbb{U}$.) A center on \mathbb{U} is an equivalence class $x_1 : x_2 : x_3$ of ordered triples (x_1, x_2, x_3) given by

 $x_1 = f(a_1, a_2, a_3), \quad x_2 = f(a_2, a_3 a_1), \quad x_3 = f(a_3, a_1, a_2)$

for some center-function f defined on \mathbb{U} .

Using complex triangle coordinates, J. Lester gives another definition of a center of a triangle. In the remaining part of the paper we use only the above mentioned Kimberling' s definition.

Definition 4. Define a shape-center-function $\Phi : \mathbb{H} \setminus \mathbb{R} \longrightarrow \mathbb{R}^*$ as a nonzero function which satisfies the conditions:

(i) $\Phi(p) = \Phi(\overline{p}) = \Phi(p)$ for any $p \in \mathbb{H} \setminus \mathbb{R}$;

(ii) $\Phi(p) = \Phi(1-p)$ for any $p \in \mathbb{H} \setminus \mathbb{R}$. A center of the triangle $\triangle \mathbf{abc}$ with a space shape $p = S(\mathbf{a}, \mathbf{b}, \mathbf{c})$ is called the ordered

For the control of the triangle Δ **abc** with a space shape $p = S(\mathbf{a}, \mathbf{b}, \mathbf{c})$ is called the ordered pair (α, β) of real numbers such that $\alpha = \Phi(p), \ \beta = \Phi(p^{-1})$ for some shape - center function Φ defined on $\mathbb{H} \setminus \mathbb{R}$.

Cycling the vertices of the triangle $\triangle \mathbf{abc}$ with a space shape p, we obtain for the shape-center-function Φ that

$$\Phi(p) + \Phi((1-p)^{-1}) + \Phi(1-p^{-1}) = 1 \quad \text{for any } p \in \mathbb{H} \setminus \mathbb{R}.$$

The next theorem solves the problem **axy** from [2] in terms of shapes.

Theorem 2. [Problem **axy**] Let $X = (\Phi(p), \Phi(p^{-1}))$ be a center. Let **x** be its value in the triangle \triangle **abc** with a space shape p and let **y** be its value in the triangle \triangle **xbc** with a space shape p_1 . Then, the points **a**, **x**, **y** are collinear if and only if Φ satisfies the functional equation

(2)
$$\Phi(p^{-1})\Phi(p_1) = \Phi(p)\Phi(p_1^{-1}),$$

where

(3)

$$p_1 = \{ [\Phi(p) - 1]p + \Phi(p^{-1}) \} \{ \Phi(p)p + \Phi(p^{-1}) - 1 \}^{-1}.$$

Proof. Let (α, β) be the affine shape coordinates of the point **x** with respect to the triangle $\triangle \mathbf{abc}$, (α_1, β_1) be the affine shape coordinates of **y** with respect to the same triangle and $(\widehat{\alpha}, \widehat{\beta})$ be the affine shape coordinates of **y** with respect to the triangle $\triangle \mathbf{xbc}$. The collinearity of the points **a**, **x**, **y** is equivalent to $\beta\alpha_1 = \alpha\beta_1$. From $S(\mathbf{x}, \mathbf{c}, \mathbf{y}) = \widehat{\alpha} + \widehat{\beta}p_1^{-1}$ we have that $\mathbf{a} - \mathbf{y} = \widehat{\alpha}(\mathbf{x} - \mathbf{c}) + (\widehat{\beta} - 1)(\mathbf{x} - \mathbf{a}) + (\mathbf{a} - \mathbf{b})\widehat{\beta}$. Hence, $S(\mathbf{a}, \mathbf{c}, \mathbf{y}) = (\mathbf{a} - \mathbf{y})(\mathbf{a} - \mathbf{c})^{-1} = \widehat{\alpha}S(\mathbf{c}, \mathbf{a}, \mathbf{x}) + (1 - \widehat{\beta})S(\mathbf{a}, \mathbf{c}, \mathbf{x}) + \widehat{\beta}S(\mathbf{a}, \mathbf{c}, \mathbf{b}) = \widehat{\alpha} + (1 - \widehat{\alpha} - \widehat{\beta})S(\mathbf{a}, \mathbf{c}, \mathbf{x}) + \widehat{\beta}p^{-1}$. Since $S(\mathbf{a}, \mathbf{c}, \mathbf{x}) = \alpha + \beta p^{-1}$, then we find that

(4)
$$\alpha_1 = \widehat{\alpha} + \alpha(1 - \widehat{\alpha} - \widehat{\beta}), \quad \beta_1 = \widehat{\beta} + \beta(1 - \widehat{\alpha} - \widehat{\beta})$$

Now, (2) follows from (4) by substituting. The remaining equality (3) holds from $p_1 = S(\mathbf{x}, \mathbf{b}, \mathbf{c}) = (\mathbf{x} - \mathbf{c})(\mathbf{x} - \mathbf{b})^{-1}$. 134 3. Locus of orthocenters of moving triangles in Euclidean space. Consider a variable triangle $\triangle \mathbf{abc}$ in $\mathbb{E}^3 \cong \operatorname{Im} \mathbb{H}$ with a space shape $p = S(\mathbf{a}, \mathbf{b}, \mathbf{c})$, where \mathbf{a} and \mathbf{b} are fixed and the third vertex is allowed to vary. Let i, j, k be the canonical quaternions in \mathbb{H} so that $i^2 = j^2 = k^2 = -1 = ijk$. We use \mathbf{i}, \mathbf{j} and \mathbf{k} to denote the standard orthonormal basis for $\mathbb{E}^3 \cong \operatorname{Im} \mathbb{H}$. Without loss of generality we may assume that $\mathbf{a} = \mathbf{i}$, $\mathbf{b} = -\mathbf{i}$ and $\mathbf{c} = x^1\mathbf{i} + x^2\mathbf{j} + x^3\mathbf{k}$, where $x^i \in \mathbb{R}$ i = 1, 2, 3 are the Cartesian coordinates of \mathbf{c} . Therefore, $p = S(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a} - \mathbf{c})(\mathbf{a} - \mathbf{b})^{-1} = \frac{1-x^1}{2} - \frac{x^2}{2}k + \frac{x^3}{2}j$. If we denote by \mathbf{d} any center of the triangle $\triangle \mathbf{abc}$, then $\mathbf{d} = y^1\mathbf{i} + y^2\mathbf{j} + y^3\mathbf{k}$, where $y^i \in \mathbb{R}$ i = 1, 2, 3 are Cartesian coordinates of \mathbf{d} and $S(\mathbf{a}, \mathbf{b}, \mathbf{d}) = \frac{1-y^1}{2} - \frac{y^2}{2}k + \frac{y^3}{2}j$. Let (α, β) be the affine shape coordinates of \mathbf{d} with respect to the triangle $\triangle \mathbf{abc}$. Since (β, α) are the affine shape coordinates of \mathbf{d} with respect to the triangle $\triangle \mathbf{abc}$. Since (β, α) are the affine shape coordinates of \mathbf{d} with respect to the triangle $\triangle \mathbf{abc}$. Since (β, α) are the affine shape coordinates of \mathbf{d} with respect to the triangle $\triangle \mathbf{abc}$. Since (β, α) are the affine shape coordinates of \mathbf{d} with respect to the triangle $\triangle \mathbf{abc}$. Since (β, α) are the affine shape coordinates of \mathbf{d} with respect to the triangle $\triangle \mathbf{abc}$. Since (β, α) are the affine shape coordinates of \mathbf{d} with respect to the triangle $\triangle \mathbf{abc}$. Since $(\beta, \mathbf{b}, \mathbf{d}) = \beta + \alpha p$. Replacing in the last equality $S(\mathbf{a}, \mathbf{b}, \mathbf{d})$ and p by the above expressions, we get

(5)
$$y^{1} = 1 - \alpha - 2\beta + \alpha x^{2}$$
$$y^{2} = \alpha x^{2}$$
$$y^{3} = \alpha x^{3}.$$

Thus, we have a relation between the moving vertex **c** of the triangle \triangle **abc** and any center **d** of the same triangle. This relationship allows us to describe the locus of centers of moving triangles with two fixed vertices in the Euclidean space. The case, when **d** is the centroid of the triangle \triangle **abc** is trivial. Here we deal with the orthocenter of the triangle \triangle **abc**.

Proposition 2. Let $\triangle \mathbf{abc}$ be a non degenerate triangle in $\mathbb{E}^3 \cong \operatorname{Im} \mathbb{H}$ with fixed vertices $\mathbf{a} = \mathbf{i}$ and $\mathbf{b} = -\mathbf{i}$. The map $\mathcal{F} : \mathbb{E}^3 \setminus (\mathbf{ab}) \longrightarrow \mathbb{E}^3 \setminus (\mathbf{ab})$ defined by

(6)

$$y^{2} = x^{2}$$

$$y^{2} = \frac{1 - (x^{1})^{2}}{(x^{2})^{2} + (x^{3})^{2}} x^{2}$$

$$y^{3} = \frac{1 - (x^{1})^{2}}{(x^{2})^{2} + (x^{3})^{2}} x^{3}$$

maps any point $x^1\mathbf{i} + x^2\mathbf{j} + x^3\mathbf{k} = \mathbf{c} \in \mathbb{R}^3 \setminus (\mathbf{ab})$ in the orthocenter of the triangle $\triangle \mathbf{abc}$ and vice versa.

Proof. Applying the condition (ii) in Proposition 1 and replacing α and β in (5), we obtain (6). Conversely, since the map (6) is an involution, \mathcal{F} maps any point $\mathbf{d} \in \mathbb{E}^3 \setminus (\mathbf{ab})$ into a point $\mathbf{c} \in \mathbb{E}^3 \setminus (\mathbf{ab})$ such that \mathbf{d} is the orthocenter of the triangle $\Delta \mathbf{abc}$.

Now, let $\mathcal{H} \subset \mathbb{E}^3 \setminus (\mathbf{ab})$ be a plane perpendicular to the line (\mathbf{ab}) . From (6) it follows immediately that \mathcal{H} is an invariant under the map \mathcal{F} and the restriction $\mathcal{F}_{|\mathcal{H}} : \mathcal{H} \to \mathcal{H}$ is an inversion in \mathcal{H} . The next examples are direct applications of this inversion.

Example 1. Let $\triangle abc$ be a non degenerate triangle in \mathbb{E}^3 with two fixed vertices **a** and **b**. Then, the vertex **c** moves along:

(i) a line in the plane \mathcal{H} non intersecting the line (**ab**) if and only if the orthocenter of the triangle $\triangle \mathbf{abc}$ describes a circle in the same plane through the point $\mathcal{H} \bigcap (\mathbf{ab})$;

(ii) a circle in the plane \mathcal{H} passing through the point $\mathcal{H} \bigcap (\mathbf{ab})$ if and only if the 135

orthocenter of the triangle $\triangle \mathbf{abc}$ describes a line in the same plane non intersecting the line (**ab**);

(iii) a circle in the plane \mathcal{H} not passing through the point $\mathcal{H} \cap (\mathbf{ab})$ if and only if the orthocenter of the triangle $\triangle \mathbf{abc}$ describes a circle in the same plane not passing through the point $\mathcal{H} \cap (\mathbf{ab})$.

Example 2. Let $\triangle abc$ be a non degenerate triangle in \mathbb{E}^3 with two fixed vertices **a** and **b**. Then, the vertex **c** moves along a logarithmic spiral in the plane \mathcal{H} with a pole at the point $\mathcal{H} \cap (ab)$ if and only if the orthocenter of the triangle $\triangle abc$ describes a logarithmic spiral in \mathcal{H} with the pole at the same point and with an opposite orientation.

Another application of the map \mathcal{F} can be obtained if the third vertex **c** of the triangle $\triangle \mathbf{abc}$, where the vertices **a** and **b** are fixed, moves along a surface of revolution in \mathbb{E}^3 with an axis of rotation (**ab**). So, let $\mathbf{a} = \mathbf{i}$, $\mathbf{b} = -\mathbf{i}$ and S be a surface of revolution with axis of rotation (**ab**). Then, we may represent S in Cartesian coordinates by

$$S: x = x(f_1(u), f_2(u)\cos v, f_2(u)\sin v) \quad f_i: \mathbf{I} \to \mathbb{R}, \ i = 1, 2, \ v \in (0, 2\pi]$$

Using the expressions (6), we get the image of S under the map \mathcal{F} , i.e.

(7)
$$\mathcal{F}(S): y = y(f_1(u), \frac{1 - f_1^2(u)}{f_2(u)} \cos v, \frac{1 - f_1^2(u)}{f_2(u)} \sin v).$$

Obviously, $\mathcal{F}(S)$ is a surface of revolution with the same axis of rotation. Applying the representation (7), we obtain generalizations in \mathbb{E}^3 of well-known assertions in the Euclidean plane.

Example 3. Let $\triangle abc$ be a non degenerate triangle in \mathbb{E}^3 with two fixed vertices **a** and **b**. Then, the third vertex **c** moves along:

(i) a cylinder of revolution with axis of rotation (**ab**) if and only if the orthocenter of the triangle \triangle **abc** describes a surface of revolution with the same axis of rotation and meridians - parabolas through the points **a** and **b** (see Fig. 1.);

(ii) a cone of revolution with axis of rotation (ab) if and only if the orthocenter of the triangle $\triangle abc$ describes a surface of revolution with the same axis of rotation and meridians - hyperbolas through the points a and b (see Fig. 2.).

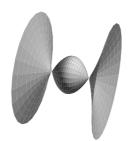


Fig. 1.

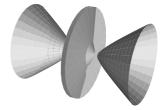


Fig. 2.

REFERENCES

[1] R. ENCHEVA, G. GEORGIEV. Shapes of tetrahedra, J. Geom., 75 (2002) 061-073.

[2] C. KIMBERLING. Triangle centers as functions, *Rocky Mountain J. Math.*, **23** (1993) No **4** 1269–1286.

[3] C. KIMBERLING. Triangle Centers and Central Triangles, *Congressus Numerantium*, **129** (1998) 1–259.

[4] M. KOECHER, R. REMMERT. Hamilton's Quaternions, New York, In: Numbers, J. H. Ewing, Ed., Graduate Text in Mathematics, Springer, **123** (1991) 189–220.

[5] J. B. KUIPERS. Quaternions and rotation sequences, Princeton, New Jersey, Princeton University Press (1998).

[6] J. A. LESTER. Triangles I: Shapes, Aequationes Math., 52 (1996) 30-54.

Faculty of Mathematics and Informatics Shumen University 115, Universitetska Str. 9712 Shumen, Bulgaria e-mail: r.encheva@fmi.shu-bg.net

ПРИЛОЖЕНИЯ НА ПРОСТРАНСТВЕНИЯ ШЕЙП НА ТРИЪГЪЛНИКА

Радостина Петрова Енчева

Дефинираме афинни шейп координати на точка относно фиксиран триъгълник. В съответствие с дефинициятана Кимберлинг за център и център-функция дефинираме шейп-център-функция като функция от пространствения шейп на триъгълника. Прилагаме тази дефиниция за да решим задачата **аху** и за да опишем някои геометрични места в термините на шейпа.