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APPLICATIONS OF THE SPACE SHAPE OF THE
TRIANGLE"

Radostina Petrova Encheva
We define affine shape coordinates of a point with respect to a fixed triangle. In
conformity with the Kimberling’s definition for a center and a center-function we
determine a shape-center-function as a function of a space shape of a triangle. We
apply this definition to solve the problem axy and to describe some loci in terms of
shapes.

1.Affine shape coordinates of a point in the plane. J. Lester introduced a
complex analytic formalism for the study of Euclidean plane in [6]. A main tool of this
formalism is the shape of a triangle. We recall briefly her definition. Identify the Euclidean
plane E? with the field of the complex numbers. If a, b and ¢ are three distinct points in
E?, then the shape of the triangle Aabc is the ratio

a—c Ja—c|
(1) Aabc7zal—b7|al—b|

(cos <bac + i.sin {bac).

This means that, up to similarity, any triangle is determined completely by a single
complex number.

In the paper [1] the notion of a shape of a triangle is carried over the three-dimensional
Euclidean space E®. A definition and some properties are given below. Let H be the
quaternion algebra. Identify E* with the imaginary space Im H of pure quaternions. The
properties of quaternions and their applications are known from [4] and [5]. Three distinct
points a, b and ¢ in E* determine a non degenerate or degenerate triangle Aabc.

Definition 1. Let a, b and c be three points in E* such that a # b. A space shape
of the ordered triple of points a, b and c is called the quaternion

p=2S(a, b, c)=(a—c)la—b)".

Triangles with the same vertices have generally different shapes, which can be determined
from the properties: S(b, ¢, a) = (1—p)~!, S(c,a, b)=1—-p~L, S(a, ¢, b) =p~! and
S(a, b, ¢)S(b, c, a)S(c, a, b) = —1. If A =4bac, B =<cba, C' =Jacb, then

||Z : §|| (cos A+1.sin A),

(a—b)x(a—c)
l(a—b) x (a—c)
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where [ €ImH and |I] =1.




The space shape of a triangle contains all the usual information about its angles and
ratios of side lengths: for example, we have cos A = %, sin A = %, ||Z: §|| = |p|.
The normal vector to the triangle plane Im p determines an orientation in the same plane.
If a, b, ¢ are distinct and collinear points in E?, then S(a, b, ¢) = p € R is the so called
signed (or affine) ratio of the points ¢, b, a, which is a fundamental affine invariant.
The next lemma affords an opportunity to define affine shape coordinates of any point

with respect to a non degenerate base triangle Aabec. It is proved in [1].

Lemma 1. Let Aabc be a non degenerate triangle with a space shape p, and let d be
an arbitrary point in E>. Then, the points a, b, ¢ and d are coplanar if and only if there
exists a unique ordered pair (o, 3) of real numbers such that S(a, ¢, d) = a+ Bp~L.

Definition 2. Let d be an arbitrary point lying in the plane of the triangle Aabc.
Then, the ordered pair (o, 3) of real numbers is called affine shape coordinates of d with
respect to the triangle Aabc if S(a, ¢, d) = a + Bp~ L.

It is clear that
(ildeab <= a=0,debc <= a+f=1,deca < [=0;

.. . . . . . Lol 0<ax<l

(ii) d is an inner point of the triangle Aabc if and only if O<a+f<l’

(iii) a—d = a(a — c) + f(a — b).

The following properties can be easily checked : If the affine shape coordinates of a
point d with respect to the triangle Aabc are («, ), then (3, «) are the affine shape
coordinates of d with respect to the triangle Aacb, and (a, 1 — « — 3) are the affine
shape coordinates of d with respect to the triangle Abac.

Simple calculations imply the next Proposition about some triangle centers.

Proposition 1. Let Aabc be a non degenerate triangle with a space shape p and let
d be an arbitrary point in the triangle plane. If («, B) are the affine shape coordinates of
the point d with respect to the triangle Aabc, then
(i) d is the centroid of the triangle Nabe if and only if o = 3, B = 3;
(ii) d is the orthocenter of the triangle Aabc if and only if

_ Rep(l—Rep) Rep(|p]> — Rep)
|Tm p|? ’ |Tm p|? '
(iil) d is the circumcenter of the triangle Aabc if and only if
_IpP—Rep ,  [p|*(1 —Rep)
2(Impf* 2[Im p|?

(iv) d is the incenter of the triangle Aabc if and only if

_ 1 _ Ip|
o=—— " f=—
I1—p|+p| +1 1—p|+p|+1

The above statements can be directly assigned to the Gaussian plane and then p €
C\R.

2. Shape-center-function. The affine shape coordinates also afford an opportunity
to determine a center of a triangle. We shall consider more general case of a triangle in
Euclidean space. Let us recall Kimberling’ s definition for a center and a center-function
in [3]:
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Definition 3. Let T be the set of all triples (a1, a2, ag) of real numbers that are
sidelengths of a triangle, i.e.
T ={(a1, a2,0a3):0<a; <as+as, 0<az<a+as 0<az<a +as}.
On any subset U of T, define a center-function as a nonzero function f(ai, a2, as)
homogeneous with respect to ai, as, as and symmetric with respect to as and as (i. e.
f(a1, a2, az) = f(a1, as, az) for all (a1, az, az) € U.) A center on U is an equivalence
class x1 : xo : x3 of ordered triples (x1, x2, x3) given by

r1 = f(ai, az, az), w2 = f(az, aza1), 3= f(as, a1, az)
for some center-function f defined on U.

Using complex triangle coordinates, J. Lester gives another definition of a center of a
triangle. In the remaining part of the paper we use only the above mentioned Kimberling’
s definition.

Definition 4. Define a shape-center-function ® : H\R — R* as a nonzero function
which satisfies the conditions:
(i) ®(p) = (p) = ©(p) for any p € H\R;
(i) (p) = ®(1 —p) for any p € H\R.
A center of the triangle ANabc with a space shape p = S(a, b, ¢) is called the ordered
pair (a, 3) of real numbers such that o = ®(p), 3 = ®(p~1) for some shape - center -
function ® defined on H \ R.

Cycling the vertices of the triangle Aabc with a space shape p, we obtain for the
shape-center-function ® that
O(p)+0((1—p) ™ H+®(1—-p')=1 foranypc H\R.
The next theorem solves the problem axy from [2] in terms of shapes.
Theorem 2. [Problem axy] Let X = (®(p), ®(p~1)) be a center. Let x be its value
in the triangle Nabc with a space shape p and let y be its value in the triangle Axbc

with a space shape p1. Then, the points a, X, y are collinear if and only if ® satisfies the
functional equation

(2) (p1)®(p1) = 2(p)@(p; ),
where
(3) p={[®(p) - 1p+ 2@ Y@+ ") -1}

Proof. Let (o, 3) be the affine shape coordinates of the point x with respect to the
triangle Aabc, (a1, 31) be the affine shape coordinates of y with respect to the same
triangle and (@, B) be the affine shape coordinates of y with respect to the triangle Axbec.
The collinearity of the points a, x, y is equivalent to Sa; = «f;. From S(x, ¢, y) =
a+ Bp; ! we have that a —y = a(x — ¢)+ (3—1)(x — a)+ (a — b)3. Hence, S(a, ¢, y) =
(a—y)a—c)"! = aS(c,a, x) + (1 — B)S(a, ¢, x) + BS(a, c,b) = a+ (1 —a

-~

08)S(a, ¢, x) + Bp’l. Since S(a, ¢, x) = a + Bp~ !, then we find that

(4) or=ad+al=a-0), h=F+p01-a-0)

Now, (2) follows from (4) by substituting. The remaining equality (3) holds from
p1=9(x,b,¢c)=(x—c)(x—b)"L
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3. Locus of orthocenters of moving triangles in Euclidean space. Consider a
variable triangle Aabc in E* 2 Im H with a space shape p = S(a, b, ¢), where a and b
are fixed and the third vertex is allowed to vary. Let 4, j, k be the canonical quaternions

in H so that 2 = j2 = k> = —1 = ijk. We use i, j and k to denote the standard
orthonormal basis for E* 2 Im H. Without loss of generality we may assume that a = i,
b = —iand ¢ = z'i + 22j + 23k, where ' € R i = 1, 2, 3 are the Cartesian coordinates

of c. Therefore, p = S(a, b, ¢) = (a—c)(a—b)™! = LQLI - %zk + %ij. If we denote
by d any center of the triangle Aabc, then d = y'i+ y2j+ 33k, wherey* € R i=1,2, 3
are Cartesian coordinates of d and S(a, b, d) = 1 —2y1 — y—;kz + y—;j. Let (a, ) be the
affine shape coordinates of d with respect to the triangle Aabc. Since (8, a) are the
affine shape coordinates of d with respect to the triangle Aacb with a space shape p~!
we obtain S(a, b, d) = 8 + ap. Replacing in the last equality S(a, b, d) and p by the
above expressions, we get

y' = 1-a—-28+axt
(5) P = az?
v = aad

Thus, we have a relation between the moving vertex c of the triangle Aabc and any
center d of the same triangle. This relationship allows us to describe the locus of centers
of moving triangles with two fixed vertices in the Euclidean space. The case, when d is
the centroid of the triangle Aabc is trivial. Here we deal with the orthocenter of the
triangle Aabc.

Proposition 2. Let Aabc be a non degenerate triangle in E* = ImH with fized
vertices a =i and b = —i. The map F : E*\(ab) — E*\(ab) defined by

o= o
2 _ 1- (x1)2 22
(6) y= (2)2 + (2%)2
1— (z1)?
v = (12)2 J(r (52,3)2 z

maps any point x'i 4+ 2%j + 23k = ¢ € R®\(ab) in the orthocenter of the triangle Aabc
and vice versa.

Proof. Applying the condition (ii) in Proposition 1 and replacing o and (3 in (5), we
obtain (6). Conversely, since the map (6) is an involution, F maps any point d € E*\ (ab)
into a point ¢ € E*\(ab) such that d is the orthocenter of the triangle Aabc.

Now, let H C E*\(ab) be a plane perpendicular to the line (ab). From (6) it follows
immediately that H is an invariant under the map F and the restriction F3y : H — H
is an inversion in H. The next examples are direct applications of this inversion.

Example 1. Let Aabc be a non degenerate triangle in E with two fixed vertices a
and b. Then, the vertex ¢ moves along:
(i) a line in the plane H non intersecting the line (ab) if and only if the orthocenter of
the triangle Aabc describes a circle in the same plane through the point H () (ab);
(ii) a circle in the plane H passing through the point H[)(ab) if and only if the
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orthocenter of the triangle Aabc describes a line in the same plane non intersecting
the line (ab);

(iii) a circle in the plane H not passing through the point H () (ab) if and only if the
orthocenter of the triangle Aabc describes a circle in the same plane not passing through
the point H () (ab).

Example 2. Let Aabc be a non degenerate triangle in E* with two fixed vertices a
and b. Then, the vertex ¢ moves along a logarithmic spiral in the plane H with a pole
at the point H () (ab) if and only if the orthocenter of the triangle Aabc describes a
logarithmic spiral in H with the pole at the same point and with an opposite orientation.

Another application of the map F can be obtained if the third vertex c of the triangle
Aabe, where the vertices a and b are fixed, moves along a surface of revolution in E®
with an axis of rotation (ab). So, let a =i, b = —i and S be a surface of revolution with
axis of rotation (ab). Then, we may represent S in Cartesian coordinates by

Sz =xz(f1(u), fa(u)cosv, fo(u)sinv) f;:I—-R, i=1,2, v e (0,27
Using the expressions (6), we get the image of S under the map F, i.e.

1— fi(u) 1- ff(w)
7 F(S) :y=y(fi(u), ————= cosv, —————=sinv).
" B2y =vht: 77 ) Rl
Obviously, F(S) is a surface of revolution with the same axis of rotation. Applying
the representation (7), we obtain generalizations in E? of well-known assertions in the

Euclidean plane.

Example 3. Let Aabc be a non degenerate triangle in E* with two fixed vertices a
and b. Then, the third vertex ¢ moves along:
(1) a cylinder of revolution with axis of rotation (ab) if and only if the orthocenter of
the triangle Aabc describes a surface of revolution with the same axis of rotation and
meridians - parabolas through the points a and b (see Fig. 1.);
(i) a cone of revolution with axis of rotation (ab) if and only if the orthocenter of
the triangle Aabc describes a surface of revolution with the same axis of rotation and
meridians - hyperbolas through the points a and b (see Fig. 2.).

Fig. 1. Fig. 2.
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IMPUJIOXKEHU S HA IIPOCTPAHCTBEHUI S IIIENIT HA
TPU'BbI"'bJIHUKA

Panoctuna IlerpoBa EH4yeBa

Jedurupame adpuHHA €T KOOPJAUHATH HA, TOYKA OTHOCHO (DUKCUPAH TPUbI'bJIHUK.
B cworBercTBHE ¢ nedunnmmsrana KumbepauHr 3a eHTbP U HEHTbP-PYHKIHS JTedr-
HUpaMe IIeHT-IIeHTbP-OYHKINST KATO (PYHKIUS OT MPOCTPAHCTBEHUS [N HA TPUb-
rbauuka. [Ipunarame tasu neduHUNMS 38 Ja PEIIUM 3a/1a9aTa axXy U 3a J1a OMUIIEM
HSIKOU P€OMETPUYHM MEeCTa B TEDMHHHTE HA IIeia.
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