APPLICATIONS OF THE SPACE SHAPE OF THE TRIANGLE*

Radostina Petrova Encheva

We define affine shape coordinates of a point with respect to a fixed triangle. In conformity with the Kimberling's definition for a center and a center-function we determine a shape-center-function as a function of a space shape of a triangle. We apply this definition to solve the problem axy and to describe some loci in terms of shapes.
1.Affine shape coordinates of a point in the plane. J. Lester introduced a complex analytic formalism for the study of Euclidean plane in [6]. A main tool of this formalism is the shape of a triangle. We recall briefly her definition. Identify the Euclidean plane \mathbb{E}^{2} with the field of the complex numbers. If a, b and c are three distinct points in \mathbb{E}^{2}, then the shape of the triangle $\triangle \mathbf{a b c}$ is the ratio

$$
\begin{equation*}
\triangle_{\mathbf{a b c}}=\frac{\mathbf{a}-\mathbf{c}}{\mathbf{a}-\mathbf{b}}=\frac{|\mathbf{a}-\mathbf{c}|}{|\mathbf{a}-\mathbf{b}|}(\cos \Varangle \mathbf{b a c}+i . \sin \Varangle \mathbf{b a c}) . \tag{1}
\end{equation*}
$$

This means that, up to similarity, any triangle is determined completely by a single complex number.

In the paper [1] the notion of a shape of a triangle is carried over the three-dimensional Euclidean space \mathbb{E}^{3}. A definition and some properties are given below. Let \mathbb{H} be the quaternion algebra. Identify \mathbb{E}^{3} with the imaginary space $\operatorname{Im} \mathbb{H}$ of pure quaternions. The properties of quaternions and their applications are known from [4] and [5]. Three distinct points \mathbf{a}, \mathbf{b} and \mathbf{c} in \mathbb{E}^{3} determine a non degenerate or degenerate triangle $\triangle \mathbf{a b c}$.

Definition 1. Let \mathbf{a}, \mathbf{b} and \mathbf{c} be three points in \mathbb{E}^{3} such that $\mathbf{a} \neq \mathbf{b}$. A space shape of the ordered triple of points \mathbf{a}, \mathbf{b} and \mathbf{c} is called the quaternion

$$
p=S(\mathbf{a}, \mathbf{b}, \mathbf{c})=(\mathbf{a}-\mathbf{c})(\mathbf{a}-\mathbf{b})^{-1} .
$$

Triangles with the same vertices have generally different shapes, which can be determined from the properties: $S(\mathbf{b}, \mathbf{c}, \mathbf{a})=(1-p)^{-1}, S(\mathbf{c}, \mathbf{a}, \mathbf{b})=1-p^{-1}, S(\mathbf{a}, \mathbf{c}, \mathbf{b})=p^{-1}$ and $S(\mathbf{a}, \mathbf{b}, \mathbf{c}) S(\mathbf{b}, \mathbf{c}, \mathbf{a}) S(\mathbf{c}, \mathbf{a}, \mathbf{b})=-1$. If $A=\Varangle \mathbf{b a c}, B=\Varangle \mathbf{c b a}, C=\Varangle \mathbf{a c b}$, then

$$
\begin{aligned}
p & =\frac{|\mathbf{a}-\mathbf{c}|}{|\mathbf{a}-\mathbf{b}|}(\cos A+l \cdot \sin A) \\
\text { where } l & =\frac{(\mathbf{a}-\mathbf{b}) \times(\mathbf{a}-\mathbf{c})}{|(\mathbf{a}-\mathbf{b}) \times(\mathbf{a}-\mathbf{c})|} \in \operatorname{Im} \mathbb{H} \text { and }|l|=1
\end{aligned}
$$

[^0]The space shape of a triangle contains all the usual information about its angles and ratios of side lengths: for example, we have $\cos A=\frac{\operatorname{Re} p}{|p|}, \sin A=\frac{|\operatorname{Im} p|}{|p|}, \frac{|\mathbf{a}-\mathbf{c}|}{|\mathbf{a}-\mathbf{b}|}=|p|$. The normal vector to the triangle plane $\operatorname{Im} p$ determines an orientation in the same plane. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are distinct and collinear points in \mathbb{E}^{3}, then $S(\mathbf{a}, \mathbf{b}, \mathbf{c})=p \in \mathbb{R}$ is the so called signed (or affine) ratio of the points $\mathbf{c}, \mathbf{b}, \mathbf{a}$, which is a fundamental affine invariant.
The next lemma affords an opportunity to define affine shape coordinates of any point with respect to a non degenerate base triangle $\triangle \mathbf{a b c}$. It is proved in [1].

Lemma 1. Let $\triangle \mathbf{a b c}$ be a non degenerate triangle with a space shape p, and let \mathbf{d} be an arbitrary point in \mathbb{E}^{3}. Then, the points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} are coplanar if and only if there exists a unique ordered pair (α, β) of real numbers such that $S(\mathbf{a}, \mathbf{c}, \mathbf{d})=\alpha+\beta p^{-1}$.

Definition 2. Let \mathbf{d} be an arbitrary point lying in the plane of the triangle $\triangle \mathbf{a b c}$. Then, the ordered pair (α, β) of real numbers is called affine shape coordinates of \mathbf{d} with respect to the triangle $\triangle \mathbf{a b c}$ if $S(\mathbf{a}, \mathbf{c}, \mathbf{d})=\alpha+\beta p^{-1}$.

It is clear that
(i) $\mathbf{d} \in \mathbf{a b} \Longleftrightarrow \alpha=0, \mathbf{d} \in \mathbf{b c} \Longleftrightarrow \alpha+\beta=1, \mathbf{d} \in \mathbf{c a} \Longleftrightarrow \beta=0$;
(ii) \mathbf{d} is an inner point of the triangle $\triangle \mathbf{a b c}$ if and only if $\left\lvert\, \begin{aligned} & 0<\alpha<1 \\ & 0<\alpha+\beta<1\end{aligned}\right.$;
(iii) $\mathbf{a}-\mathbf{d}=\alpha(\mathbf{a}-\mathbf{c})+\beta(\mathbf{a}-\mathbf{b})$.

The following properties can be easily checked : If the affine shape coordinates of a point \mathbf{d} with respect to the triangle $\triangle \mathbf{a b c}$ are (α, β), then (β, α) are the affine shape coordinates of \mathbf{d} with respect to the triangle $\triangle \mathbf{a c b}$, and $(\alpha, 1-\alpha-\beta)$ are the affine shape coordinates of \mathbf{d} with respect to the triangle $\triangle \mathbf{b a c}$.
Simple calculations imply the next Proposition about some triangle centers.
Proposition 1. Let $\triangle \mathbf{a b c}$ be a non degenerate triangle with a space shape p and let \mathbf{d} be an arbitrary point in the triangle plane. If (α, β) are the affine shape coordinates of the point \mathbf{d} with respect to the triangle $\triangle \mathbf{a b c}$, then
(i) \mathbf{d} is the centroid of the triangle $\triangle \mathbf{a b c}$ if and only if $\alpha=\frac{1}{3}, \beta=\frac{1}{3}$;
(ii) \mathbf{d} is the orthocenter of the triangle $\triangle \mathbf{a b c}$ if and only if

$$
\alpha=\frac{\operatorname{Re} p(1-\operatorname{Re} p)}{|\operatorname{Im} p|^{2}}, \quad \beta=\frac{\operatorname{Re} p\left(|p|^{2}-\operatorname{Re} p\right)}{|\operatorname{Im} p|^{2}} ;
$$

(iii) \mathbf{d} is the circumcenter of the triangle $\triangle \mathbf{a b c}$ if and only if

$$
\alpha=\frac{|p|^{2}-\operatorname{Re} p}{2|\operatorname{Im} p|^{2}}, \quad \beta=\frac{|p|^{2}(1-\operatorname{Re} p)}{2|\operatorname{Im} p|^{2}} ;
$$

(iv) \mathbf{d} is the incenter of the triangle $\triangle \mathbf{a b c}$ if and only if

$$
\alpha=\frac{1}{|1-p|+|p|+1}, \quad \beta=\frac{|p|}{|1-p|+|p|+1} .
$$

The above statements can be directly assigned to the Gaussian plane and then $p \in$ $\mathbb{C} \backslash \mathbb{R}$.
2. Shape-center-function. The affine shape coordinates also afford an opportunity to determine a center of a triangle. We shall consider more general case of a triangle in Euclidean space. Let us recall Kimberling's definition for a center and a center-function in [3]:

Definition 3. Let \mathbb{T} be the set of all triples $\left(a_{1}, a_{2}, a_{3}\right)$ of real numbers that are sidelengths of a triangle, i.e.

$$
\mathbb{T}=\left\{\left(a_{1}, a_{2}, a_{3}\right): 0<a_{1}<a_{2}+a_{3}, 0<a_{2}<a_{1}+a_{3}, 0<a_{3}<a_{1}+a_{2}\right\}
$$

On any subset \mathbb{U} of \mathbb{T}, define a center-function as a nonzero function $f\left(a_{1}, a_{2}, a_{3}\right)$ homogeneous with respect to a_{1}, a_{2}, a_{3} and symmetric with respect to a_{2} and a_{3} (i. e. $f\left(a_{1}, a_{2}, a_{3}\right)=f\left(a_{1}, a_{3}, a_{2}\right)$ for all $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{U}$.) A center on \mathbb{U} is an equivalence class $x_{1}: x_{2}: x_{3}$ of ordered triples $\left(x_{1}, x_{2}, x_{3}\right)$ given by

$$
x_{1}=f\left(a_{1}, a_{2}, a_{3}\right), \quad x_{2}=f\left(a_{2}, a_{3} a_{1}\right), \quad x_{3}=f\left(a_{3}, a_{1}, a_{2}\right)
$$

for some center-function f defined on \mathbb{U}.
Using complex triangle coordinates, J. Lester gives another definition of a center of a triangle. In the remaining part of the paper we use only the above mentioned Kimberling' s definition.

Definition 4. Define a shape-center-function $\Phi: \mathbb{H} \backslash \mathbb{R} \longrightarrow \mathbb{R}^{*}$ as a nonzero function which satisfies the conditions:
(i) $\Phi(p)=\Phi(\bar{p})=\overline{\Phi(p)}$ for any $p \in \mathbb{H} \backslash \mathbb{R}$;
(ii) $\Phi(p)=\Phi(1-p)$ for any $p \in \mathbb{H} \backslash \mathbb{R}$.
A center of the triangle $\triangle \mathbf{a b c}$ with a space shape $p=S(\mathbf{a}, \mathbf{b}, \mathbf{c})$ is called the ordered pair (α, β) of real numbers such that $\alpha=\Phi(p), \beta=\Phi\left(p^{-1}\right)$ for some shape - center function Φ defined on $\mathbb{H} \backslash \mathbb{R}$.

Cycling the vertices of the triangle $\triangle \mathbf{a b c}$ with a space shape p, we obtain for the shape-center-function Φ that

$$
\Phi(p)+\Phi\left((1-p)^{-1}\right)+\Phi\left(1-p^{-1}\right)=1 \quad \text { for any } p \in \mathbb{H} \backslash \mathbb{R}
$$

The next theorem solves the problem axy from [2] in terms of shapes.
Theorem 2. [Problem axy] Let $X=\left(\Phi(p), \Phi\left(p^{-1}\right)\right)$ be a center. Let \mathbf{x} be its value in the triangle $\triangle \mathbf{a b c}$ with a space shape p and let \mathbf{y} be its value in the triangle $\triangle \mathbf{x b c}$ with a space shape p_{1}. Then, the points $\mathbf{a}, \mathbf{x}, \mathbf{y}$ are collinear if and only if Φ satisfies the functional equation

$$
\begin{equation*}
\Phi\left(p^{-1}\right) \Phi\left(p_{1}\right)=\Phi(p) \Phi\left(p_{1}^{-1}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{1}=\left\{[\Phi(p)-1] p+\Phi\left(p^{-1}\right)\right\}\left\{\Phi(p) p+\Phi\left(p^{-1}\right)-1\right\}^{-1} \tag{3}
\end{equation*}
$$

Proof. Let (α, β) be the affine shape coordinates of the point \mathbf{x} with respect to the triangle $\triangle \mathbf{a b c},\left(\alpha_{1}, \beta_{1}\right)$ be the affine shape coordinates of \mathbf{y} with respect to the same triangle and $(\widehat{\alpha}, \widehat{\beta})$ be the affine shape coordinates of \mathbf{y} with respect to the triangle $\Delta \mathbf{x b c}$. The collinearity of the points $\mathbf{a}, \mathbf{x}, \mathbf{y}$ is equivalent to $\beta \alpha_{1}=\alpha \beta_{1}$. From $S(\mathbf{x}, \mathbf{c}, \mathbf{y})=$ $\widehat{\alpha}+\widehat{\beta} p_{1}^{-1}$ we have that $\mathbf{a}-\mathbf{y}=\widehat{\alpha}(\mathbf{x}-\mathbf{c})+(\widehat{\beta}-1)(\mathbf{x}-\mathbf{a})+(\mathbf{a}-\mathbf{b}) \widehat{\beta}$. Hence, $S(\mathbf{a}, \mathbf{c}, \mathbf{y})=$ $(\mathbf{a}-\mathbf{y})(\mathbf{a}-\mathbf{c})^{-1}=\widehat{\alpha} S(\mathbf{c}, \mathbf{a}, \mathbf{x})+(1-\widehat{\beta}) S(\mathbf{a}, \mathbf{c}, \mathbf{x})+\widehat{\beta} S(\mathbf{a}, \mathbf{c}, \mathbf{b})=\widehat{\alpha}+(1-\widehat{\alpha}-$ $\widehat{\beta}) S(\mathbf{a}, \mathbf{c}, \mathbf{x})+\widehat{\beta} p^{-1}$. Since $S(\mathbf{a}, \mathbf{c}, \mathbf{x})=\alpha+\beta p^{-1}$, then we find that

$$
\begin{equation*}
\alpha_{1}=\widehat{\alpha}+\alpha(1-\widehat{\alpha}-\widehat{\beta}), \quad \beta_{1}=\widehat{\beta}+\beta(1-\widehat{\alpha}-\widehat{\beta}) \tag{4}
\end{equation*}
$$

Now, (2) follows from (4) by substituting. The remaining equality (3) holds from $p_{1}=S(\mathbf{x}, \mathbf{b}, \mathbf{c})=(\mathbf{x}-\mathbf{c})(\mathbf{x}-\mathbf{b})^{-1}$.
3. Locus of orthocenters of moving triangles in Euclidean space. Consider a variable triangle $\triangle \mathbf{a b c}$ in $\mathbb{E}^{3} \cong \operatorname{Im} \mathbb{H}$ with a space shape $p=S(\mathbf{a}, \mathbf{b}, \mathbf{c})$, where \mathbf{a} and \mathbf{b} are fixed and the third vertex is allowed to vary. Let i, j, k be the canonical quaternions in \mathbb{H} so that $i^{2}=j^{2}=k^{2}=-1=i j k$. We use \mathbf{i}, \mathbf{j} and \mathbf{k} to denote the standard orthonormal basis for $\mathbb{E}^{3} \cong \operatorname{Im} \mathbb{H}$. Without loss of generality we may assume that $\mathbf{a}=\mathbf{i}$, $\mathbf{b}=-\mathbf{i}$ and $\mathbf{c}=x^{1} \mathbf{i}+x^{2} \mathbf{j}+x^{3} \mathbf{k}$, where $x^{i} \in \mathbb{R} i=1,2,3$ are the Cartesian coordinates of \mathbf{c}. Therefore, $p=S(\mathbf{a}, \mathbf{b}, \mathbf{c})=(\mathbf{a}-\mathbf{c})(\mathbf{a}-\mathbf{b})^{-1}=\frac{1-x^{1}}{2}-\frac{x^{2}}{2} k+\frac{x^{3}}{2} j$. If we denote by \mathbf{d} any center of the triangle $\triangle \mathbf{a b c}$, then $\mathbf{d}=y^{1} \mathbf{i}+y^{2} \mathbf{j}+y^{3} \mathbf{k}$, where $y^{i} \in \mathbb{R} i=1,2,3$ are Cartesian coordinates of \mathbf{d} and $S(\mathbf{a}, \mathbf{b}, \mathbf{d})=\frac{1-y^{1}}{2}-\frac{y^{2}}{2} k+\frac{y^{3}}{2} j$. Let (α, β) be the affine shape coordinates of \mathbf{d} with respect to the triangle $\triangle \mathbf{a b c}$. Since (β, α) are the affine shape coordinates of \mathbf{d} with respect to the triangle $\triangle \mathbf{a c b}$ with a space shape p^{-1} we obtain $S(\mathbf{a}, \mathbf{b}, \mathbf{d})=\beta+\alpha p$. Replacing in the last equality $S(\mathbf{a}, \mathbf{b}, \mathbf{d})$ and p by the above expressions, we get

$$
\begin{align*}
y^{1} & =1-\alpha-2 \beta+\alpha x^{1} \\
y^{2} & =\alpha x^{2} \tag{5}\\
y^{3} & =\alpha x^{3} .
\end{align*}
$$

Thus, we have a relation between the moving vertex \mathbf{c} of the triangle $\triangle \mathbf{a b c}$ and any center \mathbf{d} of the same triangle. This relationship allows us to describe the locus of centers of moving triangles with two fixed vertices in the Euclidean space. The case, when d is the centroid of the triangle $\triangle \mathbf{a b c}$ is trivial. Here we deal with the orthocenter of the triangle $\triangle \mathbf{a b c}$.

Proposition 2. Let $\triangle \mathbf{a b c}$ be a non degenerate triangle in $\mathbb{E}^{3} \cong \operatorname{Im} \mathbb{H}$ with fixed vertices $\mathbf{a}=\mathbf{i}$ and $\mathbf{b}=-\mathbf{i}$. The map $\mathcal{F}: \mathbb{E}^{3} \backslash(\mathbf{a b}) \longrightarrow \mathbb{E}^{3} \backslash(\mathbf{a b})$ defined by

$$
\begin{align*}
y^{1} & =x^{1} \\
y^{2} & =\frac{1-\left(x^{1}\right)^{2}}{\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}} x^{2} \tag{6}\\
y^{3} & =\frac{1-\left(x^{1}\right)^{2}}{\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}} x^{3}
\end{align*}
$$

maps any point $x^{1} \mathbf{i}+x^{2} \mathbf{j}+x^{3} \mathbf{k}=\mathbf{c} \in \mathbb{R}^{3} \backslash(\mathbf{a b})$ in the orthocenter of the triangle $\triangle \mathbf{a b c}$ and vice versa.

Proof. Applying the condition (ii) in Proposition 1 and replacing α and β in (5), we obtain (6). Conversely, since the map (6) is an involution, \mathcal{F} maps any point $\mathbf{d} \in \mathbb{E}^{3} \backslash(\mathbf{a b})$ into a point $\mathbf{c} \in \mathbb{E}^{3} \backslash(\mathbf{a b})$ such that \mathbf{d} is the orthocenter of the triangle $\triangle \mathbf{a b c}$.

Now, let $\mathcal{H} \subset \mathbb{E}^{3} \backslash(\mathbf{a b})$ be a plane perpendicular to the line (ab). From (6) it follows immediately that \mathcal{H} is an invariant under the map \mathcal{F} and the restriction $\mathcal{F}_{\mid \mathcal{H}}: \mathcal{H} \rightarrow \mathcal{H}$ is an inversion in \mathcal{H}. The next examples are direct applications of this inversion.

Example 1. Let $\triangle \mathbf{a b c}$ be a non degenerate triangle in \mathbb{E}^{3} with two fixed vertices a and \mathbf{b}. Then, the vertex \mathbf{c} moves along:
(i) a line in the plane \mathcal{H} non intersecting the line (ab) if and only if the orthocenter of the triangle $\triangle \mathbf{a b c}$ describes a circle in the same plane through the point $\mathcal{H} \bigcap(\mathbf{a b})$;
(ii) a circle in the plane \mathcal{H} passing through the point $\mathcal{H} \bigcap(\mathbf{a b})$ if and only if the
orthocenter of the triangle $\triangle \mathbf{a b c}$ describes a line in the same plane non intersecting the line (ab);
(iii) a circle in the plane \mathcal{H} not passing through the point $\mathcal{H} \bigcap(\mathbf{a b})$ if and only if the orthocenter of the triangle $\triangle \mathbf{a b c}$ describes a circle in the same plane not passing through the point $\mathcal{H} \bigcap(\mathbf{a b})$.

Example 2. Let $\triangle \mathbf{a b c}$ be a non degenerate triangle in \mathbb{E}^{3} with two fixed vertices a and \mathbf{b}. Then, the vertex \mathbf{c} moves along a logarithmic spiral in the plane \mathcal{H} with a pole at the point $\mathcal{H} \bigcap(\mathbf{a b})$ if and only if the orthocenter of the triangle $\triangle \mathbf{a b c}$ describes a logarithmic spiral in \mathcal{H} with the pole at the same point and with an opposite orientation.

Another application of the map \mathcal{F} can be obtained if the third vertex \mathbf{c} of the triangle $\triangle \mathbf{a b c}$, where the vertices a and \mathbf{b} are fixed, moves along a surface of revolution in \mathbb{E}^{3} with an axis of rotation $(\mathbf{a b})$. So, let $\mathbf{a}=\mathbf{i}, \mathbf{b}=-\mathbf{i}$ and S be a surface of revolution with axis of rotation ($\mathbf{a b}$). Then, we may represent S in Cartesian coordinates by

$$
S: x=x\left(f_{1}(u), f_{2}(u) \cos v, f_{2}(u) \sin v\right) \quad f_{i}: \mathrm{I} \rightarrow \mathbb{R}, i=1,2, v \in(0,2 \pi]
$$

Using the expressions (6), we get the image of S under the map \mathcal{F}, i.e.

$$
\begin{equation*}
\mathcal{F}(S): y=y\left(f_{1}(u), \frac{1-f_{1}^{2}(u)}{f_{2}(u)} \cos v, \frac{1-f_{1}^{2}(u)}{f_{2}(u)} \sin v\right) . \tag{7}
\end{equation*}
$$

Obviously, $\mathcal{F}(S)$ is a surface of revolution with the same axis of rotation. Applying the representation (7), we obtain generalizations in \mathbb{E}^{3} of well-known assertions in the Euclidean plane.

Example 3. Let $\triangle \mathbf{a b c}$ be a non degenerate triangle in \mathbb{E}^{3} with two fixed vertices a and \mathbf{b}. Then, the third vertex \mathbf{c} moves along:
(i) a cylinder of revolution with axis of rotation (ab) if and only if the orthocenter of the triangle $\triangle \mathbf{a b c}$ describes a surface of revolution with the same axis of rotation and meridians - parabolas through the points \mathbf{a} and \mathbf{b} (see Fig. 1.);
(ii) a cone of revolution with axis of rotation ($\mathbf{a b}$) if and only if the orthocenter of the triangle $\triangle \mathbf{a b c}$ describes a surface of revolution with the same axis of rotation and meridians - hyperbolas through the points \mathbf{a} and \mathbf{b} (see Fig. 2.).

Fig. 1.

Fig. 2.

REFERENCES

[1] R. Encheva, G. Georgiev. Shapes of tetrahedra, J. Geom., 75 (2002) 061-073.
[2] C. Kimberling. Triangle centers as functions, Rocky Mountain J. Math., 23 (1993) No 4 1269-1286.
[3] C. Kimberling. Triangle Centers and Central Triangles, Congressus Numerantium, 129 (1998) 1-259.
[4] M. Koecher, R. Remmert. Hamilton's Quaternions, New York, In: Numbers, J. H. Ewing, Ed., Graduate Text in Mathematics, Springer, 123 (1991) 189-220.
[5] J. B. Kuipers. Quaternions and rotation sequences, Princeton, New Jersey, Princeton University Press (1998).
[6] J. A. Lester. Triangles I: Shapes, Aequationes Math., 52 (1996) 30-54.

Faculty of Mathematics and Informatics
Shumen University
115, Universitetska Str.
9712 Shumen, Bulgaria
e-mail: r.encheva@fmi.shu-bg.net

ПРИЛОЖЕНИЯ НА ПРОСТРАНСТВЕНИЯ ШЕЙП НА ТРИЪГЪЛНИКА

Радостина Петрова Енчева

Дефинираме афинни шейп координати на точка относно фиксиран триъгълник. В съответствие с дефинициятана Кимберлинг за център и център-функция дефинираме шейп-център-функция като функция от пространствения шейп на триъгълника. Прилагаме тази дефиниция за да решим задачата аху и за да опишем някои геометрични места в термините на шейпа.

[^0]: ${ }^{*} 2000$ Mathematics Subject Classification: 51M05, 51M15.
 Key words: Shape, center, quaternion algebra, affine invariants.
 The research is partially supported by Shumen University under grant 8/2007.

