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APPLICATIONS OF THE SPACE SHAPE OF THE

TRIANGLE*

Radostina Petrova Encheva
We define affine shape coordinates of a point with respect to a fixed triangle. In
conformity with the Kimberling’s definition for a center and a center-function we
determine a shape-center-function as a function of a space shape of a triangle. We
apply this definition to solve the problem axy and to describe some loci in terms of
shapes.

1.Affine shape coordinates of a point in the plane. J. Lester introduced a
complex analytic formalism for the study of Euclidean plane in [6]. A main tool of this
formalism is the shape of a triangle. We recall briefly her definition. Identify the Euclidean
plane E

2 with the field of the complex numbers. If a, b and c are three distinct points in
E

2, then the shape of the triangle 4abc is the ratio

(1) 4abc =
a − c

a − b
=

|a− c|

|a − b|
(cos <)bac + i. sin <)bac).

This means that, up to similarity, any triangle is determined completely by a single
complex number.

In the paper [1] the notion of a shape of a triangle is carried over the three-dimensional
Euclidean space E

3. A definition and some properties are given below. Let H be the
quaternion algebra. Identify E

3 with the imaginary space Im H of pure quaternions. The
properties of quaternions and their applications are known from [4] and [5]. Three distinct
points a, b and c in E

3 determine a non degenerate or degenerate triangle 4abc.

Definition 1. Let a, b and c be three points in E
3 such that a 6= b. A space shape

of the ordered triple of points a, b and c is called the quaternion

p = S(a, b, c) = (a − c)(a − b)−1.

Triangles with the same vertices have generally different shapes, which can be determined
from the properties: S(b, c, a) = (1 − p)−1, S(c, a, b) = 1 − p−1, S(a, c, b) = p−1 and
S(a, b, c)S(b, c, a)S(c, a, b) = −1. If A =<)bac, B =<) cba, C =<) acb, then

p =
|a− c|

|a − b|
(cos A + l. sinA),

where l =
(a − b) × (a − c)

|(a − b) × (a − c)|
∈ Im H and |l| = 1.
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The space shape of a triangle contains all the usual information about its angles and

ratios of side lengths: for example, we have cosA = Re p
|p|

, sin A =
|Im p|
|p|

,
|a − c|
|a − b|

= |p|.

The normal vector to the triangle plane Im p determines an orientation in the same plane.
If a, b, c are distinct and collinear points in E

3, then S(a, b, c) = p ∈ R is the so called
signed (or affine) ratio of the points c, b, a, which is a fundamental affine invariant.
The next lemma affords an opportunity to define affine shape coordinates of any point
with respect to a non degenerate base triangle 4abc. It is proved in [1].

Lemma 1. Let 4abc be a non degenerate triangle with a space shape p, and let d be
an arbitrary point in E

3. Then, the points a, b, c and d are coplanar if and only if there
exists a unique ordered pair (α, β) of real numbers such that S(a, c, d) = α + βp−1.

Definition 2. Let d be an arbitrary point lying in the plane of the triangle 4abc.

Then, the ordered pair (α, β) of real numbers is called affine shape coordinates of d with
respect to the triangle 4abc if S(a, c, d) = α + βp−1.

It is clear that
(i) d ∈ ab ⇐⇒ α = 0, d ∈ bc ⇐⇒ α + β = 1, d ∈ ca ⇐⇒ β = 0;

(ii) d is an inner point of the triangle 4abc if and only if

∣∣∣∣
0 < α < 1
0 < α + β < 1

;

(iii) a − d = α(a − c) + β(a − b).
The following properties can be easily checked : If the affine shape coordinates of a
point d with respect to the triangle 4abc are (α, β), then (β, α) are the affine shape
coordinates of d with respect to the triangle 4acb, and (α, 1 − α − β) are the affine
shape coordinates of d with respect to the triangle 4bac.

Simple calculations imply the next Proposition about some triangle centers.

Proposition 1. Let 4abc be a non degenerate triangle with a space shape p and let
d be an arbitrary point in the triangle plane. If (α, β) are the affine shape coordinates of
the point d with respect to the triangle 4abc, then
(i) d is the centroid of the triangle 4abc if and only if α = 1

3
, β = 1

3
;

(ii) d is the orthocenter of the triangle 4abc if and only if

α =
Re p(1 − Re p)

|Im p|2
, β =

Re p(|p|2 − Re p)

|Im p|2
;

(iii) d is the circumcenter of the triangle 4abc if and only if

α =
|p|2 − Re p

2|Im p|2
, β =

|p|2(1 − Re p)

2|Im p|2
;

(iv) d is the incenter of the triangle 4abc if and only if

α =
1

|1 − p| + |p| + 1
, β =

|p|

|1 − p| + |p| + 1
.

The above statements can be directly assigned to the Gaussian plane and then p ∈
C \ R.

2. Shape-center-function. The affine shape coordinates also afford an opportunity
to determine a center of a triangle. We shall consider more general case of a triangle in
Euclidean space. Let us recall Kimberling’ s definition for a center and a center-function
in [3]:
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Definition 3. Let T be the set of all triples (a1, a2, a3) of real numbers that are
sidelengths of a triangle, i.e.

T = {(a1, a2, a3) : 0 < a1 < a2 + a3, 0 < a2 < a1 + a3, 0 < a3 < a1 + a2}.

On any subset U of T, define a center-function as a nonzero function f(a1, a2, a3)
homogeneous with respect to a1, a2, a3 and symmetric with respect to a2 and a3 (i. e.
f(a1, a2, a3) = f(a1, a3, a2) for all (a1, a2, a3) ∈ U.) A center on U is an equivalence
class x1 : x2 : x3 of ordered triples (x1, x2, x3) given by

x1 = f(a1, a2, a3), x2 = f(a2, a3 a1), x3 = f(a3, a1, a2)

for some center-function f defined on U.

Using complex triangle coordinates, J. Lester gives another definition of a center of a
triangle. In the remaining part of the paper we use only the above mentioned Kimberling’
s definition.

Definition 4. Define a shape-center-function Φ : H\R −→ R
∗ as a nonzero function

which satisfies the conditions:
(i) Φ(p) = Φ(p) = Φ(p) for any p ∈ H \ R;
(ii) Φ(p) = Φ(1 − p) for any p ∈ H \ R.

A center of the triangle 4abc with a space shape p = S(a, b, c) is called the ordered
pair (α, β) of real numbers such that α = Φ(p), β = Φ(p−1) for some shape - center -
function Φ defined on H \ R.

Cycling the vertices of the triangle 4abc with a space shape p, we obtain for the
shape-center-function Φ that

Φ(p) + Φ((1 − p)−1) + Φ(1 − p−1) = 1 for any p ∈ H \ R.

The next theorem solves the problem axy from [2] in terms of shapes.

Theorem 2. [Problem axy] Let X = (Φ(p), Φ(p−1)) be a center. Let x be its value
in the triangle 4abc with a space shape p and let y be its value in the triangle 4xbc

with a space shape p1. Then, the points a, x, y are collinear if and only if Φ satisfies the
functional equation

(2) Φ(p−1)Φ(p1) = Φ(p)Φ(p−1

1
),

where

(3) p1 = {[Φ(p) − 1]p + Φ(p−1)}{Φ(p)p + Φ(p−1) − 1}−1.

Proof. Let (α, β) be the affine shape coordinates of the point x with respect to the
triangle 4abc, (α1, β1) be the affine shape coordinates of y with respect to the same

triangle and (α̂, β̂) be the affine shape coordinates of y with respect to the triangle 4xbc.

The collinearity of the points a, x, y is equivalent to βα1 = αβ1. From S(x, c, y) =

α̂+ β̂p−1

1
we have that a − y = α̂(x − c)+(β̂−1)(x − a)+(a − b)β̂. Hence, S(a, c, y) =

(a − y)(a − c)−1 = α̂S(c, a, x) + (1 − β̂)S(a, c, x) + β̂S(a, c, b) = α̂ + (1 − α̂ −

β̂)S(a, c, x) + β̂p−1. Since S(a, c, x) = α + βp−1, then we find that

(4) α1 = α̂ + α(1 − α̂ − β̂), β1 = β̂ + β(1 − α̂ − β̂).

Now, (2) follows from (4) by substituting. The remaining equality (3) holds from
p1 = S(x, b, c) = (x − c)(x − b)−1.

134



3. Locus of orthocenters of moving triangles in Euclidean space. Consider a
variable triangle 4abc in E

3 ∼= Im H with a space shape p = S(a, b, c), where a and b

are fixed and the third vertex is allowed to vary. Let i, j, k be the canonical quaternions
in H so that i2 = j2 = k2 = −1 = ijk. We use i, j and k to denote the standard
orthonormal basis for E

3 ∼= Im H. Without loss of generality we may assume that a = i,

b = −i and c = x1i + x2j + x3k, where xi ∈ R i = 1, 2, 3 are the Cartesian coordinates

of c. Therefore, p = S(a, b, c) = (a − c)(a − b)−1 = 1 − x1

2 − x2

2 k + x3

2 j. If we denote

by d any center of the triangle 4abc, then d = y1i+y2j+y3k, where yi ∈ R i = 1, 2, 3

are Cartesian coordinates of d and S(a, b, d) =
1 − y1

2 −
y2

2 k +
y3

2 j. Let (α, β) be the

affine shape coordinates of d with respect to the triangle 4abc. Since (β, α) are the
affine shape coordinates of d with respect to the triangle 4acb with a space shape p−1

we obtain S(a, b, d) = β + αp. Replacing in the last equality S(a, b, d) and p by the
above expressions, we get

y1 = 1 − α − 2β + α x1

y2 = α x2(5)

y3 = α x3.

Thus, we have a relation between the moving vertex c of the triangle 4abc and any
center d of the same triangle. This relationship allows us to describe the locus of centers
of moving triangles with two fixed vertices in the Euclidean space. The case, when d is
the centroid of the triangle 4abc is trivial. Here we deal with the orthocenter of the
triangle 4abc.

Proposition 2. Let 4abc be a non degenerate triangle in E
3 ∼= Im H with fixed

vertices a = i and b = −i. The map F : E
3\(ab) −→ E

3\(ab) defined by

y1 = x1

y2 =
1 − (x1)2

(x2)2 + (x3)2
x2(6)

y3 =
1 − (x1)2

(x2)2 + (x3)2
x3

maps any point x1i + x2j + x3k = c ∈ R
3\(ab) in the orthocenter of the triangle 4abc

and vice versa.

Proof. Applying the condition (ii) in Proposition 1 and replacing α and β in (5), we
obtain (6). Conversely, since the map (6) is an involution, F maps any point d ∈ E

3\(ab)
into a point c ∈ E

3\(ab) such that d is the orthocenter of the triangle 4abc.

Now, let H ⊂ E
3\(ab) be a plane perpendicular to the line (ab). From (6) it follows

immediately that H is an invariant under the map F and the restriction F|H : H → H
is an inversion in H. The next examples are direct applications of this inversion.

Example 1. Let 4abc be a non degenerate triangle in E
3 with two fixed vertices a

and b. Then, the vertex c moves along:
(i) a line in the plane H non intersecting the line (ab) if and only if the orthocenter of
the triangle 4abc describes a circle in the same plane through the point H

⋂
(ab);

(ii) a circle in the plane H passing through the point H
⋂

(ab) if and only if the
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orthocenter of the triangle 4abc describes a line in the same plane non intersecting
the line (ab);
(iii) a circle in the plane H not passing through the point H

⋂
(ab) if and only if the

orthocenter of the triangle 4abc describes a circle in the same plane not passing through
the point H

⋂
(ab).

Example 2. Let 4abc be a non degenerate triangle in E
3 with two fixed vertices a

and b. Then, the vertex c moves along a logarithmic spiral in the plane H with a pole
at the point H

⋂
(ab) if and only if the orthocenter of the triangle 4abc describes a

logarithmic spiral in H with the pole at the same point and with an opposite orientation.

Another application of the map F can be obtained if the third vertex c of the triangle
4abc, where the vertices a and b are fixed, moves along a surface of revolution in E

3

with an axis of rotation (ab). So, let a = i, b = −i and S be a surface of revolution with
axis of rotation (ab). Then, we may represent S in Cartesian coordinates by

S : x = x(f1(u), f2(u) cos v, f2(u) sin v) fi : I → R, i = 1, 2, v ∈ (0, 2π]

Using the expressions (6), we get the image of S under the map F , i.e.

(7) F(S) : y = y(f1(u),
1 − f2

1
(u)

f2(u)
cos v,

1 − f2

1
(u)

f2(u)
sin v).

Obviously, F(S) is a surface of revolution with the same axis of rotation. Applying
the representation (7), we obtain generalizations in E

3 of well-known assertions in the
Euclidean plane.

Example 3. Let 4abc be a non degenerate triangle in E
3 with two fixed vertices a

and b. Then, the third vertex c moves along:
(i) a cylinder of revolution with axis of rotation (ab) if and only if the orthocenter of
the triangle 4abc describes a surface of revolution with the same axis of rotation and
meridians - parabolas through the points a and b (see Fig. 1.);
(ii) a cone of revolution with axis of rotation (ab) if and only if the orthocenter of
the triangle 4abc describes a surface of revolution with the same axis of rotation and
meridians - hyperbolas through the points a and b (see Fig. 2.).

Fig. 1. Fig. 2.
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ПРИЛОЖЕНИЯ НА ПРОСТРАНСТВЕНИЯ ШЕЙП НА
ТРИЪГЪЛНИКА

Радостина Петрова Енчева

Дефинираме афинни шейп координати на точка относно фиксиран триъгълник.
В съответствие с дефинициятана Кимберлинг за център и център-функция дефи-
нираме шейп-център-функция като функция от пространствения шейп на триъ-
гълника. Прилагаме тази дефиниция за да решим задачата аху и за да опишем
някои геометрични места в термините на шейпа.
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