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In this paper we consider simple groups G which can be represented as a product of
two their proper non-Abelian simple subgroups A and B. Such an expression G = AB

is called a (simple) factorization of G. Here we suppose that G is a simple linear group
in dimension at most 11 over the finite field GF (q) and determine all the factorizations
of G.

1. Introduction. Let G be a finite (simple) group. We are interested in the factoriza-
tions of G into the product of two simple subgroups. Our work here concerns the
case when G is the simple linear group Ln(q). In [2] the first author determined the
factorizations of these series of groups in dimension at most 7. The present paper continues
this investigation by considering the factorizations of the finite simple linear groups whose
dimensions do not exceed 11. The following result is proved:

Theorem. Let G = Ln(q) with 8 ≤ n ≤ 11. Suppose that G = AB, where A, B are

proper non-Abelian simple subgroups of G. Then one of the following holds:

(1) n = 8, q 6≡ 1 (mod 7) and A ∼= L7(q), B ∼= PSp8(q);
(2) n = 10, (9, q − 1) = 1 and A ∼= L9(q), B ∼= PSp10(q).

The factorizations of all the finite simple classical groups into the product of two
maximal subgroups (so called maximal factorizations) have been treated in [5]. In particular,
an explicit list of the maximal factorizations of the groups Ln(q) has also been given in
[5]. We make use of this result here.

In our considerations we shall freely use the notation and basic information about the
finite (simple) classical groups given in [4]. Let V be the n-dimensional vector space over
the finite field GF (q) on which G = Ln(q) acts naturally, and let Pk be the stabilizer in
G of a k-dimensional subspace of V . From Proposition 4.1.17 in [4] we can obtain the
structure of Pk. In particular, it follows that P1

∼= Pn−1
∼= {[qn−1] : GLn−1(q)}/Z(n,q−1).

From this it follows immediately that P1 (∼= Pn−1) contains a subgroup isomorphic to
Ln−1(q) if and only if (n − 1, q − 1) = 1.

2. Proof of the Theorem. Let G = Ln(q), where q is a prime power. In our
assumptions here 8 ≤ n ≤ 11, and G = AB where A, B are proper non-Abelian simple
subgroups of G. The list of the maximal factorizations of G is given in [5]. In the case
when G = L11(q) only one maximal factorization appears with one factor a (maximal)
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subgroup of G isomorphic to {Zq11
−1/q−1.11}/Z(11,q−1). Obviously, there is no choice for

one of the groups A and B to be a non-Abelian simple subgroup of G. Now, we proceed
with the group G = Ln(q) where n = 8 , n = 9, or n = 10. Using the list of maximal
factorizations in [5] and implicit information about the maximal subgroups there, by
order considerations, we come to the following possibilities:

1) n = 8 or n = 10 and A ∼= Ln−1(q) ( in P1) with (n − 1, q − 1) = 1, B ∼= PSpn(q) ;

2) n = 8 and A ∼= L7(q) ( in P1) with q 6≡ 1 (mod 7), B ∼= L4(q
2) or B ∼= PSp4(q

2)
(in a L4(q

2) subgroup of G);

3) n = 8 and A ∼= L7(q) ( in P1) with q 6≡ 1 (mod 7), B ∼= Ω−

8 (q) (in a PSp8(q)
subgroup of G) and q even;

4) n = 8 and A ∼= L7(q) ( in P1) with q 6≡ 1 (mod 7),B ∼= PSp4(q
2) (in a PSp8(q)

subgroup of G);

5) n = 9 and A ∼= L8(q) ( in P1) with (8, q − 1) = 1, B ∼= L3(q
3);

6) n = 10 and A ∼= L9(q) ( in P1) with (9, q − 1) = 1, B ∼= L5(q
2).

Now, we consider these possibilities case by case.

Case 1. These are the factorizations in (1) and (2) of the theorem. It remains to show
that these factorizations actually exist. From Proposition 3.3 in [6] we have SLn(q) =
SLn−1(q).Spn(q) with natural embeddings of SLn−1(q) and Spn(q) in SLn(q). Factoring
out by Z(SLn(q)), we obtain the factorizations in (1) and (2), as SLn−1(q) ≡ Ln−1(q)
(by the condition (n − 1, q − 1) = 1).

Case 2. Let B ∼= L4(q
2) and then |A ∩ B| = q5(q6−1)(q4−1).(8, q−1)/(4, q2−1). By

the known subgroup structure of L4(q
2), it follows that A∩B is contained in a subgroup

of B isomorphic to ([q6] : GL3(q
2))/Z(4,q2

−1). From this fact we derive that an L3(q
2)

subgroup must contain a proper subgroup of order divisible by (q6 − 1)(q2 + 1)/6 which
contradicts to the subgroup structure of L3(q

2) for any q. At last if B ∼= PSp4(q
2) is a

subgroup of a L4(q
2) subgroup of G, then there is no factorization too.

Case 3. Here B is a subgroup of one B1(∼= PSp8(q)) subgroup of G. From G = AB
we have G = AB1 (a covering factorization of G = AB). It follows that |A ∩ B| =
q5(q6 − 1)(q2 − 1) and |A ∩ B1| = |PSp6(q)| (recall that q is even). The obvious fact
that (A ∩ B1) ∩ B = A ∩ B leads, by order considerations, to the factorization B1 =
(A∩B1).B. Now, looking at the list of the maximal factorizations of B1

∼= PSp8(q) (which
can be derived from [5]) we see only one possible (maximal) factorization containing
ours, namely B1 = (A ∩ B1).B where q = 2 and A ∩ B1

∼= O+
8 (2), B ∼= O−

8 (2). Here
A ∩ B1 is a subgroup of A ∩ B1(∼= O+

8 (2)) and, thus, there exist a subgroup of order
|PSp6(2)| in O+

8 (2). The last is possible (by the subgroup structure of O+
8 (2)) only if

the subgroup A ∩ B1 is isomorphic to PSp6(2), and then we reach the factorization
PSp8(2) = PSp6(2).Ω−

8 (2), but PSp8(2) has no simple factorizations (see [1]).

Case 4. This time (in contrast to case 2) B ∼= PSp4(q
2) is a subgroup of a B1

∼=
PSp8(q) subgroup of G. As in the previous case we conclude that B1 = (A ∩ B1).B
with |A ∩ B1| = |PSp6(q)| .(8, q − 1). There are four possible maximal factorizations of
B1 which may contain that factorization: q = 2 and B1 = (S3 × PSp6(2)).(PSp4(2).2)

(with A ∩ B1 < S3 × PSp6(2)), B1 = P̂1.(PSp4(q
2).2) (here P̂1 is the stabilizer in B1 of

one-dimensional totally singular subspace of the 8-dimensional symplectic space on which
B1

∼= PSp8(q) acts naturally; moreover, A ∩ B1 < P̂1), and B1 = Oε
8(q).(PSp4(q

2).2)
(with A ∩ B1 < Oε

8(q), ε = + or ε = −, and q is even).
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From the first possibility it follows immediately that A ∩ B1
∼= PSp6(q) and the

factorization PSp8(2) = PSp6(2).PSp4(4) arises, which is a contradiction (see [1]).

To discuss the next possibilities we need the following realization of the group Sp4(q
2)

in Sp8(q). Let V2m be the natural 2m-dimensional symplectic space over the finite field
k = GF (q) on which G1 = Sp2m(q) acts, and let (, ) be a nonsingular symplectic bilinear
form on V2m. There is a basis {ei, fi|i = 1, . . . , m} of V2m, called a standard basis, such
that (ei, ej) = (fi, fj) = 0, (ei, fj) = δij for i, j = 1, . . . , m. The group G1 has the
following (matrix) realization with respect to that basis

G1 =

{
X ∈ SL8(k)|Xt.L.X = L, L =

(
O Em×m

−Em×m O

)}
.

Let K be a field extension of k = GF (q) of degree 2. There is an element ω of K
such that 1, ω form a basis of K over k, and ω2 = 1 + t.ω where t ∈ k. Further, let S =
(s0

ij +s1
ij .ω)41 = S0+S1.ω with S0 = (s0

ij)
4
1, S1 = (s1

ij)
4
1, s

l
ij ∈ k (l = 0, 1; i, j = 1, 2, 3, 4) be

any unimodular matrix such that StLS = L, and m = 2. Let us denote by B̃ the set of all
the matrices S which satisfy these properties. So B̃ ∼= Sp4(q

2) has a standard symplectic
realization over the field K. Then, the following matrices form a subgroup of G1 (with

m = 4) isomorphic to Sp4(q
2): W = P.

(
S0 S1

S1 S0 + S1

)
.P−1 ,where P = (pij)

8
1 and

pij =

{
0, if j 6= π(i)
1, if j = π(i)

for the permutation π = (1)(2, 3, 5)(4, 7, 6)(8). The isomorphism

is given by the map σ : S 7→ W .

Now, let A∩B1 < P̂1. According to [4] there is only one conjugacy class of each of the

subgroups P̂1 and Sp4(q
2) in Sp8(q). Direct computations (using the above representation

of Sp4(q
2) as a subgroup in Sp8(q)) show that all the elements of this Sp4(q

2) subgroup
stabilizing one-dimensional totally singular subspace have the following form (in terms
of the matrices S above): 



s11 s12 s13 s14

0 s22 s23 s24

0 0 s−1
11 0

0 s42 s43 s44


 ,

where s11 ∈ k∗;s12 = (s23s42 − s22s43).s11, s14 = (s23s44 − s43s24).s11, and s22s44 −

s24s42 = 1. Thus, we can obtain the structure of the common subgroup of these P̂1

and Sp4(q
2) subgroups in Sp8(q): Eq6 : (Zq−1 × SL2(q

2)). The corresponding group in
PSp8(q) is isomorphic to Eq6 : (Zq−1 ◦ SL2(q

2)) and A ∩ B (of order q(q4 − 1).(8, q −
1)/(2, q2−1)) should be a subgroup of that group. It means that an L2(q

2) group contains
proper subgroup of order divisible by (q + 1)(q2 + 1), which is impossible for any q.

Finally, let A ∩ B1 < D ∼= Oε
8(q) and q be even. From the list of the maximal

subgroups of Oε
8(q) (given in [4] and [5]) it follows A ∩ B1

∼= PSp6(q) and A ∩ B1 is a
subgroup of the subgroup D1

∼= Ωε
8(q) in D. Then, the factorization B1 = D1.B is valid.

We claim that this factorization does not really exist. Indeed, from the relevant maximal
factorization (see 3.2.1 (d) p. 48 in [5]), in particular, it follows the factorization B1 = D.B
with H = D ∩ B ∼= Oε

4(q
2). Using the information there and the above realization of

Sp4(q
2) ∼= PSp4(q

2) (q is even), we can construct (in matrix form) the group H . For
example, if ε = + (so D ∼= O+

8 (q) and D1
∼= Ω+

8 (q)), then we choose B1 to be the group G1
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in the above realization (with m = 4) and let B = σ(B̃). Further, let D be the subgroup
of B1 of all the matrices preserving the quadratic form x1x5 + x2x6 + x3x7 + x4x8 where
x1, . . . , x8 are the coordinates of a vector in V8 over the field k with respect to the standard
symplectic basis. Now, H = σ(H̃) where H̃ is the subgroup of B̃ of all the matrices S
preserving the quadratic form x1x3 + x2x4 with x1, x2, x3, x4 – coordinates of a vector
in V4 over the field K with respect to the standard symplectic basis. The isomorphism
O+

4 (q2) ∼= (L2(q
2)×L2(q

2)).Z2 is well-known. Thus, in terms of the described groups we
have H = F. 〈r〉 with F ∼= L2(q

2) × L2(q
2) and

r =




0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




= re1+f1
.re2+f2

,

where re1+f1
and re2+f2

are the matrices in the basis {ei, fi|i = 1, 2, 3, 4} of the reflections
in the (nonsingular) vectors e1 + f1 and e2 + f2 respectively. It is obvious that F is a
subgroup of D1 and the same is true for the group 〈r〉 ∼= Z2 (basic facts concerning the
properties of the orthogonal groups, see [4]). Hence, H is a subgroup of D1 and then
H = D1 ∩B. With similar considerations we can see that H is the common group of the
groups D1 and B also in the case when ε = −. Thus, by the orders, the last two groups
do not give rise to any factorization.

Case 5. This case is similar to one of those considered in [3]. In [3] we have eliminated
the case G = AB with G ∼= U6(q), A ∼= U5(q), B ∼= L3(q

2), and q ≥ 3. Here,
repeating the same considerations for the corresponding groups (mainly for the group
L3(q

3) replacing the group L3(q
2)), we reduce our case to only one possible factorization:

L9(2) = L8(2).L3(8); the interception group has to be of order 2.32.7. L9(2) has a single
conjugacy class of subgroups isomorphic to L3(8). We construct (in matrix form) a
representative of this class directly. Let GF (8) = GF (2)(ω) where ω3+ω+1 = 0. Further,
let S ∈ SL3(8) ≡ L3(8) and S = S0 + S1.ω + S2.ω

2, where the matrices Si(i = 0, 1, 2)
have their entries in the field GF (2). Then, the following matrices form a subgroup of
L9(2) isomorphic to L3(8):

W =




S0 S2 S1

S1 S0 + S2 S1 + S2

S2 S1 S0 + S2


 .

The isomorphism is given by the map S 7→ W . L8(2) subgroup of L9(2) can be contained
only in the maximal classes represented by P1 and P8. Each of them forms a single
conjugacy class of subgroups in L9(2). Now, direct computations show that the common
subgroup of the constructed L3(8) subgroup and P1 or P8 is isomorphic to E26 : L2(8).
The fact that such a group has to contain a subgroup of order 2.32.7 implies the existence
in L2(8) of a proper subgroup of order divisible by 63, but this is impossible by the
subgroup structure of L2(8).

Case 6. If such a factorization exists the order of A∩B should be q11(q8−1)(q6−1)(q4−
1).(10, q−1)/(5, q2−1). A subgroup of B ∼= L5(q

2) of that order has to be contained in a
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maximal subgroup isomorphic to ([q8] : GL4(q
2))/Z(5,q2

−1). Consequently, L4(q
2) must

have a proper subgroup of order divisible by q3(q8−1)(q6−1)(q2 +1).(10, q−1)/((5, q2−
1).(4, q2 − 1)). Now, looking at the list of the maximal subgroups of L4(q

2) we see that
there is no such a possibility.

We considered all the posible cases. The theorem is proved.
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НЯКОИ ПРОСТИ ЛИНЕЙНИ ГРУПИ И ТЕХНИТЕ
ФАКТОРИЗАЦИИ

Еленка Христова Генчева, Цанко Райков Генчев

В тази статия разглеждаме прости групи G, които могат да се представят като
произведение на две свои собствени неабелеви прости подгрупи A и B. Всяко та-
кова представяне G = AB се нарича (проста) факторизация на G. В настоящата
работа предполагаме, че G е проста линейна група от размерност ненадминаваща
11 над крайното поле GF (q) и определяме всички нейни факторизации.
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