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In this paper we consider simple groups G which can be represented as a product of
two their proper non-Abelian simple subgroups A and B. Such an expression G = AB
is called a (simple) factorization of G. Here we suppose that G is a simple linear group
in dimension at most 11 over the finite field GF(q) and determine all the factorizations
of G.

1. Introduction. Let G be a finite (simple) group. We are interested in the factoriza-
tions of G into the product of two simple subgroups. Our work here concerns the
case when G is the simple linear group L,(q). In [2] the first author determined the
factorizations of these series of groups in dimension at most 7. The present paper continues
this investigation by considering the factorizations of the finite simple linear groups whose
dimensions do not exceed 11. The following result is proved:

Theorem. Let G = L,(q) with 8 < n < 11. Suppose that G = AB, where A, B are
proper non-Abelian simple subgroups of G. Then one of the following holds:

(1) n=_8, ¢£1(mod7) and A= L7(q), B = PSps(q);

(2) n=10, (9,q—1)=1 and A= Ly(q), B = PSp1o(q).

The factorizations of all the finite simple classical groups into the product of two
maximal subgroups (so called maximal factorizations) have been treated in [5]. In particular,
an explicit list of the maximal factorizations of the groups L,(q) has also been given in
[5]. We make use of this result here.

In our considerations we shall freely use the notation and basic information about the
finite (simple) classical groups given in [4]. Let V' be the n-dimensional vector space over
the finite field GF(¢q) on which G = L, (q) acts naturally, and let P be the stabilizer in
G of a k-dimensional subspace of V. From Proposition 4.1.17 in [4] we can obtain the
structure of P. In particular, it follows that P, = P, = {[¢" "] : GLn-1(0)}/Z(n,q-1)-
From this it follows immediately that P; (=& P,_1) contains a subgroup isomorphic to
L,-1(q) ifand only if (n —1,¢—1) = 1.

2. Proof of the Theorem. Let G = L,(q), where ¢ is a prime power. In our
assumptions here 8 < n < 11, and G = AB where A, B are proper non-Abelian simple
subgroups of G. The list of the maximal factorizations of G is given in [5]. In the case
when G = Li1(q) only one maximal factorization appears with one factor a (maximal)

*2000 Mathematics Subject Classification: Primary 20D06, 20D40; secondary 20G40.
Key words: Finite simple groups, groups of Lie type, factorizations of groups.

138



subgroup of G isomorphic to { Zg11_1/4-1.11}/Z 11 4—1). Obviously, there is no choice for
one of the groups A and B to be a non-Abelian simple subgroup of G. Now, we proceed
with the group G = L, (q) where n = 8 , n = 9, or n = 10. Using the list of maximal
factorizations in [5] and implicit information about the maximal subgroups there, by
order considerations, we come to the following possibilities:

1)n=8orn=10and A L,_1(q) (in P,) with (n —1,¢—1) =1, B = PSp,(q) ;

2) n=8and A= L;(q) (in P1) with ¢ # 1 (mod 7), B = L4(q?) or B = PSps(q?)
(in a L4(g?) subgroup of G);

3) n=8and A = Lz(q) (in P) with ¢ £ 1 (mod 7), B = Qg (¢) (in a PSps(q)
subgroup of G) and ¢ even;

4)n=8and A= L;(q) (in P1) with ¢ # 1 (mod 7),B = PSp4(¢?) (in a PSps(q)
subgroup of G);

5 n=09and A= Lg(q) (in P) with (8,¢—1) =1, B = L3(¢%);

6) n =10 and A = Lg(q) (in Py) with (9,¢ —1) =1, B = Ls(¢?).

Now, we consider these possibilities case by case.

Case 1. These are the factorizations in (1) and (2) of the theorem. It remains to show
that these factorizations actually exist. From Proposition 3.3 in [6] we have SL,(q) =
SLyp_1(q)-Spn(g) with natural embeddings of SL,_1(¢) and Sp,(q) in SL,(q). Factoring
out by Z(SL,(q)), we obtain the factorizations in (1) and (2), as SLy,—1(q) = L,-1(q)
(by the condition (n —1,¢—1) =1).

Case 2. Let B = Ly(q¢?) and then |[AN B| = ¢°(¢® —1)(¢*—1).(8,¢—1)/(4,¢*>—1). By
the known subgroup structure of L4(q?), it follows that AN B is contained in a subgroup
of B isomorphic to ([¢°] : GL3(¢®))/Z(a,42—1)- From this fact we derive that an L3(q?)
subgroup must contain a proper subgroup of order divisible by (¢® — 1)(¢* + 1)/6 which
contradicts to the subgroup structure of L3(¢?) for any q. At last if B = PSpy(¢?) is a
subgroup of a L4(q?) subgroup of G, then there is no factorization too.

Case 3. Here B is a subgroup of one B1(= PSps(q)) subgroup of G. From G = AB
we have G = AB; (a covering factorization of G = AB). It follows that |[ANB| =
¢°(¢° —1)(¢*> — 1) and |AN By| = |PSps(q)| (recall that ¢ is even). The obvious fact
that (AN B;) N B = AN B leads, by order considerations, to the factorization B; =
(ANBy).B. Now, looking at the list of the maximal factorizations of By = PSps(q) (which
can be derived from [5]) we see only one possible (maximal) factorization containing
ours, namely By = (AN B;).B where ¢ = 2 and AN B; = OF (2), B = Og (2). Here
AN By is a subgroup of AN By(= OF (2)) and, thus, there exist a subgroup of order
|PSps(2)| in OF (2). The last is possible (by the subgroup structure of OgF (2)) only if
the subgroup A N B; is isomorphic to PSpe(2), and then we reach the factorization
PSpg(2) = PSps(2).Qg (2), but PSps(2) has no simple factorizations (see [1]).

Case 4. This time (in contrast to case 2) B = PSpy(q?) is a subgroup of a By =
PSps(q) subgroup of G. As in the previous case we conclude that By = (AN By).B
with |[AN By| = |PSps(q)|-(8,¢ — 1). There are four possible maximal factorizations of
B; which may contain that factorization: ¢ = 2 and By = (S3 x PSpg(2)).(PSpa(2).2)
(with AN By < S3 x PSpe(2)), By = E.(P5p4(q2).2) (here Py is the stabilizer in By of
one-dimensional totally singular subspace of the 8-dimensional symplectic space on which
By = PSps(q) acts naturally; moreover, AN By < Pp), and By = O5(q).(PSp4(q?).2)
(with AN By < O5(q), e =+ or ¢ = —, and ¢ is even).

139



From the first possibility it follows immediately that A N By 2 PSpg(g) and the
factorization PSpg(2) = PSpg(2).PSpa(4) arises, which is a contradiction (see [1]).

To discuss the next possibilities we need the following realization of the group Sp4(q?)
in Sps(q). Let Va,, be the natural 2m-dimensional symplectic space over the finite field
k = GF(q) on which G; = Spa,,(q) acts, and let (,) be a nonsingular symplectic bilinear
form on Va,,. There is a basis {e;, fili = 1,...,m} of Vo, called a standard basis, such
that (e;,e;) = (fi, fj) = 0,(es, fj) = di; for 4,5 = 1,...,m. The group G has the
following (matrix) realization with respect to that basis

_ t _ _ 0 | mem
Gl{XGSLg(kﬂX LX=L L= ( R | 0 >}
Let K be a field extension of k = GF(q) of degree 2. There is an element w of K
such that 1,w form a basis of K over k, and w? = 1 + t.w where ¢ € k. Further, let S =

(s)i+st;.w)T = So+S1.w with So = (s;)1, 51 = (s};)1,s; €k (1=0,1;i,5 =1,2,3,4) be

any unimodular matrix such that S*LS = L, and m = 2. Let us denote by B the set of all
the matrices S which satisfy these properties. So B 22 Sp4(q?) has a standard symplectic
realization over the field K. Then, the following matrices form a subgroup of Gy (with

m = 4) isomorphic to Sp4(¢?): W = P. < go 5 ilS ) P~1 where P = (p;;)§ and
1] S0+ 51
Dij = { (1)’ 1?‘; i ;8 for the permutation 7 = (1)(2,3,5)(4, 7,6)(8). The isomorphism

is given by the map o : S — W.

Now, let ANB; < 73; According to [4] there is only one conjugacy class of each of the
subgroups Py and S p4(q?) in Sps(q). Direct computations (using the above representation
of Spa(g?) as a subgroup in Spg(q)) show that all the elements of this Sp4(q?) subgroup
stabilizing one-dimensional totally singular subspace have the following form (in terms
of the matrices S above):

S11 S12 S13 S14

0  s22 s23 S24

0 0 s5 0 |

0 s42 S43 Sa4
where s11 € k*;is12 = (523842 - 522843)-8117514 = (523544 - 543524)-511, and 822544;
S24842 = 1. Thus, we can obtain the structure of the common subgroup of these P;
and Sp4(q®) subgroups in Sps(q): Egs : (Zg—1 x SLa(q?)). The corresponding group in
PSps(q) is isomorphic to Ey : (Zg—1 0 SLa(¢?)) and AN B (of order q(¢* —1).(8,q —
1)/(2,4*—1)) should be a subgroup of that group. It means that an Ly(q?) group contains
proper subgroup of order divisible by (¢ + 1)(¢? + 1), which is impossible for any gq.

Finally, let AN By < D = 0%(q) and ¢ be even. From the list of the maximal
subgroups of O5(q) (given in [4] and [5]) it follows AN By = PSpe(q) and AN By is a
subgroup of the subgroup D; = Q5(q) in D. Then, the factorization By = D;.B is valid.
We claim that this factorization does not really exist. Indeed, from the relevant maximal
factorization (see 3.2.1 (d) p. 48 in [5]), in particular, it follows the factorization By = D.B
with H = DN B = 05(¢?). Using the information there and the above realization of
Spa(q?) = PSps(¢?) (g is even), we can construct (in matrix form) the group H. For
example, if e = + (so D = OF (q) and D = QF (¢)), then we choose Bj to be the group Gy
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in the above realization (with m = 4) and let B = o(B). Further, let D be the subgroup
of By of all the matrices preserving the quadratic form z1x5 + xox6 + 37 + 48 Where
r1,...,Ts are the coordinates of a vector in Vg over the field k£ with respect to the standard
symplectic basis. Now, H = a(ﬁ ) where H is the subgroup of B of all the matrices S
preserving the quadratic form xyx3 + xox4 with z1,z9,x3, x4 — coordinates of a vector
in Vy over the field K with respect to the standard symplectic basis. The isomorphism
Of (¢?) = (L2(q?) x La(q?)).Z> is well-known. Thus, in terms of the described groups we
have H = F. (r) with F 2 Ly(q?) x L2(¢?) and

00001000
0000O0T1G00
00100000
00010000
"“1 1000000 0| Tathleth
01000000
00000O0T10
00000O0TGO0 1

where re, 4+ 7, and e, 5, are the matrices in the basis {e;, fi|i = 1,2, 3,4} of the reflections
in the (nonsingular) vectors ey + f1 and es + fo respectively. It is obvious that F is a
subgroup of D; and the same is true for the group (r) = Z5 (basic facts concerning the
properties of the orthogonal groups, see [4]). Hence, H is a subgroup of D; and then
H = D; N B. With similar considerations we can see that H is the common group of the
groups Dy and B also in the case when € = —. Thus, by the orders, the last two groups
do not give rise to any factorization.

Case 5. This case is similar to one of those considered in [3]. In [3] we have eliminated
the case G = AB with G = Us(q), A = Us(q), B = L3(¢?), and ¢ > 3. Here,
repeating the same considerations for the corresponding groups (mainly for the group
Ls3(¢?) replacing the group L3z(q?)), we reduce our case to only one possible factorization:
Lo(2) = Lg(2).L3(8); the interception group has to be of order 2.32.7. Lo(2) has a single
conjugacy class of subgroups isomorphic to L3(8). We construct (in matrix form) a
representative of this class directly. Let GF(8) = GF(2)(w) where w3+w+1 = 0. Further,
let S € SL3(8) = L3(8) and S = Sy + S7.w + So.w?, where the matrices S;(i = 0,1,2)
have their entries in the field GF(2). Then, the following matrices form a subgroup of
Lgy(2) isomorphic to L3(8):

So So S1
W = S1 So+ Sy S1+ 5
So S1 So + 52

The isomorphism is given by the map S +— W. Lg(2) subgroup of Lg¢(2) can be contained
only in the maximal classes represented by P; and Ps. Each of them forms a single
conjugacy class of subgroups in Lg(2). Now, direct computations show that the common
subgroup of the constructed L3(8) subgroup and P; or Py is isomorphic to Eags : La(8).
The fact that such a group has to contain a subgroup of order 2.32.7 implies the existence
in Ly(8) of a proper subgroup of order divisible by 63, but this is impossible by the
subgroup structure of Ly(8).

Case 6. If such a factorization exists the order of ANB should be ¢'*(¢®—1)(¢®—1)(¢*—
1).(10,q—1)/(5,q>—1). A subgroup of B = Ls(q¢?) of that order has to be contained in a
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maximal subgroup isomorphic to ([¢¥] : GL4(q2))/Z(57q2,1). Consequently, L4(q?) must
have a proper subgroup of order divisible by ¢3(¢® —1)(¢® —1)(¢*>+1).(10,¢—1)/((5, ¢*> —
1).(4,¢* — 1)). Now, looking at the list of the maximal subgroups of L4(q?) we see that
there is no such a possibility.

We considered all the posible cases. The theorem is proved.
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HAKOU IIPOCTU JINMHENHU I'PYII I TEXHUTE
PAKTOPU3AIINNM

Enenka XpucroBa I'enueBa, Ilanko PaiikoB I'enueB

B Tasu crarusa pasriexxgame npoctu rpynu (G, KOUTO MOraT Jia ce IPEJICTaBSIT KaTo
[IPOM3BE/IEHNE Ha JIBe CBOM cOOCTBeHH HeabeseBu npoctu noarpynu A u B. Besiko Ta-
KoBa npezcrassane G = AB ce napuda (npocra) daxkropusanusa Ha G. B nacrosmara
pabora npejmnosaraMe, de G e mpocTa JIMHEHHA I'PyIa OT Pa3MEPHOCT HEHAIMIHABAIIA
11 man kpaitnoro none GF(q) n onpenensive BCUIKH HEHHN (haKTOPU3AIAT.
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