# HIGHER ORDER FRÉCHET DERIVATIVES OF MATRIX POWER FUNCTIONS* 

Mihail Mihaylov Konstantinov, Juliana Kostadinova Boneva, Petko Hristov Petkov, Vladimir Todorov Todorov

We study higher order Fréchet derivatives of matrix power functions $X \mapsto X^{p}, p \in \mathbb{Q}$, $X \in \mathbb{C}^{n \times n}$. The results obtained may be applied to the accuracy estimation of Taylor approximations of matrix power functions as well as to the perturbation analysis of non-linear matrix equations.

Introduction and notations. In a recent paper [4] we have studied some properties of first order Frechét derivatives of the function $X \mapsto f_{p}(X)=X^{p}$ for rational $p$. In this paper we consider second and higher order Fréchet derivatives of $f_{p}$ for rational $p$, different from 0 and 1 . Higher order Fréchet derivatives when $p$ is a positive integer or the reciprocal of such an integer have been considered in [1].

The results obtained below are applicable to the analysis of fractional-affine matrix equations as well as to the estimation of the accuracy of the Taylor approximations of $(A+H)^{p}$ for small $H$.

We use the following notations: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ - the sets of natural, integer, rational, real and complex numbers, respectively; $\mathrm{i}=\sqrt{-1} ;|z|$ and $\arg z \in(-\pi, \pi]-$ the module and the principal argument of $0 \neq z \in \mathbb{C}$ such that $z=|z| \mathrm{e}^{\mathrm{i} \arg z} ; \ln z=$ $\ln |z|+\mathrm{i} \arg z$ - the principal natural logarithm of $z \neq 0$. For any $z \neq 0$ and $c \in \mathbb{C}$ we define the principal $c$-th power of $z$ as $z^{c}=\mathrm{e}^{c \ln z}$.

For matrices the notations are as follows: $\mathbb{C}^{n \times n}$ - the space of $n \times n$ matrices over $\mathbb{C}$; $I_{n}$ - the identity $n \times n$ matrix; $\mathbb{C}_{*}^{n \times n} \subset \mathbb{C}^{n \times n}$ - the set of matrices $X$ with no negative eigenvalues, i.e. $\operatorname{spect}(X) \cap(-\infty, 0]=\emptyset ; \mathcal{L}(n)$ - the space of linear matrix operators $\mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}$.

If $\mathcal{F}: \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}$ is a differentiable operator we denote by $\mathcal{F}^{(m)}$ the $m$-th iteration of $\mathcal{F}$, while $\mathcal{F}^{m}(H)=(\mathcal{F}(H))^{m}$. The $m$-th Fréchet derivative of $\mathcal{F}$ at a given point is an $m$-linear form denoted as $\mathrm{D}^{m} \mathcal{F}\left(H_{1}, H_{2}, \ldots, H_{m}\right)$. When $H_{1}=H_{2}=\cdots=H_{m}=H$, this derivative is written as $\mathrm{D}^{m} \mathcal{F}(H)$ and we have $\left\|\mathrm{D}^{m} \mathcal{F}(H)\right\|=\mathrm{O}\left(\|H\|^{m}\right)$.

The abbreviation " $:=$ " stands for "equal by definition".
Fréchet derivatives of functions $\mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}$. Let $f: \mathcal{D} \rightarrow \mathbb{C}^{n \times n}$ be a holomorphic function defined in the open domain $\mathcal{D} \subset \mathbb{C}^{n \times n}$. For $A \in \mathcal{D}$ and $H \in \mathbb{C}^{n \times n}$

[^0]sufficiently small we have
$$
f(A+H)=\sum_{m=0}^{\infty} \frac{\mathrm{D}^{m} f(A)(H)}{m!}
$$
where the $m$-th derivative $\mathrm{D}^{m} f(A):\left(\mathbb{C}^{n \times n}\right)^{m} \rightarrow \mathbb{C}^{n \times n}$ is an $m$-linear function. Further we shall use the following result.

Proposition 1. The value $\mathcal{F}(H)$ of the $m$-linear form $\mathcal{F}:\left(\mathbb{C}^{n \times n}\right)^{m} \rightarrow \mathbb{C}^{n \times n}(m \geq 1)$ may be represented as a finite sum of matrix products

$$
\sum_{k=1}^{n_{m}} A_{m, 1, k} H A_{m, 2, k} \cdots A_{m, m, k} H A_{m, m+1, k}
$$

where $A_{m, j, k}, j=1,2, \ldots, m+1, k=1,2, \ldots, n_{m}$, are given constant matrices.
Proof. Let $X=\left[x_{i, j}\right] \in \mathbb{C}^{n \times n}$ and $E_{i, j}=e_{i}^{T} e_{j}$, where $e_{i}$ is the $i$-th column of $I_{n}$. Then, the matrix

$$
\begin{equation*}
Y X E_{i, i_{1}} X E_{j_{1}, i_{2}} X \cdots X E_{j_{m-1}, i_{m}} X E_{j_{m}, j} \tag{1}
\end{equation*}
$$

is equal to $x_{i_{1}, j_{1}} x_{i_{2}, j_{2}} \cdots x_{i_{m}, j_{m}} E_{i, j}$. It suffices to observe that each $m$-linear form $\mathcal{F}(H)$ may be represented as a finite sum of matrices of the form (1).

Definition of $f_{p}$ and its derivatives. When defining the matrix $X^{p}$, we impose no restrictions on $X \in \mathbb{C}^{n \times n}$ if $p \in \mathbb{N}$ and we suppose that $X \in \mathbb{C}_{*}^{n \times n}$ if $p \notin \mathbb{N}$.

In what follows $A \in \mathbb{C}^{n \times n}$ is a fixed matrix and $H \in \mathbb{C}^{n \times n}$ is an increment of $A$ with $2-$ norm denoted as $\eta:=\|H\|_{2}$. It is supposed that asymptotics of the form $\mathrm{O}\left(\eta^{m}\right)$, $m \geq 1$, is valid for $\eta \rightarrow 0$. If $p \in \mathbb{N}$, then the matrices $A$ and $H$ may be arbitrary. Otherwise, both $A$ and $A+H$ have to be from $\mathbb{C}_{*}^{n \times n}$. The latter is achieved if $A \in \mathbb{C}_{*}^{n \times n}$ and $\eta$ is small enough.

The function $f_{p}: \mathbb{C}_{*}^{n \times n} \rightarrow \mathbb{C}_{*}^{n \times n}$ and its Fréchet derivatives $\mathrm{D}^{m} f_{p}(A):\left(\mathbb{C}^{n \times n}\right)^{m} \rightarrow$ $\mathbb{C}^{n \times n}$ may be correctly defined using either the Jordan (or Schur) form of $A$, or contour Cauchy type integrals. Suppose, in particular, that the eigenvalues of the matrix $A$ are pairwise distinct and let $A=U S U^{-1}$, where the matrix $U \in \mathbb{C}^{n \times n}$ is invertible and $S=$ $\operatorname{diag}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{n}\right)$, is the diagonal Jordan form of $A$. Then, we may set $A^{p}=U S^{p} U^{-1}$, where $S^{p}=\operatorname{diag}\left(\mathrm{s}_{1}^{p}, \mathrm{~s}_{2}^{p}, \ldots, \mathrm{~s}_{n}^{p}\right)$ and $\mathrm{s}_{k}^{p}$ is the principal $p$-th power of the eigenvalue $\mathrm{s}_{k}$ of $A$.

The matrix $A^{p}$ may also be defined for any $p \in \mathbb{R}$ for matrices $A \in \mathbb{C}_{*}^{n \times n}$ which are not diagonalizable. In this case the Jordan form of $A$ may be used. The more general case when $A$ is only invertible and/or the degree $p$ is complex will be considered elsewhere.

Another approach to define the function $f_{p}$ and its derivatives is by contour integrals. Denote by $C:=\{z \in \mathbb{C}:|z-a|=\rho\} \subset \mathbb{C}$ a contour encircling the spectrum of $A \in \mathbb{C}_{*}^{n \times n}$ and let $\mathcal{B} \subset \mathbb{C}_{*}^{n \times n}$ be the set of matrices $X$ such that $\left\|a I_{n}-X\right\|_{2}<\rho$. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a function which is holomorphic in the interior $C^{o}$ of $C$. Then, the function $f$ is defined on the spectrum of each $A \in \mathcal{B}$ and we may define the matrix counterpart $f: \mathcal{B} \rightarrow \mathbb{C}_{*}^{n \times n}$ of the scalar function $f$ by the contour integral

$$
\begin{equation*}
f(A)=\frac{1}{2 \pi \mathrm{i}} \oint_{C} f(z) R_{A}(z) \mathrm{d} z, A \in \mathcal{B} \tag{2}
\end{equation*}
$$

where $R_{A}(z):=\left(z I_{n}-A\right)^{-1}, z \notin \operatorname{spect}(A)$, is the resolvent for $A$. In our case we may 144
take $f(z)=z^{p}$, which gives

$$
A^{p}=\frac{1}{2 \pi \mathrm{i}} \oint_{C} z^{p} R_{A}(z) \mathrm{d} z .
$$

Using (2) we can define the Fréchet derivative of $f$ at a given point $A$ as follows. For a fixed $A \in \mathcal{B}$ choose $H \in \mathbb{C}^{n \times n}$ with $\eta$ sufficiently small. Then, the matrix $z I_{n}-A-H$ is invertible for $|z-a|=\rho$ and we have

$$
\begin{align*}
& R_{A+H}(z)=\left(z I_{n}-A-H\right)^{-1}=\left(\left(z I_{n}-A\right)\left(I_{n}-\left(z I_{n}-A\right)^{-1} H\right)\right)^{-1} \\
& =\left(I_{n}-R_{A}(z) H\right)^{-1} R_{A}(z)=R_{A}(z)+R_{A}(z) H R_{A}(z)+\mathrm{O}\left(\eta^{2}\right) \tag{3}
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
f(A+H)=\frac{1}{2 \pi \mathrm{i}} \oint_{C} f(z) R_{A+H}(z) \mathrm{d} z=f(A)+\mathrm{D} f(A)(H)+\mathrm{O}\left(\eta^{2}\right) \tag{4}
\end{equation*}
$$

Substituting (3) in (4), we obtain

$$
\begin{equation*}
\mathrm{D} f(A)(H)=\frac{1}{2 \pi \mathrm{i}} \oint_{C} f(z) R_{A}(z) H R_{A}(z) \mathrm{d} z \tag{5}
\end{equation*}
$$

The techniques of contour integrals may be used in order to define the $m$-th Fréchet derivative $\mathrm{D}^{m} f_{p}(A)$ of $f_{p}$ at the point $A$ as an $m$-linear form. Indeed, we have

$$
R_{A+H}(z)=\sum_{k=0}^{m}\left(R_{A}(z) H\right)^{k} R_{A}(z)+\mathrm{O}\left(\eta^{m+1}\right)
$$

which yields

$$
\mathrm{D}^{m} f_{p}(A)(H)=\frac{1}{2 \pi \mathrm{i}} \int_{C} z^{p}\left(R_{A}(z) H\right)^{m} R_{A}(z) \mathrm{d} z .
$$

In particular, the second Fréchet derivative is given by

$$
\mathrm{D}^{2} f_{p}(A)(H)=\frac{1}{2 \pi \mathrm{i}} \int_{C} z^{p} R_{A}(z) H R_{A}(z) H R_{A}(z) \mathrm{d} z
$$

We point out that the norms of the operators $\mathrm{D}^{m} f_{p}(A)$ are studied in [2].
For $A \in \mathbb{C}_{*}^{n \times n}, \eta<\eta_{0}$ and $\eta_{0}>0$ sufficiently small the function $H \mapsto(A+H)^{p}$ is holomorphic or real analytical in the real case. Hence,

$$
\begin{equation*}
(A+H)^{p}=\sum_{m=0}^{\infty} \mathcal{F}_{m}(p, A)(H) \tag{6}
\end{equation*}
$$

where $\mathcal{F}_{m}(p, A)(H)=\mathrm{D}^{m} f_{p}(A)(H) / m!=\mathrm{O}\left(\eta^{m}\right)$ are $m$-linear forms in $H$. In particular, we have $\mathcal{F}_{0}(p, A)(H)=A^{p}$ and $\mathcal{F}_{1}(p, A)=\mathrm{D} f_{p}(A) \in \mathcal{L}(n)$ is the Fréchet derivative of $f_{p}$ at the point $A$.

Higher order Fréchet derivatives of $f_{p}$. The first derivative $\mathcal{F}_{1}(p, A)$ is well studied for $p \in \mathbb{Z}$ and $1 / p \in \mathbb{N}$, see [1], and for $p \in \mathbb{Q}$, see [4]. The more general case $p \in \mathbb{R}$ has been considered in [3] for some particular structures of $A$. In what follows we describe the expressions $\mathcal{F}_{m}(p, A)$ for some values of $p$. When $p<0$, we suppose that $\eta<\left\|A^{-1}\right\|_{2}^{-1}$.

The case $p \in \mathbb{N}$. Here the expressions for $\mathcal{F}_{m}(p, A)$ are well known and we give them only for completeness.

Theorem 2. We have

$$
\mathcal{F}_{m}(p, A)(H)=\sum_{\left|\Sigma_{m+1}\right|=p-m} A^{\sigma_{1}} H A^{\sigma_{2}} \cdots A^{\sigma_{m}} H A^{\sigma_{m+1}}, m \leq p
$$

and $\mathcal{F}_{m}(r, A)=0$ for $m>p$, where $\Sigma_{m+1}=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m+1}\right) \in \mathbb{Z}^{m+1}, 0 \leq \sigma_{i} \leq p-m$ and $\left|\Sigma_{m+1}\right|:=\sigma_{1}+\sigma_{2}+\cdots+\sigma_{m+1}$.

In particular,

$$
\mathcal{F}_{1}(p, A)(H)=\sum_{\left|\Sigma_{2}\right|=p-1} A^{\sigma_{1}} H A^{\sigma_{2}}, \mathcal{F}_{2}(p, A)(H)=\sum_{\left|\Sigma_{3}\right|=p-2} A^{\sigma_{1}} H A^{\sigma_{2}} H A^{\sigma_{3}}
$$

The case $p=-1$. Here the result follows immediately from the expansion

$$
(A+H)^{-1}=\sum_{m=0}^{\infty}(-1)^{m} A^{-1}\left(H A^{-1}\right)^{m}=\sum_{m=0}^{\infty}(-1)^{m}\left(A^{-1} H\right)^{m} A^{-1}
$$

Theorem 3. We have the following result,

$$
\mathcal{F}_{m}(-1, A)(H)=(-1)^{m} A^{-1}\left(H A^{-1}\right)^{m}=(-1)^{m}\left(A^{-1} H\right)^{m} A^{-1}
$$

In particular,

$$
\mathcal{F}_{1}(-1, A)(H)=-A^{-1} H A^{-1}, \mathcal{F}_{2}(-1, A)(H)=A^{-1} H A^{-1} H A^{-1}
$$

The case $p=-r, r \in \mathbb{N}$. Here we have

$$
\begin{aligned}
(A+H)^{-r} & =\left(\sum_{m=0}^{\infty} \mathcal{F}_{m}(-1, A)(H)\right)^{r} \\
& =\sum_{m=0}^{\infty} \sum_{\left|\Sigma_{r}\right|=m} \mathcal{F}_{\sigma_{1}}(-1, A)(H) \mathcal{F}_{\sigma_{2}}(-1, A)(H) \cdots \mathcal{F}_{\sigma_{r}}(-1, A)(H)
\end{aligned}
$$

Therefore,

$$
\mathcal{F}_{m}(-r, A)=\sum_{\left|\Sigma_{r}\right|=m} \mathcal{F}_{\sigma_{1}}(-1, A)(H) \mathcal{F}_{\sigma_{2}}(-1, A)(H) \cdots \mathcal{F}_{\sigma_{r}}(-1, A)(H)
$$

After some standard but cumbersome calculations, we obtain an explicit expression for $\mathcal{F}_{m}(-r, A)$ as follows.

Theorem 4. It is fulfilled that

$$
\begin{equation*}
\mathcal{F}_{m}(-r, A)(H)=(-1)^{m} \sum_{\left|\Sigma_{m+1}\right|=m+r} A^{-\sigma_{1}} H A^{-\sigma_{2}} \cdots A^{-\sigma_{m}} H A^{-\sigma_{m+1}} . \tag{7}
\end{equation*}
$$

In particular we have

$$
\begin{aligned}
\mathcal{F}_{1}(-2, A)(H)= & -H_{2,1}-H_{1,2}, \\
\mathcal{F}_{2}(-2, A)(H)= & H_{1,1,2}+H_{1,2,1}+H_{2,1,1}, \\
\mathcal{F}_{3}(-2, A)(H)= & -H_{1,1,1,2}-H_{1,1,2,1}-H_{1,2,1,1}-H_{2,1,1,1} \\
\mathcal{F}_{1}(-3, A)(H)= & -H_{1,3}-H_{2,2}-H_{3,1}, \\
\mathcal{F}_{2}(-3, A)(H)= & H_{1,1,3}+H_{1,3,1}+H_{3,1,1}+H_{1,2,2}+H_{2,1,2}+H_{2,2,1}, \\
\mathcal{F}_{3}(-3, A)(H)= & -H_{1,1,1,3}-H_{1,1,3,1}-H_{1,3,1,1}-H_{3,1,1,1}-H_{1,1,2,2} \\
& -H_{1,2,1,2}-H_{1,2,2,1}-H_{2,1,1,2}-H_{2,1,2,1}-H_{2,2,1,1},
\end{aligned}
$$

where

$$
H_{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m+1}}:=A^{-\sigma_{1}} H A^{-\sigma_{2}} \cdots A^{-\sigma_{m}} H A^{-\sigma_{m+1}} .
$$

The case $p=1 / s, s \in \mathbb{N}$. Here we have

$$
A+H=\left(\sum_{m=0}^{\infty} \mathcal{F}_{m}(1 / s, A)(H)\right)^{s}
$$

Based on this identity, we may prove the following result.
Theorem 5. Let the linear operator $\mathcal{L}_{s}:=\mathcal{F}_{1}\left(s, A^{1 / s}\right)$ be invertible. Then: (i) $\mathcal{F}_{1}(1 / s, A)=\mathcal{L}_{s}^{-1} ;$ (ii) the spectrum of $\mathcal{L}_{s}$ consists of the numbers

$$
\sum_{k=0}^{s-1} \mathrm{~s}_{i}^{k / s} \mathrm{~s}_{j}^{(s-k-1) / s}, i, j=1,2, \ldots, n
$$

where $\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{n}\right\}$ is the full spectrum of $A$.
The determination of $\mathcal{F}_{m}(1 / s, A)$ for $m \geq 2$ is more subtle. We give below some particular results using the abbreviation

$$
F_{m, s}:=\mathcal{F}_{m}(1 / s, A)(H)
$$

Theorem 6. The following representations are valid for $p=1 / 2$ and $p=1 / 3$ :

$$
\begin{aligned}
F_{m, 2}= & \mathcal{L}_{2}^{-1}\left(\sum_{i=1}^{m-1} F_{i, 2} F_{m-i, 2}\right), m \in \mathbb{N} \\
F_{2,3}= & -\mathcal{L}_{3}^{-1}\left(A^{1 / 3} F_{1,3}^{2}+F_{1,3} A^{1 / 3} F_{1,3}+F_{1,3}^{2} A^{1 / 3}\right) \\
= & -\mathcal{L}_{3}^{-1} \circ \mathcal{F}_{1}\left(3, A^{1 / 3}\right)\left(F_{1,3}\right), \\
F_{3,3}= & -\mathcal{L}_{3}^{-1}\left(F_{1,3}^{3}+A^{1 / 3} F_{1,3} F_{2,3}+F_{1,3} A^{1 / 3} F_{2,3}+F_{1,3} F_{2,3} A^{1 / 3}\right. \\
& \left.+F_{2,3} F_{1,3} A^{1 / 3}+F_{2,3} A^{1 / 3} F_{1,3}+A^{1 / 3} F_{2,3} F_{1,3}\right),
\end{aligned}
$$

where the invertibility of the operator $\mathcal{L}_{2}$ and/or $\mathcal{L}_{3}$ is presupposed.
To illustrate the above results let us consider a simple example.
Example 7. Let $n=2, H=\left[h_{i, j}\right]$ and $A=\operatorname{diag}\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)$, where $\mathrm{s}_{1} \mathrm{~s}_{2} \neq 0$. Then, the
elements $\varphi_{i, j}$ of the matrix $F_{2,2}=\mathcal{F}_{2}(1 / 2, A)(H) \in \mathbb{C}^{2 \times 2}$ are given by

$$
\begin{aligned}
\varphi_{i, i} & =\frac{1}{2 \sqrt{\mathrm{~s}_{i}}}\left(\frac{h_{i, i}^{2}}{4 \mathrm{~s}_{i}}+\frac{h_{1,2} h_{2,1}}{\left(\sqrt{\mathrm{~s}_{1}}+\sqrt{\mathrm{s}_{2}}\right)^{2}}\right) \\
\varphi_{i, j} & =\frac{h_{i, j}}{2\left(\sqrt{\mathrm{~s}_{1}}+\sqrt{\mathrm{s}_{2}}\right)^{2}}\left(\frac{h_{1,1}}{\sqrt{\mathrm{~s}_{1}}}+\frac{h_{2,2}}{\sqrt{\mathrm{~s}_{2}}}\right), i \neq j
\end{aligned}
$$

Conclusions. In this paper we have derived explicit expressions for the $m$-th order Fréchet derivatives of matrix power functions $X \mapsto X^{p}$ for $p \in \mathbb{Z} \cup\{1 / 2\}$ and $m \in \mathbb{N}$ as well as for $p=1 / 3$ and $m=2,3$. The investigation of the general cases $p \in \mathbb{Q}$ (and even for $p \in \mathbb{R}), m \in \mathbb{N}$, remains an open problem.

## REFERENCES

[1] R. Bhatia, D. Singh, K. Sinha. Differentiation of operator functions and perturbation bounds. Commun. Math. Phys., 191 (1998), 603-611, ISSN 0010-3616.
[2] R. Bhatia, J. Holbrook. Fréchet derivatives of the power function. Indiana Univ. Math. J. 49 (2000), 1155-1173, MR1803224.
[3] J. Boneva, M. Konstantinov, P. Petkov. Perturbation analysis for the complex matrix equation $Q \pm A^{\mathrm{H}} X^{p} A-X=0$. Surveys Math. Appl., 2 (2007), 29-41, ISSN 1842-6298.
[4] M. Konstantinov, J. Boneva, P. Petkov. Fréchet derivatives of rational power matrix functions. Math. and Education in Math., 35 (2006), 169-174.

| M. Konstantinov, J. Boneva, V. Todorov | P. Petkov |
| :--- | :--- |
| UACEG | Department of Automatics |
| 1046 Sofia, Bulgaria | TU - Sofia |
| e-mail: mmk_fte@uacg.bg | 1756 Sofia, Bulgaria |
| boneva_fte@uacg.bg | e-mail: php@tu-sofia.bg |
| $\quad$ vttp@yahoo.com |  |

## ПРОИЗВОДНИ ПО ФРЕШЕ ОТ ПО-ВИСОК РЕД НА МАТРИЧНИ СТЕПЕННИ ФУНКЦИИ

## Михаил Михайлов Константинов, Юлияна Костадинова Бонева, Петко Христов Петков, Владимир Тодоров Тодоров

Изучени са производните по Фреше от по-висок ред на матричните степенни функции $X \mapsto X^{p}, p \in \mathbb{Q}, X \in \mathbb{C}^{n \times n}$. Получените резултати могат да се приложат при анализа на точността на апроксимацията по Тейлър на тези функции и при пертурбационния анализ на нелинейни матрични уравнения.


[^0]:    *2000 Mathematics Subject Classification: 15A57, 15A24.
    Key words: Matrix power functions, higher order Fréchet derivatives.

