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We study higher order Fréchet derivatives of matrix power functions X — X? p € Q,
X € C**™. The results obtained may be applied to the accuracy estimation of Taylor
approximations of matrix power functions as well as to the perturbation analysis of
non-linear matrix equations.

Introduction and notations. In a recent paper [4] we have studied some properties
of first order Frechét derivatives of the function X — f,(X) = XP? for rational p. In
this paper we consider second and higher order Fréchet derivatives of f, for rational p,
different from 0 and 1. Higher order Fréchet derivatives when p is a positive integer or
the reciprocal of such an integer have been considered in [1].

The results obtained below are applicable to the analysis of fractional-affine matrix
equations as well as to the estimation of the accuracy of the Taylor approximations of
(A+ H)? for small H.

We use the following notations: N C Z € Q C R C C — the sets of natural, integer,
rational, real and complex numbers, respectively; i = v/—1; |z| and argz € (—7, 7| —
the module and the principal argument of 0 # z € C such that z = |z[e!®8%; Inz =
In |z| + iargz — the principal natural logarithm of z # 0. For any z # 0 and ¢ € C we
define the principal c—th power of z as z¢ = e¢I*#,

For matrices the notations are as follows: C™*™ — the space of n x n matrices over C;
I, — the identity n x n matrix; C?*™ C C"*"™ — the set of matrices X with no negative
eigenvalues, i.e. spect(X) N (—o00,0] = @; L(n) — the space of linear matrix operators
CTLXTL s (CTLXTL.

If F : C**" — C™*" is a differentiable operator we denote by F(™ the m—th iteration
of F, while F™(H) = (F(H))™. The m-th Fréchet derivative of F at a given point is

an m-linear form denoted as D™ F(Hy, Ha, ..., H,,). When Hy = Hy =--- = H,, = H,
this derivative is written as D™ F(H) and we have |D™F(H)| = O(|| H||™).
The abbreviation “:=" stands for “equal by definition”.

Fréchet derivatives of functions C"*" — C"*™, Let f : D — C"*" be a
holomorphic function defined in the open domain D C C™**". For A € D and H € C"*"
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sufficiently small we have

= D™ f(A)(H

m=0
where the m—th derivative D™ f(A) : (C"*™)™ — C"*™ is an m-linear function. Further
we shall use the following result.

m! ’

Proposition 1. The value F(H) of the m~linear form F : (C"*™)™ — C™*" (m > 1)
may be represented as a finite sum of matriz products

Nm

Z Am,l,kHAm,Q,k e Am,m,kHAm,m+1,k7
k=1

where A jk, 5=1,2,...,m+1,k=1,2,...,ny, are given constant matrices.

Proof. Let X = [z;;] € C"*" and E; ; = e;Fej, where e; is the i—th column of I,,.
Then, the matrix
(1) YXE; i XEj 0, X XEj, i, XEj, ;

is equal to @i, j, Tiy j» * * - Tiyy i Li, ;- 1t suffices to observe that each m-linear form F(H)
may be represented as a finite sum of matrices of the form (1). O

1,0m

Definition of f, and its derivatives. When defining the matrix X?, we impose no
restrictions on X € C"*™ if p € N and we suppose that X € C*™ if p ¢ N.

In what follows A € C™*" is a fixed matrix and H € C"*™ is an increment of A
with 2-norm denoted as 7 := || H||2. It is supposed that asymptotics of the form O(n™),
m > 1, is valid for n — 0. If p € N, then the matrices A and H may be arbitrary.
Otherwise, both A and A 4+ H have to be from C2*™. The latter is achieved if A € CI*™
and 7 is small enough.

The function f, : C?*™ — C7*™ and its Fréchet derivatives D™ f,(A4) : (C™*™)" —
C™*™ may be correctly defined using either the Jordan (or Schur) form of A, or contour
Cauchy type integrals. Suppose, in particular, that the eigenvalues of the matrix A are
pairwise distinct and let A = USU !, where the matrix U € C™*" is invertible and S =
diag(s1,82, - ..,8,), is the diagonal Jordan form of A. Then, we may set AP = USPU 1,
where SP = diag (s{,sh,...,sP) and s is the principal p-th power of the eigenvalue sy,
of A.

The matrix AP may also be defined for any p € R for matrices A € C*" which are
not diagonalizable. In this case the Jordan form of A may be used. The more general case
when A is only invertible and/or the degree p is complex will be considered elsewhere.

Another approach to define the function f, and its derivatives is by contour integrals.
Denote by C := {z € C: |z—a| = p} C C a contour encircling the spectrum of A € C7*"
and let B C C?*"™ be the set of matrices X such that ||al, — X||2 < p. Let f: C — C be
a function which is holomorphic in the interior C'° of C. Then, the function f is defined
on the spectrum of each A € B and we may define the matrix counterpart f : B — C**"
of the scalar function f by the contour integral

(2) f(4) = 55 § FORa():, A€ B,

where Ra(z) := (21, — A)~Y, 2 ¢ spect(A), is the resolvent for A. In our case we may
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take f(z) = 2P, which gives

AP = 2%“ 2P Ra(z)dz.
c

Using (2) we can define the Fréchet derivative of f at a given point A as follows. For
a fixed A € B choose H € C"*™ with n sufficiently small. Then, the matrix zI,, — A — H
is invertible for |z — a] = p and we have

Raju(z) = (I, — A— H) " = ((2I,, — A) (I, — (21, — A)"'H))
(3) = (I, — Ra(2)H) " Ra(2) = Ra(2) + Ra(2)HRa(2) + O(1?).
On the other hand,
@ A+ = g FERasn(:)z = F(4) + DFAH) + O,
Substituting (3) in (4), we obtain

(5) DFAVH) = 5 7{1 F(2)Ra(2)HRA(2)dz.

-1

The techniques of contour integrals may be used in order to define the m—th Fréchet
derivative D™ f,,(A) of f, at the point A as an m-linear form. Indeed, we have
Rapu(z) =) (Ra(2)H)*Ra(z) + O(n™ ),
k=0
which yields

1
D" fy(A)H) = 5 [ P (Rale)H)" Ra(2)d,

T Jo

In particular, the second Fréchet derivative is given by
1
D?f,(A)(H) = %/ 2PRA(2)HRA(2)HRA(2)dz.
c

We point out that the norms of the operators D™ f,(A) are studied in [2].

For A € C**™ n < 1 and 79 > 0 sufficiently small the function H — (A + H)P is
holomorphic or real analytical in the real case. Hence,

(6) (A+H)P: Z}-m(paA)(H)a

m=0
where Fy, (p, A)(H) = D™ f,(A)(H)/m! = O(n™) are m-linear forms in H. In particular,
we have Fo(p, A)(H) = AP and Fi(p, A) = Df,(A) € L(n) is the Fréchet derivative of f,
at the point A.

Higher order Fréchet derivatives of f,. The first derivative Fi(p, A) is well
studied for p € Z and 1/p € N, see [1], and for p € Q, see [4]. The more general case
p € R has been considered in [3] for some particular structures of A. In what follows we

describe the expressions F,,(p, A) for some values of p. When p < 0, we suppose that
n< A5

The case p € N. Here the expressions for F,,(p, A) are well known and we give them
only for completeness.
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Theorem 2. We have

Fulp, AH) = Y ATHA® .- A" HA™ ' m < p,
[Em41]=p—m
and Fp(r, A) = 0 for m > p, where Spi1 = (01,02, ,0my1) EZ™TL, 0< 0, <p—m

and |Zm+1| ‘=01 +092+ - +Um+1-

In particular,

Fip, A)H)= Y ATHA, F(p,A)(H)= Y A"HAHA.

[B2|=p—1 [23|=p—2
The case p = —1. Here the result follows immediately from the expansion
oo oo
(A4+H) ' = (—1)"AH(HAH™ = (—1)™(A tH)™ AL
m=0 m=0

Theorem 3. We have the following result,
Fo(—1L,A)Y(H) = (-1)™A Y (HA™ )™ = (=1)™(A'H)™ AL,

In particular,
Fi(—1,A)(H) = -AT'HA Y, Fp(—1,A)(H)=A""HA'HA™ .

The case p = —r, r € N. Here we have
A+ - (i fm<—1,A><H>>
= Z Z fa1(*17A)(H)f02(713A)(H) t 'fcrr(*]-aA)(H)'
m=0|%,|=m
Therefore,
Fon(=1,A) = > For (1, A)(H) Fop (—1, A)(H) - - Fo, (=1, A)(H).

|2 |=m
After some standard but cumbersome calculations, we obtain an explicit expression for
Fm (=1, A) as follows.

Theorem 4. It is fulfilled that
(7) Fn(=r, A)(H) = (-1)™ Y A HA™ ... A" HA "™+,

|[Emt1]|=m4r
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In particular we have
f1(727A)(H) = *HQ,I - H1,27

= Hi12+Hi21+Hoip,
—Hi112—Hii21—Hip11—Hai11
—Hi3—Hyp— H3;,
Hi13+Hi31+Hsi1+Higo+Hai2+Hoo,
= —Hi113—Hi131—Hiz11— Hzi1,0— Hii2p0

—Hi212—Hi221—Ha112—Ha121—H2211,

14y 1434 IR 1494y 14y

~— — O~ —
I

where

Hy, o = ATTUHAT2 . ATOm HAT T,

50m+1

The case p = 1/s, s € N. Here we have

oo S
A+ H= <Z fm(1/s,A)(H)> .
m=0
Based on this identity, we may prove the following result.

Theorem 5. Let the linear operator Ls = Fi(s, AY®) be invertible. Then: (i)
Fi1(1)s, A) = L1, (ii) the spectrum of Ls consists of the numbers
s—1
Zsf/ssg-sfk*l)/s, ,7=1,2,...,n,
k=0
where {s1,82,...,8,} is the full spectrum of A.

The determination of F,,(1/s, A) for m > 2 is more subtle. We give below some
particular results using the abbreviation

Fos i =Fn(1/s, A)(H).

Theorem 6. The following representations are valid for p=1/2 and p =1/3:

m—1
Frno = L' <Z Fi,sz—i,Q> , meN,
i=1
Py = —L5° <A1/3F1273 + F3AY3F 5 + F1273A1/3)
== —£3_1 0.7:1(3,141/3)(}’—‘1,3),
Py = —£3! (F133 + AV3F 3Fo 3 + Fi 3 AY3 Ry 5 + Fy 3 Fp 3 AY3
+Fy3Fy 3AY3 4 Fy 3 AY3 Ry 5 + A1/3F2,3F1,3) ,
where the invertibility of the operator Lo and/or L3 is presupposed.

To illustrate the above results let us consider a simple example.

Example 7. Let n = 2, H = [h; ;] and A = diag(s1,s2), where s1s9 # 0. Then, the
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elements ¢; ; of the matrix Fp o = F2(1/2, A)(H) € C?>*2 are given by

- 1 i + hi2ha1
LW W (Y R B

i = o hiy (@_,_@) i
S SN A WCY- MA

Conclusions. In this paper we have derived explicit expressions for the m—th order
Fréchet derivatives of matrix power functions X — XP for p € ZU {1/2} and m € N as
well as for p = 1/3 and m = 2, 3. The investigation of the general cases p € Q (and even
for p € R), m € N, remains an open problem.
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ITPOM3BOJAHM I10 ®PEIIIE OT IIO-BUCOK PEJ/I HA MATPMYHNA
CTEITEHHUN ®YHKIINUN

Muxana MwuxaiinoB Koucrantunos, FOsmusua Kocragunosa Bouesa,
ITerko XpucroB Ilerkos, Biaagumup Tomopos Toaopos

Usyuenn ca npomssogaure no Ppeme OT MO-BUCOK peJ HA MATPUYHHATE CTEIIEHHU
dbynkuuu X — XP p e Q, X € C"*". [lonyueHuTe pe3yITaTd MOTAT /4 Ce TIPUJIOKAT
OpU aHAJIN3a HA TOYHOCTTA Ha alpoKcumanusaTa 1o Teirbp Ha Tesn yHKIUM U 1pu
nepTypOAlMOHHUS AHAJIN3 HA HEJIMHEHHU MATPUYHU yDABHEHUS.
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