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We study higher order Fréchet derivatives of matrix power functions X 7→ Xp, p ∈ Q,
X ∈ Cn×n. The results obtained may be applied to the accuracy estimation of Taylor
approximations of matrix power functions as well as to the perturbation analysis of
non–linear matrix equations.

Introduction and notations. In a recent paper [4] we have studied some properties
of first order Frechét derivatives of the function X 7→ fp(X) = Xp for rational p. In
this paper we consider second and higher order Fréchet derivatives of fp for rational p,
different from 0 and 1. Higher order Fréchet derivatives when p is a positive integer or
the reciprocal of such an integer have been considered in [1].

The results obtained below are applicable to the analysis of fractional-affine matrix
equations as well as to the estimation of the accuracy of the Taylor approximations of
(A + H)p for small H .

We use the following notations: N ⊂ Z ⊂ Q ⊂ R ⊂ C – the sets of natural, integer,
rational, real and complex numbers, respectively; i =

√
−1; |z| and arg z ∈ (−π, π] –

the module and the principal argument of 0 6= z ∈ C such that z = |z|ei arg z; ln z =
ln |z| + i arg z – the principal natural logarithm of z 6= 0. For any z 6= 0 and c ∈ C we
define the principal c–th power of z as zc = ec ln z .

For matrices the notations are as follows: Cn×n – the space of n× n matrices over C;
In – the identity n × n matrix; Cn×n

∗ ⊂ Cn×n – the set of matrices X with no negative
eigenvalues, i.e. spect(X) ∩ (−∞, 0] = ∅; L(n) – the space of linear matrix operators
Cn×n → Cn×n.

If F : Cn×n → Cn×n is a differentiable operator we denote by F (m) the m–th iteration
of F , while Fm(H) = (F(H))m. The m–th Fréchet derivative of F at a given point is
an m–linear form denoted as DmF(H1, H2, . . . , Hm). When H1 = H2 = · · · = Hm = H ,
this derivative is written as DmF(H) and we have ‖DmF(H)‖ = O(‖H‖m).

The abbreviation “ :=” stands for “equal by definition”.
Fréchet derivatives of functions Cn×n → Cn×n. Let f : D → Cn×n be a

holomorphic function defined in the open domain D ⊂ Cn×n. For A ∈ D and H ∈ Cn×n
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sufficiently small we have

f(A + H) =

∞
∑

m=0

Dmf(A)(H)

m!
,

where the m–th derivative Dmf(A) : (Cn×n)m → Cn×n is an m–linear function. Further
we shall use the following result.

Proposition 1. The value F(H) of the m–linear form F : (Cn×n)m → Cn×n (m ≥ 1)
may be represented as a finite sum of matrix products

nm
∑

k=1

Am,1,kHAm,2,k · · ·Am,m,kHAm,m+1,k,

where Am,j,k, j = 1, 2, . . . , m + 1, k = 1, 2, . . . , nm, are given constant matrices.

Proof. Let X = [xi,j ] ∈ Cn×n and Ei,j = eT
i ej , where ei is the i–th column of In.

Then, the matrix

(1) Y XEi,i1XEj1,i2X · · ·XEjm−1,im
XEjm,j

is equal to xi1 ,j1xi2,j2 · · ·xim,jm
Ei,j . It suffices to observe that each m–linear form F(H)

may be represented as a finite sum of matrices of the form (1).

Definition of fp and its derivatives. When defining the matrix Xp, we impose no
restrictions on X ∈ Cn×n if p ∈ N and we suppose that X ∈ Cn×n

∗ if p /∈ N.

In what follows A ∈ Cn×n is a fixed matrix and H ∈ Cn×n is an increment of A
with 2–norm denoted as η := ‖H‖2. It is supposed that asymptotics of the form O(ηm),
m ≥ 1, is valid for η → 0. If p ∈ N, then the matrices A and H may be arbitrary.
Otherwise, both A and A + H have to be from Cn×n

∗ . The latter is achieved if A ∈ Cn×n
∗

and η is small enough.

The function fp : Cn×n
∗ → Cn×n

∗ and its Fréchet derivatives Dmfp(A) : (Cn×n)m →
Cn×n may be correctly defined using either the Jordan (or Schur) form of A, or contour
Cauchy type integrals. Suppose, in particular, that the eigenvalues of the matrix A are
pairwise distinct and let A = USU−1, where the matrix U ∈ Cn×n is invertible and S =
diag(s1, s2, . . . , sn), is the diagonal Jordan form of A. Then, we may set Ap = USpU−1,
where Sp = diag (sp

1, s
p
2, . . . , s

p
n) and sp

k is the principal p–th power of the eigenvalue sk

of A.

The matrix Ap may also be defined for any p ∈ R for matrices A ∈ Cn×n
∗ which are

not diagonalizable. In this case the Jordan form of A may be used. The more general case
when A is only invertible and/or the degree p is complex will be considered elsewhere.

Another approach to define the function fp and its derivatives is by contour integrals.
Denote by C := {z ∈ C : |z−a| = ρ} ⊂ C a contour encircling the spectrum of A ∈ Cn×n

∗

and let B ⊂ Cn×n
∗ be the set of matrices X such that ‖aIn −X‖2 < ρ. Let f : C → C be

a function which is holomorphic in the interior Co of C. Then, the function f is defined
on the spectrum of each A ∈ B and we may define the matrix counterpart f : B → Cn×n

∗

of the scalar function f by the contour integral

(2) f(A) =
1

2πi

∮

C

f(z)RA(z)dz, A ∈ B,

where RA(z) := (zIn − A)−1, z /∈ spect(A), is the resolvent for A. In our case we may
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take f(z) = zp, which gives

Ap =
1

2πi

∮

C

zp RA(z)dz.

Using (2) we can define the Fréchet derivative of f at a given point A as follows. For
a fixed A ∈ B choose H ∈ Cn×n with η sufficiently small. Then, the matrix zIn −A−H
is invertible for |z − a| = ρ and we have

RA+H(z) = (zIn − A − H)−1 =
(

(zIn − A)
(

In − (zIn − A)−1H
))−1

= (In − RA(z)H)−1 RA(z) = RA(z) + RA(z)HRA(z) + O(η2).(3)

On the other hand,

(4) f(A + H) =
1

2πi

∮

C

f(z)RA+H(z)dz = f(A) + Df(A)(H) + O(η2).

Substituting (3) in (4), we obtain

(5) Df(A)(H) =
1

2πi

∮

C

f(z)RA(z)HRA(z)dz.

The techniques of contour integrals may be used in order to define the m–th Fréchet
derivative Dmfp(A) of fp at the point A as an m–linear form. Indeed, we have

RA+H(z) =
m
∑

k=0

(RA(z)H)kRA(z) + O(ηm+1),

which yields

Dmfp(A)(H) =
1

2πi

∫

C

zp(RA(z)H)mRA(z)dz.

In particular, the second Fréchet derivative is given by

D2fp(A)(H) =
1

2πi

∫

C

zpRA(z)HRA(z)HRA(z)dz.

We point out that the norms of the operators Dmfp(A) are studied in [2].

For A ∈ Cn×n
∗ , η < η0 and η0 > 0 sufficiently small the function H 7→ (A + H)p is

holomorphic or real analytical in the real case. Hence,

(6) (A + H)p =

∞
∑

m=0

Fm(p, A)(H),

where Fm(p, A)(H) = Dmfp(A)(H)/m! = O(ηm) are m–linear forms in H . In particular,
we have F0(p, A)(H) = Ap and F1(p, A) = Dfp(A) ∈ L(n) is the Fréchet derivative of fp

at the point A.

Higher order Fréchet derivatives of fp. The first derivative F1(p, A) is well
studied for p ∈ Z and 1/p ∈ N, see [1], and for p ∈ Q, see [4]. The more general case
p ∈ R has been considered in [3] for some particular structures of A. In what follows we
describe the expressions Fm(p, A) for some values of p. When p < 0, we suppose that
η < ‖A−1‖−1

2 .

The case p ∈ N. Here the expressions for Fm(p, A) are well known and we give them
only for completeness.
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Theorem 2. We have

Fm(p, A)(H) =
∑

|Σm+1|=p−m

Aσ1HAσ2 · · ·AσmHAσm+1 , m ≤ p,

and Fm(r, A) = 0 for m > p, where Σm+1 = (σ1, σ2, . . . , σm+1) ∈ Zm+1, 0 ≤ σi ≤ p−m
and |Σm+1| := σ1 + σ2 + · · · + σm+1.

In particular,

F1(p, A)(H) =
∑

|Σ2|=p−1

Aσ1HAσ2 , F2(p, A)(H) =
∑

|Σ3|=p−2

Aσ1HAσ2HAσ3 .

The case p = −1. Here the result follows immediately from the expansion

(A + H)−1 =

∞
∑

m=0

(−1)mA−1(HA−1)m =

∞
∑

m=0

(−1)m(A−1H)mA−1.

Theorem 3. We have the following result,

Fm(−1, A)(H) = (−1)mA−1(HA−1)m = (−1)m(A−1H)mA−1.

In particular,

F1(−1, A)(H) = −A−1HA−1, F2(−1, A)(H) = A−1HA−1HA−1.

The case p = −r, r ∈ N. Here we have

(A + H)−r =

(

∞
∑

m=0

Fm(−1, A)(H)

)r

=

∞
∑

m=0

∑

|Σr |=m

Fσ1
(−1, A)(H)Fσ2

(−1, A)(H) · · · Fσr
(−1, A)(H).

Therefore,

Fm(−r, A) =
∑

|Σr |=m

Fσ1
(−1, A)(H)Fσ2

(−1, A)(H) · · · Fσr
(−1, A)(H).

After some standard but cumbersome calculations, we obtain an explicit expression for
Fm(−r, A) as follows.

Theorem 4. It is fulfilled that

(7) Fm(−r, A)(H) = (−1)m
∑

|Σm+1|=m+r

A−σ1HA−σ2 · · ·A−σmHA−σm+1 .
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In particular we have

F1(−2, A)(H) = −H2,1 − H1,2,

F2(−2, A)(H) = H1,1,2 + H1,2,1 + H2,1,1,

F3(−2, A)(H) = −H1,1,1,2 − H1,1,2,1 − H1,2,1,1 − H2,1,1,1

F1(−3, A)(H) = −H1,3 − H2,2 − H3,1,

F2(−3, A)(H) = H1,1,3 + H1,3,1 + H3,1,1 + H1,2,2 + H2,1,2 + H2,2,1,

F3(−3, A)(H) = −H1,1,1,3 − H1,1,3,1 − H1,3,1,1 − H3,1,1,1 − H1,1,2,2

−H1,2,1,2 − H1,2,2,1 − H2,1,1,2 − H2,1,2,1 − H2,2,1,1,

where

Hσ1,σ2,...,σm+1
:= A−σ1HA−σ2 · · ·A−σmHA−σm+1 .

The case p = 1/s, s ∈ N. Here we have

A + H =

(

∞
∑

m=0

Fm(1/s, A)(H)

)s

.

Based on this identity, we may prove the following result.

Theorem 5. Let the linear operator Ls := F1(s, A
1/s) be invertible. Then: (i)

F1(1/s, A) = L−1
s ; (ii) the spectrum of Ls consists of the numbers

s−1
∑

k=0

s
k/s
i s

(s−k−1)/s
j , i, j = 1, 2, . . . , n,

where {s1, s2, . . . , sn} is the full spectrum of A.

The determination of Fm(1/s, A) for m ≥ 2 is more subtle. We give below some
particular results using the abbreviation

Fm,s := Fm(1/s, A)(H).

Theorem 6. The following representations are valid for p = 1/2 and p = 1/3:

Fm,2 = L−1
2

(

m−1
∑

i=1

Fi,2Fm−i,2

)

, m ∈ N,

F2,3 = −L−1
3

(

A1/3F 2
1,3 + F1,3A

1/3F1,3 + F 2
1,3A

1/3
)

= −L−1
3 ◦ F1(3, A1/3)(F1,3),

F3,3 = −L−1
3

(

F 3
1,3 + A1/3F1,3F2,3 + F1,3A

1/3F2,3 + F1,3F2,3A
1/3

+F2,3F1,3A
1/3 + F2,3A

1/3F1,3 + A1/3F2,3F1,3

)

,

where the invertibility of the operator L2 and/or L3 is presupposed.

To illustrate the above results let us consider a simple example.

Example 7. Let n = 2, H = [hi,j ] and A = diag(s1, s2), where s1s2 6= 0. Then, the
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elements ϕi,j of the matrix F2,2 = F2(1/2, A)(H) ∈ C2×2 are given by

ϕi,i =
1

2
√

si

(

h2
i,i

4si
+

h1,2h2,1

(
√

s1 +
√

s2)2

)

,

ϕi,j =
hi,j

2(
√

s1 +
√

s2)2

(

h1,1√
s1

+
h2,2√

s2

)

, i 6= j.

Conclusions. In this paper we have derived explicit expressions for the m–th order
Fréchet derivatives of matrix power functions X 7→ Xp for p ∈ Z ∪ {1/2} and m ∈ N as
well as for p = 1/3 and m = 2, 3. The investigation of the general cases p ∈ Q (and even
for p ∈ R), m ∈ N, remains an open problem.
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ПРОИЗВОДНИ ПО ФРЕШЕ ОТ ПО–ВИСОК РЕД НА МАТРИЧНИ

СТЕПЕННИ ФУНКЦИИ

Михаил Михайлов Константинов, Юлияна Костадинова Бонева,

Петко Христов Петков, Владимир Тодоров Тодоров

Изучени са производните по Фреше от по–висок ред на матричните степенни
функции X 7→ Xp, p ∈ Q, X ∈ Cn×n. Получените резултати могат да се приложат
при анализа на точността на апроксимацията по Тейлър на тези функции и при
пертурбационния анализ на нелинейни матрични уравнения.
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