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In this note is considered the problem of the existence of a dense set of vectors in a
Banach space whose orbits under a family of operators tend strongly to infinity.

1. Introduction. Throughout this paper, X denote an infinite dimensional complex
Banach space and B(X ) is the algebra of all bounded linear operators on X . For T ∈
B(X ) by σ(T ), σap(T ), σp(T ) and r(T ) we denote the spectrum, the approximate point
spectrum, the point spectrum and the spectral radius of T , respectively.

An orbit of x ∈ X under T ∈ B(X ) is the sequence

Orb(T, x) := {x, Tx, T 2x, . . .}.

The orbits under a single operator can behave quite differently. An operator can have
some orbits very regular (i.e. orbits tending strongly to 0 or tending strongly to infinity)
and other orbits extremely irregular (like the one of a hypercyclic vector, i.e. a vector
whose orbit is dense in the whole space). For an example of an operator for which the
space contains a dense set of vectors with orbits tending strongly to infinity, a dense set
of hypercyclic vectors and even a dense set of vectors with orbits tending strongly to 0,
we refer the reader to [1, Ch.III Sec.1.C].

In this paper we study regular orbits tending strongly to infinity: ‖T nx‖ → +∞, as
n → +∞. Although the behavior of an orbit depends strongly on the initial vector x ∈ X ,
the existence of orbits tending strongly to infinity is closely related to the spectrum of
the operator. More precisely, by Corrolary 1.5 in [8] and the Spectral Mapping Theorem,
we have

Theorem 1.1. If T ∈ B(X ), λ ∈ σ(T ) and (αn)n≥1 is a sequence of positive numbers

such that
∑

n≥1 α
2/3
n < +∞, then for every x ∈ X and every ε > 0 there is a positive

integer n0 = n0(ε) and a vector z ∈ X satisfying ‖x − z‖ < ε and

‖T nz‖ ≥ αn|λ|
n, for all n ≥ n0.

Corollary 1.2. If T ∈ B(X ) is with r(T ) > 1, then there is a dense set D ⊂ X such

that Orb(T, x) tends strongly to infinity for every x ∈ D.
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Before continuing, let us mention that in the settings of reflexive Banach spaces and,
in particular, in the case of operators on a Hilbert spaces, as the proofs of the Beauzamy’s
results in [1, Theorem III.2.A.1] and [1, Theorem III.2.A.5] suggest (for a complete proof
of the second result see [2]), for λ ∈ σap(T )\σp(T ) we can give better estimates than the
one in Theorem 1.1 as follows.

Theorem 1.3.Let X be a reflexive Banach space, T ∈ B(X ), (αn)n≥1 is a sequence

of positive numbers and λ ∈ σap(T )\σp(T ).
(a) If

∑

n≥1 αn < +∞, then every open ball in X with radius strictly larger than
∑

n≥1 αn contains a vector z ∈ X satisfying

‖T nz‖ ≥ αn|λ|
n/2, for all n ≥ 1.

(b) If X is a Hilbert space and (αn)n≥1 strictly deceases to 0, then every open ball in

X with radius strictly larger than α1 contains a vector z ∈ X satisfying

‖T nz‖ ≥ αn|λ|
n, for all n ≥ 1.

2. Orbits under families of operators. The main results in this section are based
on V. Müller’s results stated as Lemma 1.4 and Corollary 1.5 in [8]. For our purpose we
are going to use the following modification of Lemma 1.4:

Lemma 2.1.Let X and Y be Banach spaces, {Tα : α ∈ I} be a family of operators

on B(X ,Y), (aα)α∈I a family of positive numbers such that
∑

α∈I a
2/3
α < 1/4 and x ∈ X .

Then, there exists u ∈ X such that ‖x − u‖ ≤ 1/4 and

‖Tαu‖ ≥ aα‖Tα‖, for all α ∈ I.

Proof. Let δ > 0 be such that (1 + δ)
∑

α∈I a
2/3
α < 1/4. For α ∈ I , let zα ∈ X be

such that ‖zα‖ = 1 and ‖Tαzα‖ ≥ (1 + δ)−1‖Tα‖, and put εα = (1 + δ)a
2/3
α . Let

F = {F ⊂ I : F is finite}.

Claim 2.1.A. For every F ∈ F there exists a set {λα : α ∈ F} ⊂ C such that
|λα| ≤ εα for all α ∈ F and

(2.1)

∥

∥

∥

∥

∥

Tβ

(

x +
∑

α∈F

λαzα

)∥

∥

∥

∥

∥

≥ aβ‖Tβ‖, for all β ∈ F.

Proof of Claim 2.1.A. The same as the proof of part A in [8, Lemma 1.4].
Claim 2.1.B. The set M =

{

x +
∑

α∈I λαzα : |λα| ≤ εα, α ∈ I
}

is totally bounded.

Proof of Claim 2.1.B. Let ε′ > 0 and F0 ∈ F be such that
∑

α∈I\F0
εα < ε′/2.

Then, the set

MF0
=

{

x +
∑

α∈F0

λαzα : |λα| ≤ εα, α ∈ F0

}

is compact, therefore, we can find y1, . . . , yn ∈ MF0
such that

(2.2) MF0
⊆ B(y1, ε

′/2) ∪ · · · ∪ B(yn, ε′/2).
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Let y = x +
∑

α∈I λ′
αzα ∈ M . Then,

y = x +
∑

α∈F0

λ′
αzα +

∑

α∈I\F0

λ′
αzα = y′ +

∑

α∈I\F0

λ′
αzα

where y′ = x+
∑

α∈F0
λ′

αzα ∈ MF0
. By (2.2) there exists 1 ≤ k ≤ n such that ‖y′−yk‖ <

ε′/2. Then

‖y − yk‖ =

∥

∥

∥

∥

∥

∥

y′ − yk +
∑

α∈I\F0

λ′
αzα

∥

∥

∥

∥

∥

∥

≤ ‖y′ − yk‖ +
∑

α∈I\F0

εα < ε′.

Proof of the Lemma 2.1 – continued. By Claim 2.1.A., for every F ∈ F there
exists a vector uF ∈ MF ⊂ M such that

(2.3) ‖TαuF ‖ ≥ aα‖Tα‖, for all α ∈ F.

Thus, we obtain a net (uF )F∈F in M . By Claim 2.1.B., (uF )F∈F contains a convergent
subnet, i.e. there exist a directed set B, a subfamily {Fβ : β ∈ B} ⊂ F and u ∈ X such
that:

1. for every F0 ∈ F there is β0 ∈ B so that Fβ ⊇ F0, for all β ≥ β0;

2. (uFβ
)β∈B converges to u.

Then,

a. ‖x − u‖ ≤ ‖x − uFβ
‖ + ‖uFβ

− u‖ < 1/4 + ‖uFβ
− u‖, for every β ∈ B, and

consequently ‖x − u‖ ≤ 1/4;

b. if α0 ∈ I is fixed and β0 ∈ B is such that Fβ ⊃ {α0} for every β ≥ β0, then by
(2.3), ‖Tα0

uFβ
‖ ≥ aα0

‖Tα0
‖ and, consequently,

‖Tα0
u‖ = lim

β∈B
‖Tα0

uFβ
‖ ≥ aα0

‖Tα0
‖. �

Corollary 2.2.Let {Tα : α ∈ I} be an arbitrary family of operators in B(X ),

{(aα,n)n∈N : α ∈ I} be a family of sequences of positive numbers such that
∑

(α,n)∈I×N
a
2/3
α,n

< +∞ and x ∈ X . Then, for every ε > 0 there exists n0 ∈ N and z ∈ X satisfying

‖x − z‖ < ε and

‖T n
α z‖ ≥ aα,n‖T

n
α ‖, for every α ∈ I and n ≥ n0.

Proof. Let G = {G ⊂ I × N : G is finite}. Since
∑

(α,n)∈I×N
a
2/3
α,n < +∞, there are

G0 ∈ G and a > 0 such that


8
∑

(α,n)∈(I×N)\G0

a2/3
α,n





3/2

< a < ε.

Let m0 = max{n ∈ N : ∃α ∈ I, (α, n) ∈ G0} and let k0 be the number of elements of
G0. We define

bα,n =

{

(8k0)
−3/2, if (α, n) ∈ G0

a−1aα,n , if (α, n) ∈ (I × N)\G0.
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Then
∑

(α,n)∈I×N

b2/3
α,n =

∑

(α,n)∈(I×N)\G0

b2/3
α,n +

∑

(α,n)∈G0

b2/3
α,n

<
1

8
+

∑

(α,n)∈G0

1

8k0
=

1

4
.

Applying Lemma 2.1 on the family {Tα,n = T n
α : (α, n) ∈ I ×N}, we obtain that there is

u ∈ X such that

‖a−1x − u‖ ≤ 1/4 and ‖T n
α u‖ ≥ bα,n‖T

n
α ‖, for all (α, n) ∈ I × N.

Then, the vector z = au will satisfy

‖x − z‖ ≤ a/4 < ε and ‖T n
α z‖ ≥ abα,n‖T

n
α‖, for all (α, n) ∈ I × N.

In particular, if n ≥ n0 = m0 + 1, then from the definition of m0 we have (α, n) 6∈ G0,
and, consequently,

‖T n
α z‖ ≥ aα,n‖T

n
α‖, for all α ∈ I and n ≥ n0. �

3. Remarks on orbits tending strongly to infinity. In view of Corollary 1.2
and the results in Section 2, it seems natural to propose the following

Question 3.1. If (Tα)α∈I is a family in B(X ) and r(Tα) > 1, for all α ∈ I, will then

X contain a dense set D such that Orb(Tα, x) tends strongly to infinity for every x ∈ D
and α ∈ I?

We do not know the answer of this question. However, we have an affirmative answer
to special cases. Extending Theorem 1.3 (a) and (b) for pairs of operators, in [3] and [4]
we have proved the existence of a dense set of vectors with orbits tending strongly to
infinity under pair of operators T and S on Hilbert or reflexive Banach spaces, when both
σap(T )\σp(T ) and σap(S)\σp(S) have a nonempty intersection with {λ ∈ C : |λ| > 1}.
This result can be easily extended up to a finite family of operators. For a sequence
of operators (Ti)i≥1 on Hilbert spaces or reflexive Banach spaces we had to make some
additional restrictions. In [5] and [6] we have proved the existence of a dense set of vectors
D such that Orb(Ti, x) tends strongly to infinity for every x ∈ D and i ≥ 1, when there
is β > 0 so that σap(Ti)\σp(Ti) has a nonempty intersection with {λ ∈ C : |λ| > 1 + β},
for every i ≥ 1.

Question 3.1 can be answered affirmatively for a finite family of operators {Tα : α ∈ I}
on arbitrary Banach space: as in [3] and [4], we can always make an appropriate choice
of the sequences {(aα,n)n∈N : α ∈ I}, and apply Corollary 2.2 and the Spectral Mapping
Theorem. As in the case of sequences of operators on Hilbert or reflexive Banach spaces,
we can give a partial answer to Question 3.1.

Corollary 3.2. If (Tα)α∈I is a countable family of operators in B(X ) and there is

β > 0 so that r(Tα) > 1 + β, for all α ∈ I, then X contains a dense set D such that

Orb(Tα, x) tends strongly to infinity for every x ∈ D and α ∈ I.
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БЕЛЕЖКИ ВЪРХУ РЕГУЛЯРНИ ОРБИТИ НА ФАМИЛИЯ ОТ

ОПЕРАТОРИ

Соня Манчевска, Мария Оровчанец

Разглежда се проблемът за съществуване на гъсто множество от вектори в Бана-
хово пространство, чиито орбити относно действието на фамилия от оператори
клонят строго към безкрайност.
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