NOTES ON REGULAR ORBITS UNDER FAMILIES OF OPERATORS*

Sonja Mančevska, Marija Orovčanec

In this note is considered the problem of the existence of a dense set of vectors in a Banach space whose orbits under a family of operators tend strongly to infinity.

1. Introduction. Throughout this paper, \mathcal{X} denote an infinite dimensional complex Banach space and $\mathcal{B}(\mathcal{X})$ is the algebra of all bounded linear operators on \mathcal{X}. For $T \in$ $\mathcal{B}(\mathcal{X})$ by $\sigma(T), \sigma_{a p}(T), \sigma_{p}(T)$ and $r(T)$ we denote the spectrum, the approximate point spectrum, the point spectrum and the spectral radius of T, respectively.

An orbit of $x \in \mathcal{X}$ under $T \in \mathcal{B}(\mathcal{X})$ is the sequence

$$
\operatorname{Orb}(T, x):=\left\{x, T x, T^{2} x, \ldots\right\} .
$$

The orbits under a single operator can behave quite differently. An operator can have some orbits very regular (i.e. orbits tending strongly to 0 or tending strongly to infinity) and other orbits extremely irregular (like the one of a hypercyclic vector, i.e. a vector whose orbit is dense in the whole space). For an example of an operator for which the space contains a dense set of vectors with orbits tending strongly to infinity, a dense set of hypercyclic vectors and even a dense set of vectors with orbits tending strongly to 0 , we refer the reader to [1, Ch.III Sec.1.C].

In this paper we study regular orbits tending strongly to infinity: $\left\|T^{n} x\right\| \rightarrow+\infty$, as $n \rightarrow+\infty$. Although the behavior of an orbit depends strongly on the initial vector $x \in \mathcal{X}$, the existence of orbits tending strongly to infinity is closely related to the spectrum of the operator. More precisely, by Corrolary 1.5 in [8] and the Spectral Mapping Theorem, we have

Theorem 1.1. If $T \in \mathcal{B}(\mathcal{X}), \lambda \in \sigma(T)$ and $\left(\alpha_{n}\right)_{n \geq 1}$ is a sequence of positive numbers such that $\sum_{n \geq 1} \alpha_{n}^{2 / 3}<+\infty$, then for every $x \in \mathcal{X}$ and every $\varepsilon>0$ there is a positive integer $n_{0}=n_{0}(\varepsilon)$ and a vector $z \in \mathcal{X}$ satisfying $\|x-z\|<\varepsilon$ and

$$
\left\|T^{n} z\right\| \geq \alpha_{n}|\lambda|^{n}, \text { for all } n \geq n_{0}
$$

Corollary 1.2. If $T \in \mathcal{B}(\mathcal{X})$ is with $r(T)>1$, then there is a dense set $D \subset \mathcal{X}$ such that $\operatorname{Orb}(T, x)$ tends strongly to infinity for every $x \in D$.

[^0]Before continuing, let us mention that in the settings of reflexive Banach spaces and, in particular, in the case of operators on a Hilbert spaces, as the proofs of the Beauzamy's results in [1, Theorem III.2.A.1] and [1, Theorem III.2.A.5] suggest (for a complete proof of the second result see [2]), for $\lambda \in \sigma_{a p}(T) \backslash \sigma_{p}(T)$ we can give better estimates than the one in Theorem 1.1 as follows.

Theorem 1.3. Let \mathcal{X} be a reflexive Banach space, $T \in \mathcal{B}(\mathcal{X}),\left(\alpha_{n}\right)_{n \geq 1}$ is a sequence of positive numbers and $\lambda \in \sigma_{a p}(T) \backslash \sigma_{p}(T)$.
(a) If $\sum_{n \geq 1} \alpha_{n}<+\infty$, then every open ball in \mathcal{X} with radius strictly larger than $\sum_{n \geq 1} \alpha_{n}$ contains a vector $z \in \mathcal{X}$ satisfying

$$
\left\|T^{n} z\right\| \geq \alpha_{n}|\lambda|^{n} / 2, \text { for all } n \geq 1
$$

(b) If \mathcal{X} is a Hilbert space and $\left(\alpha_{n}\right)_{n \geq 1}$ strictly deceases to 0 , then every open ball in \mathcal{X} with radius strictly larger than α_{1} contains a vector $z \in \mathcal{X}$ satisfying

$$
\left\|T^{n} z\right\| \geq \alpha_{n}|\lambda|^{n}, \text { for all } n \geq 1
$$

2. Orbits under families of operators. The main results in this section are based on V. Müller's results stated as Lemma 1.4 and Corollary 1.5 in [8]. For our purpose we are going to use the following modification of Lemma 1.4:

Lemma 2.1. Let \mathcal{X} and \mathcal{Y} be Banach spaces, $\left\{T_{\alpha}: \alpha \in I\right\}$ be a family of operators on $\mathcal{B}(\mathcal{X}, \mathcal{Y})$, $\left(a_{\alpha}\right)_{\alpha \in I}$ a family of positive numbers such that $\sum_{\alpha \in I} a_{\alpha}^{2 / 3}<1 / 4$ and $x \in \mathcal{X}$. Then, there exists $u \in \mathcal{X}$ such that $\|x-u\| \leq 1 / 4$ and

$$
\left\|T_{\alpha} u\right\| \geq a_{\alpha}\left\|T_{\alpha}\right\|, \text { for all } \alpha \in I
$$

Proof. Let $\delta>0$ be such that $(1+\delta) \sum_{\alpha \in I} a_{\alpha}^{2 / 3}<1 / 4$. For $\alpha \in I$, let $z_{\alpha} \in \mathcal{X}$ be such that $\left\|z_{\alpha}\right\|=1$ and $\left\|T_{\alpha} z_{\alpha}\right\| \geq(1+\delta)^{-1}\left\|T_{\alpha}\right\|$, and put $\varepsilon_{\alpha}=(1+\delta) a_{\alpha}^{2 / 3}$. Let

$$
\mathcal{F}=\{F \subset I: F \text { is finite }\} .
$$

Claim 2.1.A. For every $F \in \mathcal{F}$ there exists a set $\left\{\lambda_{\alpha}: \alpha \in F\right\} \subset \mathbb{C}$ such that $\left|\lambda_{\alpha}\right| \leq \varepsilon_{\alpha}$ for all $\alpha \in F$ and

$$
\begin{equation*}
\left\|T_{\beta}\left(x+\sum_{\alpha \in F} \lambda_{\alpha} z_{\alpha}\right)\right\| \geq a_{\beta}\left\|T_{\beta}\right\|, \text { for all } \beta \in F \tag{2.1}
\end{equation*}
$$

Proof of Claim 2.1.A. The same as the proof of part A in [8, Lemma 1.4].
Claim 2.1.B. The set $M=\left\{x+\sum_{\alpha \in I} \lambda_{\alpha} z_{\alpha}:\left|\lambda_{\alpha}\right| \leq \varepsilon_{\alpha}, \alpha \in I\right\}$ is totally bounded.
Proof of Claim 2.1.B. Let $\varepsilon^{\prime}>0$ and $F_{0} \in \mathcal{F}$ be such that $\sum_{\alpha \in I \backslash F_{0}} \varepsilon_{\alpha}<\varepsilon^{\prime} / 2$. Then, the set

$$
M_{F_{0}}=\left\{x+\sum_{\alpha \in F_{0}} \lambda_{\alpha} z_{\alpha}:\left|\lambda_{\alpha}\right| \leq \varepsilon_{\alpha}, \alpha \in F_{0}\right\}
$$

is compact, therefore, we can find $y_{1}, \ldots, y_{n} \in M_{F_{0}}$ such that

$$
\begin{equation*}
M_{F_{0}} \subseteq B\left(y_{1}, \varepsilon^{\prime} / 2\right) \cup \cdots \cup B\left(y_{n}, \varepsilon^{\prime} / 2\right) \tag{2.2}
\end{equation*}
$$

Let $y=x+\sum_{\alpha \in I} \lambda_{\alpha}^{\prime} z_{\alpha} \in M$. Then,

$$
y=x+\sum_{\alpha \in F_{0}} \lambda_{\alpha}^{\prime} z_{\alpha}+\sum_{\alpha \in I \backslash F_{0}} \lambda_{\alpha}^{\prime} z_{\alpha}=y^{\prime}+\sum_{\alpha \in I \backslash F_{0}} \lambda_{\alpha}^{\prime} z_{\alpha}
$$

where $y^{\prime}=x+\sum_{\alpha \in F_{0}} \lambda_{\alpha}^{\prime} z_{\alpha} \in M_{F_{0}}$. By (2.2) there exists $1 \leq k \leq n$ such that $\left\|y^{\prime}-y_{k}\right\|<$ $\varepsilon^{\prime} / 2$. Then

$$
\left\|y-y_{k}\right\|=\left\|y^{\prime}-y_{k}+\sum_{\alpha \in I \backslash F_{0}} \lambda_{\alpha}^{\prime} z_{\alpha}\right\| \leq\left\|y^{\prime}-y_{k}\right\|+\sum_{\alpha \in I \backslash F_{0}} \varepsilon_{\alpha}<\varepsilon^{\prime}
$$

Proof of the Lemma 2.1 - continued. By Claim 2.1.A., for every $F \in \mathcal{F}$ there exists a vector $u_{F} \in M_{F} \subset M$ such that

$$
\begin{equation*}
\left\|T_{\alpha} u_{F}\right\| \geq a_{\alpha}\left\|T_{\alpha}\right\|, \text { for all } \alpha \in F \tag{2.3}
\end{equation*}
$$

Thus, we obtain a net $\left(u_{F}\right)_{F \in \mathcal{F}}$ in M. By Claim 2.1.B., $\left(u_{F}\right)_{F \in \mathcal{F}}$ contains a convergent subnet, i.e. there exist a directed set B, a subfamily $\left\{F_{\beta}: \beta \in B\right\} \subset \mathcal{F}$ and $u \in \mathcal{X}$ such that:

1. for every $F_{0} \in \mathcal{F}$ there is $\beta_{0} \in B$ so that $F_{\beta} \supseteq F_{0}$, for all $\beta \geq \beta_{0}$;
2. $\left(u_{F_{\beta}}\right)_{\beta \in B}$ converges to u.

Then,
a. $\|x-u\| \leq\left\|x-u_{F_{\beta}}\right\|+\left\|u_{F_{\beta}}-u\right\|<1 / 4+\left\|u_{F_{\beta}}-u\right\|$, for every $\beta \in B$, and consequently $\|x-u\| \leq 1 / 4$;
b. if $\alpha_{0} \in I$ is fixed and $\beta_{0} \in B$ is such that $F_{\beta} \supset\left\{\alpha_{0}\right\}$ for every $\beta \geq \beta_{0}$, then by (2.3), $\left\|T_{\alpha_{0}} u_{F_{\beta}}\right\| \geq a_{\alpha_{0}}\left\|T_{\alpha_{0}}\right\|$ and, consequently,

$$
\left\|T_{\alpha_{0}} u\right\|=\lim _{\beta \in B}\left\|T_{\alpha_{0}} u_{F_{\beta}}\right\| \geq a_{\alpha_{0}}\left\|T_{\alpha_{0}}\right\| .
$$

Corollary 2.2. Let $\left\{T_{\alpha}: \alpha \in I\right\}$ be an arbitrary family of operators in $\mathcal{B}(\mathcal{X})$, $\left\{\left(a_{\alpha, n}\right)_{n \in \mathbb{N}}: \alpha \in I\right\}$ be a family of sequences of positive numbers such that $\sum_{(\alpha, n) \in I \times \mathbb{N}} a_{\alpha, n}^{2 / 3}$ $<+\infty$ and $x \in \mathcal{X}$. Then, for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ and $z \in \mathcal{X}$ satisfying $\|x-z\|<\varepsilon$ and

$$
\left\|T_{\alpha}^{n} z\right\| \geq a_{\alpha, n}\left\|T_{\alpha}^{n}\right\|, \text { for every } \alpha \in I \text { and } n \geq n_{0}
$$

Proof. Let $\mathcal{G}=\{G \subset I \times \mathbb{N}: G$ is finite $\}$. Since $\sum_{(\alpha, n) \in I \times \mathbb{N}} a_{\alpha, n}^{2 / 3}<+\infty$, there are $G_{0} \in \mathcal{G}$ and $a>0$ such that

$$
\left(8 \sum_{(\alpha, n) \in(I \times \mathbb{N}) \backslash G_{0}} a_{\alpha, n}^{2 / 3}\right)^{3 / 2}<a<\varepsilon .
$$

Let $m_{0}=\max \left\{n \in \mathbb{N}: \exists \alpha \in I,(\alpha, n) \in G_{0}\right\}$ and let k_{0} be the number of elements of G_{0}. We define

$$
b_{\alpha, n}= \begin{cases}\left(8 k_{0}\right)^{-3 / 2}, & \text { if }(\alpha, n) \in G_{0} \\ a^{-1} a_{\alpha, n}, & \text { if }(\alpha, n) \in(I \times \mathbb{N}) \backslash G_{0}\end{cases}
$$

Then

$$
\begin{aligned}
\sum_{(\alpha, n) \in I \times \mathbb{N}} b_{\alpha, n}^{2 / 3} & =\sum_{(\alpha, n) \in(I \times \mathbb{N}) \backslash G_{0}} b_{\alpha, n}^{2 / 3}+\sum_{(\alpha, n) \in G_{0}} b_{\alpha, n}^{2 / 3} \\
& <\frac{1}{8}+\sum_{(\alpha, n) \in G_{0}} \frac{1}{8 k_{0}}=\frac{1}{4} .
\end{aligned}
$$

Applying Lemma 2.1 on the family $\left\{T_{\alpha, n}=T_{\alpha}^{n}:(\alpha, n) \in I \times \mathbb{N}\right\}$, we obtain that there is $u \in \mathcal{X}$ such that

$$
\left\|a^{-1} x-u\right\| \leq 1 / 4 \text { and }\left\|T_{\alpha}^{n} u\right\| \geq b_{\alpha, n}\left\|T_{\alpha}^{n}\right\|, \text { for all }(\alpha, n) \in I \times \mathbb{N}
$$

Then, the vector $z=a u$ will satisfy

$$
\|x-z\| \leq a / 4<\varepsilon \text { and }\left\|T_{\alpha}^{n} z\right\| \geq a b_{\alpha, n}\left\|T_{\alpha}^{n}\right\|, \text { for all }(\alpha, n) \in I \times \mathbb{N}
$$

In particular, if $n \geq n_{0}=m_{0}+1$, then from the definition of m_{0} we have $(\alpha, n) \notin G_{0}$, and, consequently,

$$
\left\|T_{\alpha}^{n} z\right\| \geq a_{\alpha, n}\left\|T_{\alpha}^{n}\right\|, \text { for all } \alpha \in I \text { and } n \geq n_{0}
$$

3. Remarks on orbits tending strongly to infinity. In view of Corollary 1.2 and the results in Section 2, it seems natural to propose the following

Question 3.1. If $\left(T_{\alpha}\right)_{\alpha \in I}$ is a family in $\mathcal{B}(\mathcal{X})$ and $r\left(T_{\alpha}\right)>1$, for all $\alpha \in I$, will then \mathcal{X} contain a dense set D such that $\operatorname{Orb}\left(T_{\alpha}, x\right)$ tends strongly to infinity for every $x \in D$ and $\alpha \in I$?

We do not know the answer of this question. However, we have an affirmative answer to special cases. Extending Theorem $1.3(a)$ and (b) for pairs of operators, in [3] and [4] we have proved the existence of a dense set of vectors with orbits tending strongly to infinity under pair of operators T and S on Hilbert or reflexive Banach spaces, when both $\sigma_{a p}(T) \backslash \sigma_{p}(T)$ and $\sigma_{a p}(S) \backslash \sigma_{p}(S)$ have a nonempty intersection with $\{\lambda \in \mathbb{C}:|\lambda|>1\}$. This result can be easily extended up to a finite family of operators. For a sequence of operators $\left(T_{i}\right)_{i \geq 1}$ on Hilbert spaces or reflexive Banach spaces we had to make some additional restrictions. In [5] and [6] we have proved the existence of a dense set of vectors D such that $\operatorname{Orb}\left(T_{i}, x\right)$ tends strongly to infinity for every $x \in D$ and $i \geq 1$, when there is $\beta>0$ so that $\sigma_{a p}\left(T_{i}\right) \backslash \sigma_{p}\left(T_{i}\right)$ has a nonempty intersection with $\{\lambda \in \mathbb{C}:|\lambda|>1+\beta\}$, for every $i \geq 1$.

Question 3.1 can be answered affirmatively for a finite family of operators $\left\{T_{\alpha}: \alpha \in I\right\}$ on arbitrary Banach space: as in [3] and [4], we can always make an appropriate choice of the sequences $\left\{\left(a_{\alpha, n}\right)_{n \in \mathbb{N}}: \alpha \in I\right\}$, and apply Corollary 2.2 and the Spectral Mapping Theorem. As in the case of sequences of operators on Hilbert or reflexive Banach spaces, we can give a partial answer to Question 3.1.

Corollary 3.2. If $\left(T_{\alpha}\right)_{\alpha \in I}$ is a countable family of operators in $\mathcal{B}(\mathcal{X})$ and there is $\beta>0$ so that $r\left(T_{\alpha}\right)>1+\beta$, for all $\alpha \in I$, then \mathcal{X} contains a dense set D such that $\operatorname{Orb}\left(T_{\alpha}, x\right)$ tends strongly to infinity for every $x \in D$ and $\alpha \in I$.

REFERENCES

[1] B. Beauzamy. Introduction to Operator Theory and Invariant Subspaces. Amsterdam, Netherlands, Elsevier Sci. Publ. B. V., 1988.
[2] S. Mančevska. Operatori so Orbiti Što težat kon beskonečnost. $8^{\text {th }}$ MSDR, Ohrid, 2004, 131-140.
[3] S. Mančevska. On Orbits For Pairs of Operators on an Infinite Dimensional Complex Hilbert Space. Kragujevac, J. Math 30 (2007), 293-304.
[4] S. Mančevska, M. Orovčanec. Orbits Tending Strongly to Infinity Under Pairs of Operators on Reflexive Banach Spaces. Glasnik Matematički, to appear.
[5] S. Mančevska, M. Orovčanec. Orbits Tending to Infinity Under Sequences of Operators on Hilbert Spaces. Filomat, 21, 2 (2007) , 163-173.
[6] S. Mančevska, M. Orovčanec. Orbits Tending to Infinity Under Sequences of Operators On Banach Spaces, submited.
[7] V. Müller. Local Spectral Radius Formula For Operators in Banach Spaces. Czechoslovak Math. J., 38 (1988), 726-729.
[8] V. Müller. Orbits, Weak Orbits and Local Capacity of Operators. Ind. Eq. Oper. Theory, 41 (2001), 230-253

Sonja Mančevska
University of St. Clement Ohridski
Faculty of Technical Sciences
Ivo Lola Ribar b.b.
7000 Bitola, Macedonia
e-mail: sonja.manchevska@uklo.edu.mk
Marija Orovčanec
University of Ss. Cyril and Methodius
Faculty of Natural Sciences and Mathematics
Institute of Mathematics
Gazi Baba b.b., P. O. Box. 162
1000 Skopje, Macedonia
e-mail: marijaor@iunona.pmf.ukim.edu.mk

БЕЛЕЖКИ ВЪРХУ РЕГУЛЯРНИ ОРБИТИ НА ФАМИЛИЯ ОТ ОПЕРАТОРИ

Соня Манчевска, Мария Оровчанец

Разглежда се проблемът за съществуване на гъсто множество от вектори в Банахово пространство, чиито орбити относно действието на фамилия от оператори клонят строго към безкрайност.

[^0]: *2000 Mathematics Subject Classification: Primary 47A05, secondary 47A25, 47A60.
 Key words: Orbits tending to infinity, spectrum, Banach space, families of operators.

