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NOTES ON REGULAR ORBITS UNDER FAMILIES OF
OPERATORS"
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In this note is considered the problem of the existence of a dense set of vectors in a
Banach space whose orbits under a family of operators tend strongly to infinity.

1. Introduction. Throughout this paper, X denote an infinite dimensional complex
Banach space and B(X) is the algebra of all bounded linear operators on X. For T €
B(X) by o(T'), 0ap(T'), 0p(T) and r(T") we denote the spectrum, the approximate point
spectrum, the point spectrum and the spectral radius of T', respectively.

An orbit of x € X under T € B(X) is the sequence

Orb(T, ) := {z, Tz, T?x,...}.

The orbits under a single operator can behave quite differently. An operator can have
some orbits very regular (i.e. orbits tending strongly to 0 or tending strongly to infinity)
and other orbits extremely irregular (like the one of a hypercyclic vector, i.e. a vector
whose orbit is dense in the whole space). For an example of an operator for which the
space contains a dense set of vectors with orbits tending strongly to infinity, a dense set
of hypercyclic vectors and even a dense set of vectors with orbits tending strongly to 0,
we refer the reader to [1, Ch.III Sec.1.C].

In this paper we study regular orbits tending strongly to infinity: ||T"z| — +oo, as
n — +o0o. Although the behavior of an orbit depends strongly on the initial vector x € X,
the existence of orbits tending strongly to infinity is closely related to the spectrum of
the operator. More precisely, by Corrolary 1.5 in [8] and the Spectral Mapping Theorem,
we have

Theorem 1.1. If T € B(X), A € 0(T) and (an)n>1 s a sequence of positive numbers

such that >, <, a%/S < 400, then for every x € X and every € > 0 there is a positive
integer ng = ng(e) and a vector z € X satisfying ||z — z|| < & and

IT"z|| > an|A|", for all n > ny.

Corollary 1.2.If T € B(X) is with r(T) > 1, then there is a dense set D C X such
that Orb(T, x) tends strongly to infinity for every x € D.
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Before continuing, let us mention that in the settings of reflexive Banach spaces and,
in particular, in the case of operators on a Hilbert spaces, as the proofs of the Beauzamy’s
results in [1, Theorem I11.2.A.1] and [1, Theorem III.2.A.5] suggest (for a complete proof
of the second result see [2]), for A € g4,(T)\op(T') we can give better estimates than the
one in Theorem 1.1 as follows.

Theorem 1.3. Let X be a reflexive Banach space, T € B(X), (an)n>1 is a sequence
of positive numbers and X € 0qp(T)\op(T).

(a) If 3,51 an < +00, then every open ball in X with radius strictly larger than
Y ons1On contains a vector z € X satisfying

IT™z|| > an|A™/2, for all n > 1.

(b) If X is a Hilbert space and (ap)n>1 strictly deceases to 0, then every open ball in
X with radius strictly larger than ay contains a vector z € X satisfying

1T™z|| = an|A™, for alln > 1.

2. Orbits under families of operators. The main results in this section are based
on V. Miiller’s results stated as Lemma 1.4 and Corollary 1.5 in [8]. For our purpose we
are going to use the following modification of Lemma 1.4:

Lemma 2.1. Let X and Y be Banach spaces, {T, : a € I} be a family of operators

on B(X,)), (aa)acr a family of positive numbers such that ) ; aZl® < 1/4 andz € X.

Then, there exists u € X such that |z — ul| < 1/4 and
1 Towl] > anl|Tall, for all « € I.

Proof. Let § > 0 be such that (140)>,.; a2l < 1/4. For a € I, let zo € X be

such that ||zo]| = 1 and || Tazal| > (14 6)~Y|Tall, and put eq = (1 + 6)a/>. Let
F ={F CI:F is finite}.

Claim 2.1.A. For every F' € F there exists a set {A\y : @ € F} C C such that
[Aa| < &4 for all @ € F and

Ty (ac +y )\aza>

acF

(2.1) > ag||T3||, for all § € F.

Proof of Claim 2.1.A. The same as the proof of part A in [8, Lemma 1.4].

Claim 2.1.B. The set M = {:c + 2 aer Aaza Al L eay a € I} is totally bounded.

Proof of Claim 2.1.B. Let ¢’ > 0 and Fy € F be such that 3 ;g €a < €'/2.
Then, the set

MFU{I'+ Z )\aza:|>\a|§€a; QEFo}

a€Fy
is compact, therefore, we can find y1,...,y, € Mp, such that
(2.2) Mg, C B(y1,€'/2) U---U B(yn,€'/2).
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Let y =2+ c; AyZa € M. Then,
y=x+ Z N Zo + Z Noza =y + Z N Za
aEFy a€l\Fy a€l\Fy

where y' = 2+3"  cp AoZa € Mg, By (2.2) there exists 1 < k < n such that [y’ —yx|| <
¢’/2. Then

Iy — vl = ||y — v + Z Aazall < 1Y —yill + Z €a <€
aEl\Fy aEl\Fy
Proof of the Lemma 2.1 — continued. By Claim 2.1.A., for every F' € F there
exists a vector up € Mp C M such that
(2.3) ITour| > aa||Ts||, for all « € F.
Thus, we obtain a net (up)per in M. By Claim 2.1.B., (up)recF contains a convergent

subnet, i.e. there exist a directed set B, a subfamily {Fj: 3 € B} C F and u € X such
that:

1. for every Fyy € F there is By € B so that Fg D Fp, for all 8 > fo;

2. (up,)pen converges to u.
Then,

a. ||z —ul| < ||z —up|l + [lup, —u| < 1/4+ |lup, — ul|, for every 8 € B, and
consequently ||z —ul| < 1/4;

b. if ag € I is fixed and By € B is such that Fz D {ao} for every 8 > (o, then by
(2.3), [Tapurs|l > aayl|Ta, || and, consequently,

”Taou” = élené ||TaouF5|| > aOm”TOto”' O

Corollary 2.2.Let {T, : a € I} be an arbitrary family of operators in B(X),
{(aa,n)nen + o € I} be a family of sequences of positive numbers such that 3, )erxn ai{z
< 400 and x € X. Then, for every ¢ > 0 there exists ng € N and z € X satisfying

|z —z|| < e and

T2z > aanl|T2|, for every a € I and n > ny.

Proof. Let G = {G C I x N : G is finite}. Since Z(a’n)ngai{i < +00, there are
Gy € G and a > 0 such that
3/2

8 Z ai{z <a<e.
(a,n)e(IxXN)\Go
Let mop = max{n € N: Ja € I, (a,n) € Go} and let ko be the number of elements of
Go. We define
b _ { (8]@’0)_3/2, if (Oé, ’I’L) € Gy
wn atagn , if (a,n) € (I x N)\Go.
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Then

DN SR EAD DI

(a,n)eIxN (a,n)E(IxN)\Go (a,n)EGo
1 1 1
< = —_— = -,
5T 2w T
(a,n)EGoH

Applying Lemma 2.1 on the family {7y, , = T2 : (a,n) € I x N}, we obtain that there is
u € X such that

lla=tz — u|| < 1/4 and || T2u|| > ban||T2|, for all (a,n) € I x N.
Then, the vector z = au will satisfy
le —z|| < a/4 < e and |T2z| > aba || T2, for all (a,n) € I x N.

In particular, if n > ng = mg + 1, then from the definition of mg we have (o, n) ¢ Gy,
and, consequently,

1722 > aanl|Ty|l, for all « € I and n > ng. O

3. Remarks on orbits tending strongly to infinity. In view of Corollary 1.2
and the results in Section 2, it seems natural to propose the following

Question 3.1. If (Ty)aer is a family in B(X) and r(Ty) > 1, for all a € I, will then
X contain a dense set D such that Orb(Ty, x) tends strongly to infinity for every x € D
and o € 17

We do not know the answer of this question. However, we have an affirmative answer
to special cases. Extending Theorem 1.3 (a) and (b) for pairs of operators, in [3] and [4]
we have proved the existence of a dense set of vectors with orbits tending strongly to
infinity under pair of operators T" and S on Hilbert or reflexive Banach spaces, when both
Oap(T)\op(T) and 0qp(S)\op(S) have a nonempty intersection with {A € C : || > 1}.
This result can be easily extended up to a finite family of operators. For a sequence
of operators (7;);>1 on Hilbert spaces or reflexive Banach spaces we had to make some
additional restrictions. In [5] and [6] we have proved the existence of a dense set of vectors
D such that Orb(T;, z) tends strongly to infinity for every € D and ¢ > 1, when there
is > 0 so that 0,p,(T;)\op(T;) has a nonempty intersection with {\ € C: |A\| > 1+ 3},
for every i > 1.

Question 3.1 can be answered affirmatively for a finite family of operators {T, : « € I'}
on arbitrary Banach space: as in [3] and [4], we can always make an appropriate choice
of the sequences {(aa,n)nen : @ € I}, and apply Corollary 2.2 and the Spectral Mapping
Theorem. As in the case of sequences of operators on Hilbert or reflexive Banach spaces,
we can give a partial answer to Question 3.1.

Corollary 3.2.If (Ta)acr i a countable family of operators in B(X) and there is
B > 0 so that r(Ty) > 14 3, for all a € I, then X contains a dense set D such that
Orb(T,, ) tends strongly to infinity for every x € D and « € I.
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BEJIE2KKW B'bPXY PEI'VJIAPHN OPBUTU HA ®AMUJINA OT
OITEPATOPHA

Cousa Man4deBcka, Mapusi OpoB4uanerit

Pasrsexxta ce npobsieMbT 3a ChIeCTByBaHe Ha I'bCTO MHOXKECTBO OT BeKTOpH B Bana-
XOBO IIPOCTPAHCTBO, YMHUTO OPOUTHA OTHOCHO JE€MCTBHETO HA (DaMUINA OT OIEepaTOPU
KJIOHSIT CTPOTrO K'bM O€3KPaifHOCT.
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