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TRANSITIVE OPERATORS ON R}~

Simeon T. Stefanov, Vladimir T. Todorov

Let X be a topological space and Y C X. The map f:Y — X is said to be transitive
if there exists an element ¢t € Y for which the forward orbit

O+ f(t) ={f"(t)ln € N}

is a dense subset of X. In this paper we consider an example of a transitive map in
the non countable product X = R¥ (recall that X has an uncountable weight).

1. Let X be a topological space and ¥ C X. The map f : ¥ — X is said to
be transitive if there exists an element ¢t € Y for which the forward orbit O f(t) =
{f™(t)ln = 1,2,---} is a dense subset of X. We call such a point ¢, as the custom is, a
hypercyclic element of f [4].

This paper contains a sufficient transitivity condition for generalized shift operators

on the uncountable product R® = [] R, where for every «, R, is a copy of the real
a€R

line R. Note that the space R® is separable [1]. Here, occasionally, we use some thoughts

from [2].

It is a folklore fact that transitivity is a topological property:

Suppose that £ : X — X is transitive and let g : X — Y be a homeomorphism. Then,
h=gofog! is also transitive.

To define a generalized shift operator, we need the notion of the shift map:

The injective map v : N — N of the positive integers is said to be a shift map when
the following condition holds:

() v (N) = 0.
n=1
2. Further let X,, be a separable topological space for every integer n, and let g, :

o0
X, (ny — Xn be a surjective map. Next, denote by X the product [] X.

n=1

Definition 2.1. The map g : X — X defined by the formula
gv(x) = 8(x) = (91(z(v(1))), 92(z(¥(2))), - - ., gn(2(¥(n))), - -)

is called a generalized shift operator.
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Denote now for an integer n € N by I(n) the set I(n) = {1,2,...,n}. To prove the
transitivity of g we need the following two lemmas.

Lemma 2.2. For every k there exists an integer ny € N such that for n > nj we have
I(k) nv™(N) = 0.
o0

Proof. We have ) = () v™(N). The map v is injective, hence, § = I(k)N ﬂ "(N) =

n=1

(o]
N (™ (N)NI(k)). Since the set I(k) is finite, it follows from the above that v™*(N)NI(k) =
n=1
() for some ny, € N. From the inclusion v"™*(N) C v"(N) one obtains that I(k)Nv"(N) = ()
for n > ny. Evidently, one may choose in addition the sequence {nj} to be increasing.

Lemma 2.3. If v is a shift function, then there exists a sequence p1 < ps < --- of
integers such that if k # 1, then vP=(I(k)) NvP (I(1)) = 0.

Proof. We may put for example pry = ny + -+ + ng. Thus, for £ < [ we have
0 =1(k) Nv™ (N) = vPx(I(k) N v™(N)). Thus, for the injective function vP* we obtain
vPe(I(k)) NwPete(N) = (). Evidently p; > px + ny and vP1(I(1)) C vP(N) C Pt (N),
so vPr(I(k)) NPt (I(1)) = 0.

Now we can prove the transitivity of the shift operator.

Theorem 2.4. The operator g is transitive.

Proof. Let D, be a dense subset of X,, for n = 1,2,.... For every integer n let us
denote by z, some fixed point of X,, and then consider a countable subset

Dy, =Dy XDy x -+ X Dp X {zpt1} x -
of X. Let D = |J D,. We shall show that D is dense in X, i.e. DNV # (@ for an arbitrary

n=1
non - empty open set V' C X. Of course, we can assume that V = Uy x- - - XU, X X, 41X+
where U; is an open subset of X; fori=1,--- ;n. Let d; € A;NU; foreveryi=1,--- n

Clearly for d = (d1,- - ,dpn, 2nt+1, ) we haved e DN V.

In the sequel we are going to construct an element ¢ € X whose forward orbit O (g)(t)
is a dense set in X (the hyper cyclic element of g). Let us define for this purpose for d € D
the weight w(d) of d by means of the formula

w(d) = max{i|d(i) # z}.
It is easy to verify that the set D is countable and, moreover, that it can be written as a
sequence D = {d;,ds, -} such that the condition w(d,) < n holds for every n € N. So
we can write d,, = (dn1, .-, dpny Zngis .- )
Further, let

M= U ) < {px})

and let v*° be the function v*° : M — N defined by v>°(i,pi) = vP%(i). Clearly, v>°
injective and v>°(I(k) x {px}) Nv>(I(1) x {p1}) = 0 for k # I, since v>°(I(k)) = vP*(1(k))
for every k € N.

Next we can give the construction of the element ¢ € X:

(a) 1(4) = 25 € X; i j ¢ 1> (M).

(b)if j € v>°(M), thenj = vPk (i) for some k and 7 € I(k). Choose now ¢(j) € h; Y(dri),
where hj = g; 0 g,(i) © 0 Gyrr-1(;)-
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It remains to show that the forward orbit O (g)(t) = {g"(t)|n € N} is a dense set.
Let, as above, V' be an open subset of X and V = U; x --- x U, X X;,4+1 X ---. Then,
for some k > n we should have di, = (dg1, - .., dkk, 2k+1,-..) € DNV, where dy; € U;. Tt
follows now by the construction of the element ¢ that gP+(¢) has the form

gpk (t) = (dkladk‘Q; RN dkk7wk‘+17 R )a
where w,, for n > k + 1 is some (arbitrary) element of X,,. Clearly, gP*(¢t) € V.

3. Here we apply the above considerations to the space RE.

We may use, for example, the well known fact that the spaces R¥ and (RR)NO are
homeomorphic [3]. Let us denote by f the homeomorphism f : X — R where X =
o0
[T X. with X,, = R for every positive integer n. Note that we have a wide choice of

n=1
the onto maps g, : X, (n) — X, from Section 1 — for example, we may put g, = id . It

follows by Theorem 2.4 that there is a transitive shift operator g : X — X. Then the map
h: R — RE defined by h(z) = f~! ogo f(x) is transitive.

Speaking in general, Section 2 gives different ways to obtain transitive maps on RE.
We offer here one more example of a transitive map on RF.

o0
In what follows we denote by A,, the set {n} x (—n,n) and let A = |J A,. Obviously,
n=1
the set A has the same cardinality as R and, hence, the spaces R* and R are homeomorphic.
Let u : R® — RR® be a homeomorphism. Moreover, note that for every integer n,

RE "2 RAx Since A is a disjoint sum of A,’s, we should have R = [T R4~ [3].
=1

[ee]

Therefore, if we put X,, = R4 then R* = [] X,, so one can apply Theorem 2.4 to
n=1

obtain a shift operator v : R* — R, Here one can define the maps g, as follows: for

T = (zq) € REFMVM) = Xo(n), we let gn(z) = (:cia)
v(n)

1

Now, one can put w : R — RF by letting w = «~! o v ou to obtain a transitive map

on RE.

Note that there is a lot of publications about transitive functions (see the excellent
survey [4]).
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TPAH3UTUBHU OITEPATOPU B RF

Cumeon T. Credanos, Bonagumup T. Togopos

Heka X e Tonosormuno npocrpancrso u Y C X. Ille ka3same, de oneparopsbr (byH-

kiuara) f 1Y — X e mpasumuena, ako CbIECTBYBa €J1eMeHT ¢t € Y, nojoxkuTesHaTa
osryopoura

O f(t) ={f"(t)In € N}
Ha, KOWTO € HaBCSKbJe I'bCTO MOAMHOXKECTBO Ha X. B Tasm Gesexkka pasriexkiame

IIpUMeP Ha TPAH3UTUBHU OIepaTopH, NedUHUDPAHU B HEM3OPOMMOTO IIPDOU3BEJIEHUE
X =RE (na HanomMHuM, ye X MMa Hen30POMMO TErVIO).



