МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ. 2008 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2008

Proceedings of the Thirty Seventh Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 2-6, 2008

APPROXIMATION BY OPERATOR OF CAO-GONSKA TYPE $G_{S,N}^+$. DIRECT AND CONVERSE THEOREM*

Teodora Dimova Zapryanova

The aim of this paper is to establish the equivalence between the approximating rate of a linear process and the appropriate Peetre K-functional. A general method is applied for proving converse inequalities developed by Z. Ditzian and K. Ivanov.

1. Inroduction. Let $f \in C[-1,1]$, and let n, s be positive integers. The operator $G_{s,n}:C[-1,1]\to\Pi_{sn-s}$ is defined by

$$G_{s,n}(f,x) = \pi^{-1} \int_{-\pi}^{\pi} f(\cos(\arccos x + v)) K_{s,n}(v) dv,$$

where
$$K_{s,n}=c_{n,s}\left(\frac{\sin(nv/2)}{\sin(v/2)}\right)^{2s}$$
, $\pi^{-1}\int_{-\pi}^{\pi}K_{s,n}(v)dv=1$.
Let Lf denote the linear function interpolating f at -1 and 1 , i.e.

$$L(f,x) := \frac{1}{2}f(1)(x+1) + \frac{1}{2}f(-1)(1-x), \quad -1 \le x \le 1.$$

We consider the sequence of operators

$$G_{s,n}^+(f,x) = G_{s,n}(f,x) + L(f,x) - L(G_{s,n}f,x),$$

where $G_{s,n}$ and L are given as above.

In [C-G] Cao and Gonska proved the following

Theorem A. Let $n \geq 2$ and $s \geq 3$. Then, for $f \in C[-1,1]$ it holds

$$|G_{s,n}^+(f,x) - f(x)| \le c\omega_2(f,\sqrt{1-x^2}.n^{-1}), -1 \le x \le 1,$$

where the second order modulus of continuity $\omega_2(f,\delta)$ is defined for $f \in C[a,b]$ by

$$\omega_2(f,\delta) := \{ \sup |f(x+h) + f(x-h) - 2f(x)|, x, x \pm h \in [a,b], 0 \le h \le \delta \}.$$

The aim of this paper is to establish the equivalence between the approximation error of the operator $G_{s,n}^+$ and the appropriate Peetre K-functional.

Let
$$H_1(g(x)) := (1 - x^2)^{\frac{1}{2}} \frac{d}{dx} g(x), \quad H := H_1^2.$$

For $f \in C[-1,1]$, let $||f|| := \max\{|f(x)|: -1 \le x \le 1\}$.
We define for every $f \in C[-1,1]$ and $t > 0$ the K -functional

$$K^+(f,t;C[-1,1],C^2,(I-L)H) := \inf\{\|f-g\|+t\|(I-L)Hg\|:g\in C^2\}.$$

Key words: *K*-functional, linear operator.

^{*2000} Mathematics Subject Classification: 41A25, 41A36.

The idea for the equivalence of the approximation errors of a given sequence of operators and the values of proper K-functionals was studied systematically in [Di-Iv]. Such equivalence (in uniform norm) was established in [Z] for the algebraic version of trigonometric Jackson integrals $G_{s,n}$ and K- functional

$$K\left(f, \frac{1}{n^2}; C[-1, 1], C^2, H\right) = \inf\left\{\|f - g\| + \frac{1}{n^2}\|Hg\| : g \in C^2\right\}$$

and for the operator $G_{s,n}^*(f,x) = G_{s,n}(f,x) + L(f,x) - G_{s,n}(Lf,x)$ and K-functional

$$K^*\left(f,\frac{1}{n^2};C[-1,1],C^2,H(I-L)\right) = \inf\left\{\|f-g\| + \frac{1}{n^2}\|H(I-L)g\| : g \in C^2\right\}$$

(I is the identity operator).

In the present paper we establish the equivalence between the approximating rate of the operator $G_{s,n}^+$ and the value of the K- functional K^+ . We prove

Theorem 1. For $s \geq 3$ and $f \in C[-1,1]$ we have

$$\|G_{s,n}^+f - f\| \sim K^+\left(f, \frac{1}{n^2}; C[-1,1], C^2, (I-L)H\right), \quad n \in \mathbb{N}.$$

The proof of the equivalence in Theorem 1 could not be carried out by using the technique for $G_{s,n}^*$ in [5]. The theorem follows from several basic inequalties.

The notation $\Phi(f,t) \sim \Psi(f,t)$ means that there is a positive constant γ , independent of f and t, such that $\gamma^{-1}\Psi(f,t) < \Phi(f,t) < \gamma\Psi(f,t)$.

By c we denote positive constants, independent of f and t, that may differ at each occurrence.

For
$$r$$
 – natural number we denote $C^r[a,b] = \left\{ f: f,f^{'},...,f^{(r)} \in C[a,b] \text{(continuous function in } [a,b]) \right\}$

2. Proof of Theorem 1.

Definition 2. Set

$$Y = \{g \in C[-1,1] : H_1g \in C[-1,1], Hg \in C[-1,1], H_1g(\pm 1) = 0\}.$$

$$Z = \{g \in Y : H_1^3g \in C[-1,1], H^2g \in C[-1,1], H_1^3g(\pm 1) = 0\}.$$

Lemma 1. Let $g \in Y$ and $\widetilde{g}(s) := g(\cos s)$. Then, $\widetilde{g} \in C^2(\mathbb{R})$ and $\widetilde{g}''(s) = Hg(\cos s)$

The proof is based on the fact that $\frac{d\widetilde{g}(s)}{ds}=0$ at $s=k\pi, k=0,\pm 1,\pm 2$. We get that the left and the right second derivative of the function $\widetilde{g}(s)$ at $s=k\pi, k=0,\pm 1,\pm 2$ are equal.

Lemma 2. Let Y be the space from Definition 2. Then, for every $f \in C[-1,1]$ and t > 0, we have

$$K(f,t;C[-1,1],Y,H) = K(f,t;C[-1,1],C^2,H),$$

$$K^+(f,t;C[-1,1],Y,(I-L)H) = K^+(f,t;C[-1,1],C^2,(I-L)H).$$

The proof follows arguments as those of Lemma 3 in [3]. 170

Lemma 3. For a natural number m we have

$$(G_{s,n}^+)^m = L + [(I-L)G_{s,n}]^m = L + (I-L)G_{s,n}^m.$$

Using that for $f \in C[-1,1]$ (as $G_{s,n}$ maps a linear function into a linear function) $(I-L)G_{s,n}Lf=0$, by induction on m we prove the lemma.

The kernel $K_{s,n}(v)$ is a positive, even trigonometric polynomial and $\int_0^{\pi} u^k K_{s,n}(v) dv \sim n^{-k}$, $k = 0, \dots, 2s - 2$ (see [4], p.57).

Proof of Theorem 1. The theorem will be proved if we show that

 $K^+(f, \frac{1}{n^2}; C[-1, 1], Y, (I - L)H) \sim \|G_{s,n}^+ f - f\|$ (see Lemma 2). We have to establish the inequalities:

1)
$$\|G_{s,n}^+f - f\| \le cK^+\left(f, \frac{1}{n^2}; C[-1, 1], Y, (I - L)H\right);$$

2)
$$K^+\left(f, \frac{1}{n^2}; C[-1, 1], Y, (I - L)H\right) \le c \|G_{s,n}^+ f - f\|$$
.

To prove that $\|G_{s,n}^+f-f\| \leq cK^+f$, $\frac{1}{n^2}$; C[-1,1],Y,(I-L)H), it is sufficient to show that $G_{s,n}^+$ is bounded (which is a well-known fact) and for every $g \in Y$, $\|G_{s,n}^+g-g\| \leq c\frac{1}{n^2}\|(I-L)Hg\|$ (see [Di-Iv, p.72 , Th. 3.4]). Let $g \in Y$. We set $g(\cos(\arccos x + v)) := g(\cos(t+v)) := \widetilde{g}(t+v)$, $\arccos x = t$. Note that $G_{s,n}^+ - I = (I-L)(G_{s,n} - I)$.

We have

$$(G_{s,n}^+g - g)(x) = (I - L)(G_{s,n} - I)g(x) = (I - L)\pi^{-1} \int_{-\pi}^{\pi} (\widetilde{g}(t+v) - \widetilde{g}(t))K_{s,n}(v)dv.$$

Expanding $\widetilde{g}(t+v)$ by Taylor's formula (as $\widetilde{g} \in C^2(\mathbb{R})$ for $g \in Y$)

$$\widetilde{g}(t+v)-\widetilde{g}(t)=v\widetilde{g}'(t)+\int_{t}^{t+v}\widetilde{g}''(\xi)(t+v-\xi)d\xi$$
 and using that $\int_{-\pi}^{\pi}vK_{s,n}(v)dv=0$, we obtain

$$(G_{s,n}^+g - g)(x) = (I - L)\pi^{-1} \int_{-\pi}^{\pi} \int_{t}^{t+v} \widetilde{g}''(\xi)(t + v - \xi) d\xi K_{s,n}(v) dv.$$

We have $\widetilde{g}''(\xi) = (Hg)(\cos \xi)$. Hence,

$$(G_{s,n}^+g - g)(x) = (I - L)\pi^{-1} \int_{-\pi}^{\pi} \int_{t}^{t+v} [(Hg)(\cos \xi)](t + v - \xi)d\xi K_{s,n}(v)dv.$$

As $(LHg)(\cos \xi) = p\cos \xi + q$, it is easy to obtain

$$\int_{-pi}^{\pi} \int_{t}^{t+v} [(LHg)(\cos \xi)](t+v-\xi)d\xi K_{s,n}(v)dv = Q + P\cos t = Q + Px,$$

where
$$P = p \int_{-\pi}^{\pi} (1 - \cos v) K_{s,n}(v) dv$$
, $Q = \frac{q}{2} \int_{-\pi}^{\pi} v^2 K_{s,n}(v) dv$.

Therefore

$$(I - L) \int_{-\pi}^{\pi} \int_{t}^{t+v} [(LHg)(\cos \xi)](t + v - \xi) d\xi K_{s,n}(v) dv = (I - L)(Q + Px) \equiv 0.$$

This implies

$$(G_{s,n}^{+}g - g)(x) = (I - L)\pi^{-1} \int_{-\pi}^{\pi} \int_{t}^{t+v} [(Hg)(\cos \xi)](t + v - \xi)d\xi K_{s,n}(v)dv$$
$$= (I - L)\pi^{-1} \int_{-\pi}^{\pi} \int_{t}^{t+v} [(I - L)(Hg)(\cos \xi)](t + v - \xi)d\xi K_{s,n}(v)dv.$$

Hence.

$$\begin{aligned} \left\| G_{s,n}^{+}g - g \right\| &\leq 2\pi^{-1} \int_{-\pi}^{\pi} \int_{t}^{t+v} (t+v-\xi) d\xi K_{s,n}(v) dv \, \| (I-L)Hg \| \\ &= \pi^{-1} \int_{-\pi}^{\pi} v^{2} K_{s,n}(v) dv \, \| (I-L)Hg \| \leq c \frac{1}{n^{2}} \, \| (I-L)Hg \| \, . \end{aligned}$$

The last estimation completes the proof of the direct implication. The proof of the converse inequality consists of adapting $G_{s,n}^+f$ and $K^+\left(f,\frac{1}{n^2};C[-1,1],Y,(I-L)H\right)$ to the conditions of Theorem 3.1 in ([2], p.69) and Theorem 4.1 in ([2], p.72). We have $G_{s,n}^+f$ for Q_nf , Df=(I-L)Hf, $\Phi(f)=\|D^2(f)\|$, $\lambda(n)=\frac{1}{2\pi}\int_{-\pi}^{\pi}v^2K_{s,n}(v)dv\sim n^{-2}$ for $s\geq 2$, $\lambda_1(n)=\frac{1}{12\pi}\int_{-\pi}^{\pi}v^4K_{s,n}(v)dv\sim n^{-4}$ for $s\geq 3$.

The inequality (3.3) from Theorem 3.1 in ([2], p.69) is satisfied as $G_{s,n}^+$ is a bounded operator. To obtain the condition A < 1 (see [2], p.72, Th. 4.1), it is sufficient to show that $A\frac{\lambda(n)}{\lambda_1(n)} = c\frac{n^2}{m}$ with A < 1 i.e. $A = c\frac{\lambda_1(n)}{\lambda(n)}\frac{n^2}{m} \le cm^{-1} < 1$, which is true for large m. The results needed for inequalities (3.4), (3.5) and (3.6) from Theorem 3.1 in ([2], p. 69) is given in the following three lemmas from which our theorem follows.

Lemma 4. For $f \in Z$ we have

(1)
$$||f - G_{s,n}^+ f + \lambda(n) Df|| \le \lambda_1(n) \Phi(f).$$

Lemma 5. For $f \in C[-1,1]$ we have

(2)
$$||D^2(G_{s,n}^+)^{2m}f|| \le A \frac{\lambda(n)}{\lambda_1(n)} ||D(G_{s,n}^+)^m f|| .$$

Lemma 6. For $f \in C[-1,1]$ we have

(3)
$$||D(G_{s,n}^+)^m f|| \le \frac{B}{\lambda(n)} ||f||.$$

We prove inequalities (2.2) and (2.3) for a power m of $G_{s,n}^+$ such that A < 1.

Proof of Lemma 4. Let $f \in Z$. From $Z \subset Y$ and Lemma 1 we get $\tilde{f} \in C^2(\mathbb{R})$. Applying Lemma 1 for Hf, we get $\tilde{f} \in C^{(4)}(\mathbb{R})$.

We put
$$G_{s,n}f(x) = \pi^{-1} \int_{-\pi}^{\pi} f(\cos(\arccos x + v)) c_{n,s} \left(\frac{\sin(nv/2)}{\sin(v/2)}\right)^{2s} dv = \pi^{-1} \int_{-\pi}^{\pi} \widetilde{f}(t+v)$$
 172

$$K_{s,n}(v)dv = \pi^{-1} \int_{-\pi}^{\pi} \widetilde{f}(t-v)K_{s,n}(v)dv \equiv \widetilde{G}_{s,n}\widetilde{f}(t)$$
, where $\widetilde{f}(t+v) := f(\cos(t+v)) := f(\cos(x+v))$.

Using that
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} v^2 \tilde{f}''(t) K_{s,n}(v) dv = \lambda(n) \tilde{f}''(t)$$
, we get
$$f(x) - G_{s,n}^+ f(x) + \lambda(n) D f(x)$$
$$= f(x) - (L + (I - L)G_{s,n}) f(x) + \lambda(n) (I - L) H f(x)$$
$$= (I - L) (f(x) - G_{s,n} f(x) + \lambda(n) H f(x))$$
$$= (I - L) (\tilde{f}(t) - \widetilde{G_{s,n}} \tilde{f}(t) + \lambda(n) \tilde{f}''(t))$$
$$= (I - L) \frac{1}{\pi} \int_{-\pi}^{\pi} \left[\tilde{f}(t) - \tilde{f}(t+v) + \frac{1}{2} v^2 \tilde{f}''(t) \right] K_{s,n}(v) dv.$$

Expanding $\widetilde{f}(t+v)$ by Taylor's formula and using that $\int_{-\infty}^{\infty} v \widetilde{f}'(t) K_{s,n}(v) dv = 0$,

$$\int_{-\pi}^{\pi} v^3 \widetilde{f}'''(t) K_{s,n}(v) dv = 0, \text{ we obtain}$$

$$f(x) - G_{s,n}^+ f(x) + \lambda(n) Df(x) = -(I - L) \frac{1}{\pi} \int_{-\pi}^{\pi} \int_{t}^{t+v} \frac{1}{3!} \widetilde{f}^{(4)}(\xi) (t+v-\xi)^3 d\xi K_{s,n}(v) dv.$$

We have $\widetilde{f}^{(4)}(\xi) = (H^2 f)(\cos \xi)$. Now we will prove that

$$(I-L)\frac{1}{\pi} \int_{-\pi}^{\pi} \int_{t}^{t+v} \frac{1}{3!} [(H^{2}f)(\cos \xi)](t+v-\xi)^{3} d\xi K_{s,n}(v) dv$$

$$= (I - L)\frac{1}{\pi} \int_{-\pi}^{\pi} \int_{t}^{t+v} \frac{1}{3!} [(I - L)(H^{2}f)(\cos \xi)](t + v - \xi)^{3} d\xi K_{s,n}(v) dv.$$

The last equality will be proved if we show that

$$\int_{-\pi}^{\pi} \int_{t}^{t+v} [(LH^{2}f)(\cos \xi)](t+v-\xi)^{3} d\xi K_{s,n}(v) dv = P_{1}\cos t + Q_{1} = P_{1}x + Q_{1}.$$

Since $(LH^2f)(\cos \xi) = p\cos \xi + q$, we have to show that

(4)
$$\int_{-\pi}^{\pi} \int_{t}^{t+v} (p\cos\xi + q)(t+v-\xi)^{3} d\xi K_{s,n}(v) dv = P_{1}\cos t + Q_{1}.$$

Integrating by parts 3 times the inner integral, we get (4) with

$$P_1 = \int_{-\pi}^{\pi} \left[3v^2 - 6(1 - \cos v) \right] K_{s,n}(v) dv, \qquad Q_1 = \frac{1}{4} \int_{-\pi}^{\pi} v^4 K_{s,n}(v) dv.$$

Thus, $||f - G_{s,n}^+ f + \lambda(n)Df||$

$$= \left\| (I - L) \frac{1}{\pi} \int_{-\pi}^{\pi} \int_{t}^{t+v} \frac{1}{3!} [(I - L)(H^{2}f)(\cos \xi)] (t + v - \xi)^{3} d\xi K_{s,n}(v) dv \right\|$$

$$\leq \frac{2}{\pi 3!} \int_{-\pi}^{\pi} \int_{t}^{t+v} (t + v - \xi)^{3} d\xi K_{s,n}(v) dv \left\| (I - L)H^{2}f \right\|$$

$$= \frac{1}{12\pi} \int_{-\pi}^{\pi} v^{4} K_{s,n}(v) dv \left\| (I - L)H^{2}f \right\| = \lambda_{1}(n) \Phi(f).$$

In the last equality we used that the operator H maps a linear function into a linear function (H(ax + b) = -ax) and hence, $D^2 f = (I - L)H(I - L)Hf = (I - L)H^2 f$.

Proof of Lemma 5. We consider both sides of (2.2). Using Lemma 3 we have

$$\begin{split} D^2(G^+_{s,n})^{2m}f &= (I-L)H(I-L)H(G^+_{s,n})^{2m}f = (I-L)H^2(G^+_{s,n})^{2m}f \\ &= (I-L)H^2(L+(I-L)G^{2m}_{s,n})f \\ &= (I-L)H^2Lf + (I-L)H^2(I-L)G^{2m}_{s,n}f \\ &= (I-L)H^2(I-L)G^{2m}_{s,n}f = (I-L)H^2G^{2m}_{s,n}f, \\ D(G^+_{s,n})^mf &= (I-L)H(G^+_{s,n})^mf = (I-L)H(L+(I-L)G^m_{s,n})f \\ &= (I-L)HLf + (I-L)H(I-L)G^m_{s,n}f \\ &= (I-L)H(I-L)G^m_{s,n}f = (I-L)HG^m_{s,n}f. \end{split}$$

Thus, (2.2) is equivalent to

(5)
$$\|(I-L)H^2G_{s,n}^{2m}f\| \le A\frac{\lambda(n)}{\lambda_1(n)} \|(I-L)HG_{s,n}^mf\|.$$

We recall the inequality

(6)
$$\left\| HG_{s,n}^{m}f\right\| \leq c\frac{n^{2}}{m}\left\| f\right\| ,$$

which is valid for every $s \geq 2$ (see [Z, p.191]). Using the above inequality and that operators $G_{s,n}$ commute with H, we have

$$\begin{split} \left\| (I-L)H^{2}G_{s,n}^{2m}f \right\| &= \left\| (I-L)(HG_{s,n}^{m})(HG_{s,n}^{m})f \right\| \\ &= \left\| (I-L)(HG_{s,n}^{m})(I-L)(HG_{s,n}^{m})f \right\| \\ &\leq 2 \left\| HG_{s,n}^{m}(I-L)HG_{s,n}^{m}f \right\| \\ &\leq c\frac{n^{2}}{m} \left\| (I-L)HG_{s,n}^{m}f \right\| = A\frac{\lambda(n)}{\lambda_{1}(n)} \left\| (I-L)HG_{s,n}^{m}f \right\|. \end{split}$$

This establishes (2.5) and, hence, completes the proof of (2.2).

Proof of Lemma 6. We have

$$\begin{split} \left\| D(G_{s,n}^{+})^{m} f \right\| &= \left\| (I - L) H G_{s,n}^{m} f \right\| \\ &\leq 2 \left\| H G_{s,n}^{m} f \right\| \leq c \frac{n^{2}}{m} \left\| f \right\| = \frac{B}{\lambda(n)} \left\| f \right\|. \end{split}$$

In the last inequality we used the estimation (2.6). This completes the proof of (3).

REFERENCES

- [1] JIA DING CAO, H. GONSKA. Approximation by boolean sums of positive linear operators. Gopenganz-type estimates. *Journal of Approximation theory*, **57**, (1989) 77–89.
- [2] Z. DITZIAN, K. IVANOV. Strong converse inequalities. *Journal D'analyse mathematique*, **61** (1993), 61–111.
- [3] K. IVANOV. A Characterization Theorem for the K-functional for Kantorovich and Durrmeyer Operators, Approximation Theory: A volume dedicated to Borislav Bojanov, Marin Drinov 174

Academic Publishing House, Sofia, (2004), 112-125.

- [4] G. G. LORENTZ. Approximation of Functions, Holt-Rinehart and Winston, 1966 (reprinted by Chelsea).
- [5] T. Zapryanova. Approximation by operators of Cao-Gonska type $G_{s,n}$ and $G_{s,n}^*$. Direct and converse theorems, *Proceedings of the Thirty Third Conference of the Union of Bulgarian Mathematicians*, (2004), 189–194.

Varna University of Economics 77, Kniaz Boris I Blvd. 9002 Varna, Bulgaria e-mail: teodorazap@abv.bg

ПРИБЛИЖАВАНЕ С ОПЕРАТОРИ ОТ ТИП НА КАО-ГОНСКА $G_{S,N}^+$. ПРАВА И ОБРАТНА ТЕОРЕМА

Теодора Димова Запрянова

В работата се доказва еквивалентност на ръста на приближаване с линейния оператор от тип Као-Гонска и подходящо дефиниран K-функционал. Приложен е обща метод (развит от 3. Дитциан и K. Иванов) за доказване на обратни неравенства.