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APPROXIMATION BY OPERATOR OF CAO-GONSKA
TYPE G;N. DIRECT AND CONVERSE THEOREM"

Teodora Dimova Zapryanova

The aim of this paper is to establish the equivalence between the approximating rate
of a linear process and the appropriate Peetre K-functional. A general method is
applied for proving converse inequalities developed by Z. Ditzian and K. Ivanov.

1. Inroduction. Let f € C'[—1,1], and let n, s be positive integers. The operator
Gsn: Cl—1,1] = I, is defined by

)
™

Gen(fyx)=7""1 f(cos(arccosz + v)) K n(v)dv,

—T

sin(nv/2)\ ** (7
where K, ,, = cps | ———= | , K p(v)dv=1.
' 7\ sin(v/2) P
Let Lf denote the linear function interpolating f at —1 and 1, i.e.
1 1
L(f,3) = 5 F @+ 1)+ (-1 -2), —1<w<1L
We consider the sequence of operators
Gio(fix) = Gonlf o) + L(f,2) — L(Gsn fr @),
where G, and L are given as above.
In [C-G] Cao and Gonska proved the following

Theorem A. Letn > 2 and s > 3. Then, for f € C[—1,1] it holds
|G;r7n(f, x) — f(x)| <cws(fivV/1—22n7), -1 <2 <1,
where the second order modulus of continuity ws(f, ) is defined for f € Cla,b] by
wa(f,8) :=={sup|f(x+h)+ f(x —h) —2f(z)|,x,x £ h € [a,b],0 < h < d}.

The aim of this paper is to establish the equivalence between the approximation error
of the operator G;‘:n and the appropriate Peetre K-functional.
Ld
Let Hi(g(z)) := (1 —2?)? d—g(x), H := H?.
x

For f € C[-1,1], let ||f|| ;= max {|f(z)|: —1<ax<1}.
We define for every f € C'[—1,1] and ¢ > 0 the K —functional

E*(f,t;C[=1,1],C* (I = L)H) := inf {||f — gl| + ¢ ||(I — L)Hyg]| : g € C*}.
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The idea for the equivalence of the approximation errors of a given sequence of
operators and the values of proper K—functionals was studied systematically in [Di-
Iv]. Such equivalence (in uniform norm) was established in [Z] for the algebraic version
of trigonometric Jackson integrals G, and K — functional

1 . 1
K f7_2;c[7171]7027H = inf Hffg||+_2||Hg||g€C2
n n
and for the operator G ,,(f,z) = Gsn(f,2) + L(f,2) — Gsn(Lf,z) and K— functional
% 1 . 1
K (£ Clon ) it - 1)) =int {1 gl + 5 |~ gl g € €2}
(I is the identity operator).

In the present paper we establish the equivalence between the approximating rate of
the operator G, and the value of the K — functional K+. We prove

Theorem 1. For s >3 and f € C[—1,1] we have

\GE.f=f]|~ KT (f,%;C[—l,l],CQ,(I—L)H), n e N.

The proof of the equivalence in Theorem 1 could not be carried out by using the
technique for G ,, in [5]. The theorem follows from several basic inequalties.

The notation ®(f,t) ~ U(f,t) means that there is a positive constant ~y, independent
of f and t, such that vy~ W(f,t) < ®(f,t) < YU(f,1).

By ¢ we denote positive constants, independent of f and ¢, that may differ at each
occurrence.

For r — natural number we denote

C"a,b] = {f o f . f7) € Cla, b)(continuous function in [a,b])}

2. Proof of Theorem 1.

Definition 2. Set

Y ={geC[-1,1]: Hige C[-1,1], Hg € C[—1,1], Hig(£1) = 0}

Z={geY:H}ge C[-1,1],H?g € C[-1,1], H}g(+1) = 0}.

Lemma 1. Let g € Y and §(s) := g(coss). Then, g € C*(R) and g"(s) = Hg(cos s)
for s e R.

dg(s)

The proof is based on the fact that s = 0at s =km k=0,%+1,+2. We get that

s
the left and the right second derivative of the function g(s) at s = kw, k = 0, £1, £2 are
equal.

Lemma 2. Let Y be the space from Definition 2. Then, for every f € C[—1,1] and
t > 0, we have

K(fatvC[flal]aY*aH) = K(f,t;C[f].,].],C%H),
K*(f,t;C[-1,1],Y,(I - L)H) = KT"(f,t;C[-1,1],C? (I — L)H).

The proof follows arguments as those of Lemma 3 in [3].
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Lemma 3. For a natural number m we have
(GL)"=L+[(I - L)Gon)" = L+ (I - L)GT',.

Using that for f € C[—1,1] (as G5, maps a linear function into a linear function)
(I = L)Gs,Lf =0, by induction on m we prove the lemma.

s
The kernel K, ,(v) is a positive, even trigonometric polynomial and / uF K, (v)dv ~
0

nk k=0,...,25 2 (see [4], p.57).
Proof of Theorem 1. The theorem will be proved if we show that

1
K*(f, E;C[_L 1,Y,(I - L)H) ~ ||G{,.f — f|| (see Lemma 2). We have to establish
the inequalities:

D 65f ~ 1l < e (Ol LAY (- D)

2) K (oo LY. - D) < cl|6af - 1]

1
To prove that |GY,, f — f|| < cKT, pok C[-1,1],Y,(I—L)H), it is sufficient to show
that G;'fn is bounded (which is a well-known fact) and for every g € Y, HG;‘:ng — gH
¢ ||(I = L)Hygl|| (see [Di-Iv, p.72 , Th. 3.4]). Let g € Y. We set g(cos(arccosz + v)) :
g(cos(t +v)) := g(t +v),arccosz = t. Note that G, — I = (I — L)(Gs, —I).
We have
(G40~ 9)(0) = (1 = L)(Gun ~ Dgla) = (I = Dy [ (@lt+0) = Gle) Kenle)do

—T

A

Expanding g(t + v) by Taylor’s formula (as § € C?(R) for g € Y)

t+v
gt+v)—g(t) =vg'(t) —l—/t 7" (&) (t+v—&)d¢ and using that / VK n(v)dv = 0, we

—T

obtain
™ t+v
(Glag=o)@) =10 [ [ 7O +v— k(o).
We have g” (&) = (Hg)(cos ). Hence,
™ t+v
(Glag=o)@) = (=D [ [ (g o))t + v = O, (o).

As (LHg)(cos&) = pcosé + ¢, it is easy to obtain

/Tr /t+v[(LHg)(cos§)](t +v—§)déK n(v)dv = Q + Pcost = Q + Pz,
—pi Jt

where P = p/ (1 —cosv)Ks,,(v)dv, Q= g/ V2 K (v)dv.

—T —T

Therefore,

™ t+v
(I -L) [ /t [(LHg)(cos§)|(t +v — §)dEKs p(v)dv = (I — L)(Q + Px) = 0.
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This implies

™ t+v
Glag-o@ = (=D [ [ (g cose)t+ v 9K, (i

s t+v
= u-nrt [ [ - DHe s+ 0= K o)

Hence,

|G g — 9l

IN

™ t+v
27r*1/ / (t+v—E&déKs n(v)dv ||(I — L)Hg||
—mJt

= [ PR |- Dl < ey (- D
The last estimation completes ‘:he proof of the direct imphcatlon The proof of the
converse inequality consists of adapting G¥,,f and K™ <f, 5 Cl=1,1,Y,(I - L)H
to the conditions of Theorem 3.1 in ([2], p.69) and Theorem 4.1 Hir ([2], p-72). We have

Ginf for Quf, Df = (1= DHS, #(f) = [D*() ) = 5= [ Konlo)do ~ n?

1 ™
for s > 2, \(n) = ?/ VK (v)dv ~ n~* for s > 3.
™ —T

The inequality (3.3) from Theorem 3.1 in ([2], p.69) is satisfied as G, is a bounded

operator. To obtain the condition A < 1 (see [2], p.72, Th. 4.1), it is sufficient to show
2 )\
that A Aln) — ¢ with A <lie A= 1(n )— < em™! < 1, which is true for large
A1(n) m )\(n) m

m. The results needed for inequalities (3.4), (3.5) and (3.6) from Theorem 3.1 in (2], p
69) is given in the following three lemmas from which our theorem follows.

Lemma 4. For f € Z we have

(1) [f = G f + A0)DF|| < Ai(n)@(f).

Lemma 5. For f € C[—1,1] we have

(2) DG f|| <

)"l

Lemma 6. For f € C[—1,1] we have

3) DG, me_)\ IfII-

(n)

We prove inequalities (2.2) and (2.3) for a power m of G, such that A < 1.

Proof of Lemma 4. Let f € Z. From Z C Y and Lemma 1 we get f € C%(R).
Applying Lemma 1 for Hf, we get f € CW(R).
™ 2 T -~
We put Gy f(z) =71 [ f(cos(arccos z+v))cn s (%) dv=n"1[ Flt+v)
172
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™

Kondv =7 [ F(t — 0) Ky n(v)dv = G f(t), where f(t +v) := f(cos(t + v) :=

f(cos(arccos x + v))_

1 T,
Using that — 5 / V2 f () K g n(v)dv = X(n) £ (), we get
™ ™

£(&) = G, 7() + X)DS (2)
F0) — (L4 (1 = )G (&) + Na)(T — L) ()
= U= D)~ Gunf () + A H ()
= (= D)0 ~ Gon ) + AT 0)
= -0z [ |f0 = Fr o)+ 50 Koo

Expanding f(t + v) by Taylor’s formula and using that / Uf’(t)Ksm(v)dv = 0,

—T

/ USJ?/”(t)Ks,n(U)dv = 0, we obtain

1 0 t+v 1 ~
@) = GLaf @)+ A0DF@) =~ =D% [ [ SFOE -+ 0 - K (w)a
We have f(&¥ (€) = (H%f)(cos&). Now we will prove that

™ t+v
G-nz [ [ G eos ol +o =€ dek (o)

(I-L)= / /Hvl I —L)(H?f)(cos&)](t +v — &)3dEK s (v)d.

The last equality will be proved if we show that

T t+v
/ / [(LH?f)(cos&)|(t +v — €)dEéK s (v)dv = Prcost + Q1 = Pyx + Q.
—m Jt

Since (LH?f)(cos€) = pcosé + ¢, we have to show that

(4) /F /t+v(pcos§ +q)(t +v—&)3dEK s, (v)dv = Py cost + Q.
Integrating by_p;r’;s 3 times the inner integral, we get (4) with
P = /7; [30% — 6 (1 — cosv)] Ky, (v)do, Q1= i/i v K (v)do.
Tnf FA0)DF||

HI nt / /Hvl T = L)(H2f)(cos ©)](t + v — €)*dE K n(v)dv

t+v
—Wgu/_ﬂ/ (t+v— &) dEK s n(v)dv ||(I — LYH?f||
1 T
= m . U4K5,n(v)dv ||(I — L)H2f|| = Al(n)@(f)
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In the last equality we used that the operator H maps a linear function into a linear
function (H(ax +b) = —ax) and hence, D?f = (I — L)YH(I — LYHf = (I — L)H*f.
Proof of Lemma 5. We consider both sides of (2.2). Using Lemma 3 we have
DXGL)"f = (I-LH(I - L)H(GL,)*"f = - L)H*(G{,)*" f
= (- DEAL+ (- LG f
(I — L)H’Lf + (I — L)H*(I — L)G?7!
= (I-L)H*(I-L)G¥f=I-L)H*G¥f,

DG = (I-LH(G,)"f=1-LH(L+(I-L)GT,)f
(I-L)HLf + (I -L)H(I - L)G{,f
(I-L)H(I-L)G,f=(I-L)HG,f.

Thus, (2.2) is equivalent to

(5) (I — L)H*G? f|| < )) (1 = L)HGY, f]| -

We recall the inequality

(6) |HG, S]] <c— £

which is valid for every s > 2 (see [Z, p.191]). Using the above inequality and that
operators G, commute with H, we have

(I - L)H?GZhf|| = || - L)(HGT)(HGT) S|
= ||(IfL)(HG (I — L)( HGm f”
< 2|HGI(I - DHG|
2
< - DEGT, ] = A n)) Iz - yrGm, ||

This establishes (2.5) and, hence, completes the proof of (2.2).
Proof of Lemma 6. We have

Ip@i)m sl = |la-DHGT, f||

< 2|HGE f|\<c ||f||— ()Ilfll

In the last inequality we used the estimation (2.6). This completes the proof of (3).
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IMPUBJIN2KABAHE C OIIEPATOPU OT TUII HA
KAO-TOHCKA Gg,N. ITPABA 1 OBPATHA TEOPEMA

Teogopa Jdumosa 3amnpsinHoBa

B paborara ce qoka3Ba eKBHBAJEHTHOCT HA PbCTa Ha NMpUOIMXKABAHE C JIUHEHHUS
oneparop ot Tun Kao-T'oncka n nmogxonsmo gedunupan K-dyukuuonads. [Ipuioxen
e obmia mMetox (passut or 3. Iurnman u K. VsaHoB) 3a sj0Ka3BaHe Ha OOGpATHU HEpa-
BEHCTBA.
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