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The chemical reaction is investigated by two methods for modelling of chemical
reaction probability using Direct Simulation Monte Carlo method. The order of
differences in the temperatures and the concentrations are investigated by these
methods when the number of molecules and the order of the reaction components
change.

1. Introduction. The effects of nonequilibrium physical chemistry processes are
important for many applied problems. A chemical reaction produces nonequilibrium
velocity distributions. These distributions in bimolecular reactions are described by semi-
classical Bolzman equation. The first stage in modelling such а process is creating reliable
mathematical models. At this time many approaches exist for the chemical reaction
modelling. The Chapman-Enskog (CE) method of solution has been extensively used for a
“slow” reaction [1], and for the fast reaction Shizgal [2] has used the moment method. The
effect of the heat of reaction on the velocity distribution has been studied by Prigogine
and Mahieu using the CE method [3]. Karleman [4] showed that for some collision models
in a homogenous chemical reaction 5 dimensional integral can be reduced to 3 dimensional
integral. Koura [5] and Nurlabaev [6] investigate the fast chemical reaction using Direct
Simulation Monte Carlo method.

Two ways are used for modelling the probability for chemical reaction occurrence. The
first uses the relative velocity while the second uses the relative velocity projection on
the line of the center of the molecules. The purpose of this paper is to make comparison
between two probabilities for the bimolecular chemical reaction modelling in rarefied gas
by Direct Simulation Monte Carlo (DSMC) method.

When DSMC method is used, two kinds of errors exist. The first one is the statistical
error. Chen and Boyd [8] estimate that this error can decrease by increasing of the
collisions. The second error is of deterministic nature. Garcia and Wagner [10] show that
the time-step truncation error is proportional to the square of the time-step. Truncation
error due to discretization in space is proportional to the square of the cell size.

We use model chemical reactions in this paper. Our aim is to estimate the differences
between these two methods.

*2000 Mathematics Subject Classification: 65C20.
Key words: Fluid mechanics, Monte Carlo method.
This work is supported by the Bulgarian National Science Foundation, under Grant MM 806/98.

179



2. Formulation of the problem. Let us consider homogenous bimolecular reversible
chemical reaction A + B ↔ C + D with activation energy εf and εb for the forward
and the backward chemical reaction. Let ε = εb − εf . The mass and the diameters
of the components are noted by mA, mB , mC , mD, dA, dB , dC , dD. The molecules are
modeled by hard spheres. In accordance with the kinetic approach, this chemical reaction
is described by a system of 4 semiclassical Boltzman equations [7]:
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velocity; σ (gij , Ω) dΩ – differential cross-section of the particle scatter within the solid
angle dΩ.

The two ways for modelling the probability for chemical reaction are:
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where ~kij is a unit vector along the line of the center of the molecules.

3. Methods of solution. (a) The time interval [0, T ], over which the solution has
been found out, is subdivided into subintervals with step ∆t;

(b) The space domain is subdivided into cells with sides ∆x, ∆y;

(c) The gas molecules are simulated in the gap G using a stochastic system of N points
(particles) having positions xi (t) = (xi(t), yi(t)) and velocities ξ

i
(t) = (ξ1(t), ξ2(t), ξ3(t));

(d) At any given time there are Nm(i) particles from i-th component in the m-th cell.
This number varies by computing its evolution in the following two stages:

Stage 1. The binary collisions in each cell are calculated without moving the particles.

Stage 2. The particles are moved with the new initial velocities acquired after collision.
We allow no collisions in this stage;

(e) Stages 1 and 2 are repeated until t = T ;

(f) The important moments of the distribution function are calculated by averaging.

Let us now describe the two stages of the calculation in some details:

Stage 1. We use Bird’s “no time counter” scheme, which involves the following two
steps:

1.1. To compute the maximum number of binary collisions, we use the formulas:

(6) Ncmax =
Nm(p)Nm(p − 1)
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Fig. 1. Concentration variation along time Fig. 2. Temperature variation along time

(7) Nc max =
Nm(p)Nm(q)

2Vcell

〈

πσ2 |ξi − ξj |max

〉

∆t,

where 1 ≤ p < q ≤ 4 and Vcell = ∆x∆y is the volume of the cell. We use formula (6)
when we calculate collisions between molecules from one component and (7) between
molecules of different components.

1.2. The pairs (i, j) of particles are chosen randomly with probability
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. If the collision event occurs, then the condition (4) or (5) has

been checked. If the reaction event occurs, then the velocities after collision are calculated
in the following way:
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where P = Miξi + Mjξj and k is a vector randomly distributed on the unit sphere. If

the reaction doesn’t occur , then the velocities are calculated by (3.3) with ε = 0, k = i
and l = j. Otherwise, the velocities remain unchanged.

Stage 2. We compute the new positions and velocities of the particles using the
equations:

(9) x∗

i = xi + ξi∆t, ξ∗i = ξi

as the particles which interact with the boundary are reflected spectrally.

4. Numerical results and discussion. In our studies we fix the following parame-
ters: mA = 1, mB = 1, mC = 1, mD = 1, dA = 1, dB = 1, 4dC = 1, dD = 1, εb = 0.5,
εf = 1.

Numerical effects at the concentrations: Figure 1 shows the concentration values
at different way of the probability calculation for the chemical reaction as the differences
are due namely to the difference at the modelling. At the order change of the reaction
component differences are of order 10−4. When the molecular number changes (1 000 000
and 10 000 000), the differences are of the same order – Figure 3.

Numerical effects at the temperature: Figures 2 and 4 show the temperature
values at different way of the probability calculation for the chemical reaction. Because
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Fig. 3. Concentration variation along time at

the stationary regime

Fig. 4. Temperature variation along time at

the stationary regime

Fig. 5

of the commented difference in the concentration, different quantity of energy comes off
at the transition regime which leads to differences at the stationary regime.

The main differences at the numerical modelling are due to the collision effect between
particles of the type shown on Figure 5. At a modelling without projection, the chemical
reaction probability for this collision is close to 1, while at collision with projection the
probability is close to 0.

The aim of a further study is to estimate the cause for the differences at the increase
of the reaction particle number.
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ЧИСЛЕНИ ЕФЕКТИ ПРИ МОНТЕ КАРЛО СИМУЛАЦИЯ НА

ХИМИЧЕСКА РЕАКЦИЯ

Добри Данков, Владимир Русинов

Изследвана е химическа реакция чрез два метода за моделиране на вероятност-
та за химическа реакция, като се използва Direct Simulation Monte Carlo метод.
Изследван е порядъкът на разликите при температурите и концентрациите чрез
тези модели при промяна на броя на моделиращите частици и реда на взаимо-
действие на компонентите.
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