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HIGH AND LOW INTENSITY OF REPETITIONS IN A
FINITE M/G/1/0 QUEUEING SYSTEM WITH REPEATED
CALLS"

Velika Ilieva Dragieva

A Finite M/G/1/0 queueing system with repeated calls is studied in the cases when
the intensity of repetitions converges to zero and to infinity, respectively. The obtained
asymptotical formulas are compared with those in the corresponding classical systems
without repeated calls. Numerical data illustrating the obtained results are presented.
It is shown that the assumption of a finite number of customers in a single-
line queueing system with repeated calls influences considerably its asymptotical
properties when the intensity of repetitions is small or high.

1. Introduction. There is quite a number of different single-server repeated orders
queueing systems. The main peculiarity of these systems is the assumption that a customer
arriving when the server is busy, repeats his demand after some delay. This holds true
especially in a teletraffic theory, as it is well known that a telephone subscriber who
obtains an engaged signal usually repeats the call until the required connection is made.

As in a real situation the number of subscribers is finite, the investigation of a finite
system with repeated calls is of special interest to practice. This assumption as well as the
presence of repeated calls complicates the investigation of the system and the expressions
for its characteristics. Formulas for some of these characteristics are obtained in previous
works of the author ([1], [2]). The purpose of the present paper is to study asymptotical
properties of the obtained formulas and to compare them with the corresponding more
simple formulas in classical systems (with losses or with queue).

2. Model description and previous results. We consider a finite single-line
queueing system with N customers. These customers are identified as sources of primary
orders (calls, demands,...). Each such source produces a Poisson process of primary
calls with intensity A. If the server is free at the instant of a primary call arrival it begins
service immediately. Otherwise, if the channel is busy, then it forms a source of repeated
calls. Such a source produces a Poisson process of repeated calls with intensity u. If an
incoming repeated call finds a free line, then it begins service and, as well as a primary
call, after service completion becomes again a source of primary calls. Otherwise, if the
line is engaged at the moment of repeated call arrival, then the system state does not
change.

The service time distribution function is F'(x) both for primary and repeated calls.
The intervals between repeated trials, as well as between primary ones and the service
times, are assumed to be mutually independent.
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Let
S(z) = F'(z), 8(s) = /0 e dF (z) = /0 e S(x)dz v~ = -5 (0),

C(t) be the number of busy lines at time ¢, and N(¢) - the number of repeated calls
sources at time t (a sort of queue). The process (N (t), C(t)) in steady state was studied
in previous works of the author ([1, 2]). Because of the heavy expressions and the limited
paper size, we not recapitulate the formulas for the joint distribution of the channel state
C(t) and the queue length N(¢) in steady state

Dij :tlimP{C’(t) =i, N(t)=j},i=0,1, 7=0,1,...,N—1.
For the same reasons we omit the formulas for the variance DN of the queue length

and, thus, the obtained asymptotical properties and numerical data.
The following theorem holds true [1].

Theorem 1. The stationary distribution of the channel state
P, = lim P{C(t)=14,},i=0,1,
t—oo
and the mean EN of the queue length in steady state

N—-1 N-—-1
EN = tllglo (ZO NPon + ZO npln) )
n= n=

have the form

(1) P :1/’11/)1\[,10, P0:17P1,
2) EN:[@V—DVAwM4+«1_SQQSTMwN4]C,
I
where
(3) C =N [ (L+ N ™) oy + (1 - 51) (n— N ow—z]
N -1 _
@ o= (N (A B G =01 N
n SN-n—1
and A,, B, and C, are given by the recurrent relations
(5) Ag = By = Cp =0,
1-Sn_n 20
6 A, = An_1+ Bn_1),
(©) Svon (N —mpp Anmt F Bamt)
(7) Bn = aaO (An—l + Cn—l) + Bn—la
n—1

1- San (27
8 C, =
®) Snen (N —n)u

an = (N —n)A+nu, S, =SnA), n=0,1,...,N — 1.

(14+Ch_1), n=1,2,...,N—1,

3. Limit properties when the repeated orders intensity yu — oo. In a real
situation subscribers repeat calls practically immediately. So an investigation of asymptotic
behavior of the repeated orders queueing system characteristics under high intensity of
repetition is of special interest to practice.
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Theorem 2. When p — oo, the asymptotical values P;(00) and EN(oo) of the
channel state distribution P;, i = 1,2 and the mean EN of the queue length in steady
state are

(9) Pl(OO):hmplzl—é, PQ(OO):l—Pl(OO):é7
p—00
1
(10) EN(oo):limEN:N—(l—é)(1+ I ),
H— 00 v—IiA

where

N-1 -t

N -1

(11) e=|1+Nw! ( ; )dj :

—1

<

1-511-5 1-5;
(12) dj = S1 So S;
1, for j=0.

forj=1,2,...,N -1,

Proof. From formulas (5) — (8), by means of mathematical induction, it is not too
difficult to prove that

lim A, = lim B, = lim Cy =0, n=0,1,...,N — 1,

p— 00 HU—00 p— 00

n

n(n—l)l 1_SN—n 1_SN_l,n:12

lim C, = 22,
H—00 ;(an)(Nfl) San SNfl

So, taking limit in (4), we get

_ . _(_1\n N-—-1 SN—I " n(n—l)l dN—l
Yo =1, Mlggoibn—( 1) ( " )—SNM <1+Z(Nn)m(Nl)dan>,

n=1,2...,N—1.

Having from here expressions for lim ¥x_; and lim ¢ y_o and taking the limit as
pU—00 pU—00

N —1.

p#— oo in (3) and (1) — (2) consecutively, we obtain first that

_1\N-1AT)s
lim C = DTN
pi—00 Sn-1
where € is given by (11) — (12), and from here formulas (9) — (10). O

When p — o0, it is natural to compare the obtained asymptotical formulas with the
corresponding ones in a finite M/G/1/0c0 system, i.e. a classical M/G/1/co system with
service time distribution function F(x) and N customers, each one producing a Poisson
process of orders with intensity A. This system was studied in [3]. The comparison shows
that when y — oo, the stationary distribution of the channel state P;, ¢ = 1,2, in our
system with repeated calls converges to the stationary distribution of the channel state
P;, i = 1,2, in the system without repetitions, but this is not true for the stationary
characteristics of the queue length. In particular, if EN is the mean of the stationary
queue length in the system without repetition, then

EN(c0) = lim EN = EN — (1 —é).
JH—00

Let us note that if the considered systems were not finite, then when p — oo not only
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the stationary distribution of the channel state, but also the distribution of the queue
length in the system with repeated calls converges to the corresponding distribution in
the system without repeated calls [4].

4. Limit properties when the repeated orders intensity p — 0. Intuitive
reasons prompt, that in the case p — 0 the repeated orders queueing system may be
considered as the corresponding M/G/1/0 system with losses. As this system is classical
in teletraffic theory and the formulas therein are much simpler, the question of comparison
between both systems is of interest.
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Fig. 1

Theorem 3. When p — 0, the asymptotical values P;(0) and EN(0) of the channel
state distribution P;, i = 1,2, and the mean EN of the queue length in steady state are
given by

_ vt ) 1
(13) P1(0):;1§})P1fm7 Po(o)*lfplblgbpl—m
(14) EN(0) = lm EN = N — 1.
n—

Proof. As in the proof of the Theorem 2, from formulas (5) — (8) and by means of
mathematical induction we prove, that

th() = hmB() = hmB1 = limA() = 11mA1 = hmAg = 0,
n—0 n—0 pn—0 pn—0 pn—0 pn—0

: 1—-Snven1=Sny—(m-1) 1—Sn_1
lim 4" C,y = A™ o ,
N—'Ou SN—n SN—(n-1) Sn-1

=1,2,...,N—1,
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: n—1 _ n—1 _
ilg%)lu B, = N_(n—1) #LI%)M Ch-1
N 1—Sy_(n-1)1—SN_(n— 1-— _
et N1 =Nty 1=Sn1 o v
N—-(n—-1) Sy—m-1)  Sn—(n-2) Sn-1
n—2
lim "4, = A1 S N 1-8Syv-1 1-8Syal-Snv_qg42) 1-Snn
n—0 " —~ N-l Sy SN—i SN—(1+2) SNon

n=3.4,...,N—1

Taking limit as p — 0 in (4) and taking into account the above formulas, we get
N -1\ Sy-— 1-Syv_nl1—=Sn_(n- 1—5Sn-
1nnun¢n::(_1y1( ) NZ1 y\n N N-(n-1) | N-1

A )
p©—0 n ) SN_n-1 SN_n SN—(n-1) Sn-1

n:1,2,...,N71, 1/)():]..

Using this formula for n = N — 1, N — 2 and after taking limit in (3), we have

1-8, 1-Sn_ -1
N—-1 1 N-2
. 1— Sy

. C C1\\N-2

From here and formulas (1) — (2) we obtain the results (13) — (14) of Theorem 3. O

=08

EN

Fig. 2

Let us notice that when p — 0, the limit distribution (13) of the channel state does
not depend on the number NV of the customers. It is just the stationary distribution of the
channel state in the corresponding classical system with losses, i.e. a M/G/1/0 system
with input flow rate A, service time distribution F(x) and losses [5].
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5. Numerical data. Numerical analysis of the system is performed using the software
system MATLAB [6]. Fig. 1 and Fig. 2 show correspondingly the dependence of the
probability P; (1) and the mean EN (2) on p, when p is near 0. The values of P;
and EN are calculated in three cases of service times distribution F'(x): a) exponential
distribution with parameter 1 (point lines), b) Erlang Distribution with parameters 4,4
(dashed lines) and c¢) constant 1 (solid lines). As it is shown by the drawings, these three
lines coincide entirely, wich means that for small values of i the service time distribution
does not affect the results. The straight lines in Fig. 1 correspond to the boundary values
of P; (13), as depending on r. We assume that v = 1, N = 100 and consider three values
of the parameter » = NAv—!: 0,4, 0,8 and 1,2.

The numerical data confirm the theoretical limits as 4 — 0 obtained in this article.
The parameter r influences the convergence rate of EN and more weakly that one of P;.

We do not apply here the corresponding graphics for big values of u. Let us note that
the numerical analysis shows that for big p the convergence to the obtained limits is
much faster than in the case of small u, and the dependence on the type of the service
times distribution is essential.
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BNCOKA N HUCKA MHTEH3NBHOCT HA ITIOBTOPEHUATA B
M/G/1/0 CUCTEMA HA MACOBO OBCJIV2KBAHE C KPAEH
N3TOYHHUK U1 IIOBTOPHU 3AABKU

Beauka NMauesBa Iparuesa

Pasrnenana e M/G/1/0 cucrema Ha MacoBo 06C/Iy>KBaHe ¢ KpaeH U3TOYHUK U [IOBTOD-
HU 3asiBKU B CJIy4amTe, KOraTO WHTEH3MBHOCTTA HA MOBTOPEHUATA KJIOHU CHOTBETHO
K'bM HyJIa WK KbM 6e3kpaitaoct. [losiyduennre acumMnroTrnaan hpOPMYJIH Ca CPABHEHU
C TE3W B ChOTBETCTBAIIUTE KJIACHIECKH CHCTeMU 6e3 MOBTOpHU 3asiBKU. lIpeacraBeHn
ca YMCJIEHN JAHHU, WIIOCTPUPAIIM HOJYyIEHUTE PE3yJITATH. YCTAHOBEHO €, Ue Kpaii-
HUAT OPOi KJIMEHTH B PA3IJIeXK/1aHaTa €/IHOJIMHEHHA CHCTEMa Ha MaCOBO OOCJIyKBaHe
C TIOBTOPHU 3asIBKU BJIMsie 3HAYUTE/HO BbpPXy HEHHUTE ACHMTOTUYHM CBOICTBa TPHU
BHCOKA U IIPY HUCKA MHTEH3UBHOCT Ha [MOBTOPEHUSITA.
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