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The set-valued optimization problem ming¢ F'(z), G(z) N (—K) # 0, h(z) = 0 is
considered, where C C R™ and K C RP? are closed convex cones, F' : R" ~» R™ and
G : R™ ~» RP are set-valued functions, and h : R® — R? is C*-function. Two type
of solutions, namely w-minimizers (weakly efficient point) and i-minimizers (isolated
minimizers), are treated. In terms of the Dini set-valued directional derivative first-
order necessary conditions a point to be a w-minimizers, and first-order sufficient
conditions a point to be an i-minimizer are established, both in primal and dual
form.

1. Introduction. The constrained set-valued optimization problem (svp)

(1) mincF(z), G(z)N(—K)#0, h(z)=0,

is considered, where F' : R” ~» R™ and G : R" ~» RP are set-valued functions (svf) with
non-empty values, C C R™ and K C RP are closed convex cones, and h : R — R? is a
C'-function. First order optimality conditions, both in primal and dual form, in terms
of the Dini set-valued directional derivative are derived. Recently, optimality conditions
for svp are studied mainly by mean of epiderivatives, e. g. in [5], [6] and [2]. We consider
the optimality conditions based on directional derivatives as certain alternative of those
based on epiderivatives.

2. Preliminaries.

The dual pairing in R¥ is denoted (,-). The notations By and By are used for the
open and closed unit balls in R¥, and By (2°) and By (2°) for the open and closed unit
balls with center 0.

For a given closed convex cone M C RF its positive polar cone is defined by M’ = {¢ €
R¥ | (¢, 2) > 0 for ally € M}. When 2° € M, we put M'[2°] = {¢ € M" | (£,2°) = 0}
and M[2°] = (M'[z°]))". Tt holds M C M[z"].

When R is considered with a concrete norm, then the distance from a point z € R* to
a set A C RF is given by d(x, A) = inf{||z —y|| | a € A}. The oriented distance from z to
A is defined by D(x, A) = d(z, A) —d(x, R¥\ A). We define the oriented distance D(P, A)
from a set P C R¥ to the set A C R¥ by putting D(P, A) = inf{D(x, A) | = € P}.

Let M C R* be a cone and let a be a real number. Then, we put M(a) = {z €
R* | D(z, M) < al|z||}. The weakly efficient frontier (w-frontier) w-Miny A and the
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properly efficient frontier (p-frontier) p-MinjsA of A are defined by w-Miny A = {z €
AlAN(z —int M) =0} and p-MinyA={z € A|3ae€ (0,1): An(z — M(a)) = {z}}
respectively.

The set of the feasible points of svp (1) is G = {z € R" | G(z)N(—K) # 0, h(z) = 0}.
Further, A'(2°) denotes the family of the neighbourhoods of x°. We deal with local
solutions of (1), which in any case are pairs (z°,1°), y° € F(2°), with 20 feasible. We
use the following concepts of solutions for problem (1). The pair (z°4°), 2° € R",
yY € F(2V), is said a w-minimizer (weakly efficient point) if there exists U € N (z") such
that * € U N G implies F(x) N (y° — int C) = @ (then necessary y° € w-MincF(z?)).
The pair (2°,9) is said an i-minimizer (isolated minimizer) if there exists U € N (2?)
and a constant A > 0 such that D(F(x) —y°, —C) > A |z — 2°|| and y° € p-Minc F(2°)
for x € UN G (the concept of i-minimizer is norm-independent, since all norms in finite-
dimensional spaces are equivalent).

The svf ® : R™ ~ R is said locally Lipschitz at #° € R”, if there exists U € N (2°)
and a constant L > 0, such that for 21, 2% € U it holds ®(2?) C ®(x') + L ||2? — 2! By.
The svf @ is said locally Lipschitz, if it is locally Lipschitz at each 2° € R™. Given a cone
M C RF, we say that ® is locally M-Lipschitz at 20 if the svf x ~ ®(x) + M is locally
Lipschitz at 2°. The svf ® is said locally M-Lipschitz, if it is locally M-Lipschitz at each
point z°.

The convex cone M C R* is said pointed, if (—M) N M = {0}.

Our aim is to obtain optimality conditions for svp (1) in terms of Dini derivatives.
For the svf @ : R® ~» R¥ the Dini derivative of ® at (z°,3°), ¢ € ®(2°), in direction
u € R" is defined

(20,9 u) = Limsgp % (@(2° + tu) — y°) .
t—0

3. Problems without equality constraints. Without the equality constraints the

problem reduces to

(2) mingF(z), Gx)N(—=K)#0.

This problem is investigated in [3]. There, generalizing [4] from vector to set-valued
problem, and [1] from unconstrained to constrained problem, the following results are
established.

Theorem 1. [Necessary Conditions| Consider svp (2) with C C R™ and K C RP
closed convex cones, F : R" ~ R™ and G : R™ ~ R? suf. Let the pair (2°,1°), 2° € R",
Yy € F(z), be a w-minimizer of svp (2) and let 2° € G(2°) N (=K). Then,

VueR™: (FxG)Y(2° (y°,2°%);u) N (—(int C x int K[-2°]) = 0.

Theorem 2. [Sufficient Conditions| Consider svp (2) with C C R™ pointed closed
convex cone, K C RP closed convex cone, F' : R™ ~» R™ locally C-Lipschitz svf, and
G : R™ ~» RP locally Lipschitz suf. Suppose that the pair (z°,9°), 2° € R", y° € F(aV),
is such that y° € p-Minc F(2°), and there exists 2° € G(2°) N (=K for which

Vu e R"\ {0} : (F x G)' (2% (y° 2°);u) N (—=(C x K[=27])) = 0.
Suppose also that the suf G satisfies the following condition:

JUeN(@®):FL>0:VreU:
G(z) N (—K) # 0= G(@)n L]z — 2| By(*) N (—K) # 0
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Then, (z°,4°) is an i-minimizer of svp (2).

Let us point out that in [3] it was given an example showing that without condition
G(2°,2°) Theorem 2 is not true. Though condition G(z?, 2°) does not appear in Theorem
3, the interesting applications of this theorem could be those when G(z)N(—K) possesses
points near 2°. Indeed, suppose that V¢ > 0:3U e N(z°): V2 e UN G: G(z)NL |z —
20| Bp(z°) N (=K) = 0. Then, (F x G)'(2°, (y°,2°);u) = 0 for all u € R™, and condition
(3) is satisfied for arbitrary svf F.

4. Problems with equality constraints. In this section we generalize the results
from the previous one from the restricted problem (2) to the more generalize problem
(1). In fact, we prove the following results.

Theorem 3. [Necessary Conditions| Consider svp (1) with C C R™ and K C RP
closed convex cones, F' : R™ ~» R™ and G : R™ ~» RP Jocally Lipschitz svf, and h :
R™ — RY a C'-function such that at the point z° € R™ the vectors h}(z°), ..., hl(z°),
where hi, ..., hq are the components of h, are linearly independent. Let the pair (xg, YY),
Yy € F(z), be a w-minimizer of svp (1) and let 2° € G(2°) N (=K). Then,

(3) Vu € ker b/ (2%) : (F x G) (22, (¥°,2°);u) N (—(int C x int K[-2°]) = 0.

Theorem 4. [Sufficient Conditions| Consider svp (1) with C C R™ pointed closed
conver cone, K C RP closed convexr cone, F' : R" ~» R™ and G : R" ~~ RP locally
Lipschitz svf, and h : R® — R? a C'-function such that at the feasible point 0 € R™
the vectors hy(z°), ...,h;(mo) are linearly independent. Suppose that the pair (x°,y°),
Y0 € F(a), is such that y° € p-MincF(2°), and there exists 2° € G(2°) N (—=K) for
which
(4) Vu € ker b (z°)\ {0} : (F x G)'(2°, (¥°, 2°);u) N (—(C x K[-2°])) =0.
Suppose also that the suf G satisfies the following condition:

JUeN@E®):34>0:VzeU:
Ga)N(—K)# 0= Gx)nl|z—2° By(z°) N (—K) # 0

Then, (z°,4°) is an i-minimizer of svp (1).

G(0,29) :

Remark. Condition (4), which can be regarded as a primal form condition, can be
substituted by the equivalent dual form condition
5 Vau € kerh!(29)\ {0} : ¥, (79, 2°) € (F x G)/(a®, (4°, 2); ) :

3(&n) € C" x K'[=2°],(§,m) # (0, 0) : (£,5°) + (n,2°) > 0.

A similar dual form admits condition (3), which differs from (5) only by the last expression,
which should be replaced by the non-strict inequality (€,7°) + (n, 2°) > 0.

Now, we prove Theorem 4 by transforming problem (1) to a problem without equality
constraints. The proof of Theorem 3 can be obtained similarly.

Proof of Theorem 4. Let the vector @/ € R™, j = 1,...,q, be determined by the
system of equations
(6) hi(2”)w! =0 for k#j, and Rj(z%) =1.
For each j = 1,...,¢, equalities (6) constitute a system of linear equations with respect
to the components of @/, which due to the linear independence of k) (z°), ..., hl(z°)
has a unique solution. Moreover, the vectors @!,..., 4% solving this system are linearly
independent and R" is decomposed into a direct sum R"™ = L @ L', where L = ker h'(z")
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and L' = lin{u',...,u9}. Let u',...,u" 7 be n — ¢ linearly independent vectors in
L = ker i/ (2°). We consider the system of equations

n—gq q
hk(xo—l—ZTiui—i—Zajaj):O, k=1,...,q.
i=1 j=1

Taking 71, ..., T,—q as independent variables and o1, . .., 04 as dependent variables, we see
that this system satisfies the requirements of the implicit function theorem at the point
= =Tyq=0,01=--=0, =0 (at this point hx(2°) = 0 because z° is feasible,
and the Jacobian 0h/do is the unit matrix and, hence, it is non degenerate). The implicit
function theorem gives that in a neighbourhood of z° given by || < 7,i=1,...,n—q,
loj| < &,j =1,---,q, this system possesses a unique solution o; = 0;(71,...,Th—q),
j=1,...,q. The functions o; = 0j(m1,...,Tn—q) are C!, and
0j|.0=0;0,...,0)=0, j=1...,q

(i‘)O'j

or; 70

=0, 7=1,...,q, 2=1,...,n—gq,

where 70 = (0, ..., 0). It is clear that (2°,9") is a w-minimizer or i-minimizer of problem
(1) if and only if (7°,4°) is, respectively, a w-minimizer or i-minimizer of the problem

(7) mingF(71, .+, Ta—gq)y  G(T1, .., Tneg) N (—=K) # 0,
where

n—q a
F(ri,. ., Taeg) = F(2° +Znu’ +Zaj(71,...,rn_q)ﬂj),
i=1 j=1

n—q q
G(ri,... Tn—q) = G(ZO + Z Tu’ + Zoj('rl, ey Tnq) W)
i=1 j=1

Applying Theorem 2 to problem (7) and arguing routinely that
(Fx GY(r% (4 2%)im) = (F x G)'(2°, (y°, 2%); ),
where u = Y1 ?7;u’, we get the assertion of Theorem 4. Still, let us point out that the
proof of the above equality uses the Lipschitz property of F' and G. O
A particular case of (1) is the single-valued vector optimization problem
(8) mine f(x), g(x) € =K, h(z)=0.
Then, from Theorems 3 and 4 we get the following theorem, which generalizes the results

of [4] from problems with only inequality constraints to problems with both inequality
and equality constraints.

Theorem 5. Consider problem (8) with f and g locally Lipschitz functions, h a C*-
function, C pointed closed convex cone, and K closed convex cone. Let z° be a feasible
point and suppose that the vectors hy(2°), ..., h;(xo), being the components of h'(x°),
are linearly independent.

(Necessary Conditions) Let 20 be a w-minimizer of problem (8). Then, for each u €
ker b/ (2°) \ {0} the following condition is satisfied:
V(y°, 2°) € (£, 9)' (2" u) : 3%, n°) : (€%, n°) € C" x K'[—g(a")],
(€% ") #(0,0) and (€%, 4°) + (0", 2°) 2 0.
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(Sufficient Conditions) Suppose that for each u € ker ' (2°)\{0} the following condition
is satisfied:
(y°, 2°) € (f, 9)' (@ u) : (€%, %) : (€%, n°) € O x K'[—g(2")],
(€%, n°) #(0,0) and (&%, y°) + (1% 2°) > 0.
Then, 2° is an i-minimizer of problem (8).
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OIITUMU3SAIINMOHHN 3AJJAYN 3A MHOT'O3HAYHU ®YHKIINN
CbAbPXKAIIIN EJHOSHAYHUN N30BPAKEHNA OT TUII
PABEHCTBA

NBau I'mu4ueB, Mareo Poka

Pasriiexk1a ce ONTUMU3AIMOHHA 331898 ¢ MHOro3HauHu ¢yHknuu ming F(x), G(z) N
(=K) # 0, h(z) = 0, kpmero C C R™ u K C RP ca 3aTBOpEHHM HM3I'bKHAJIN KO-
nycu, F' : R” ~» R™ u G : R" ~» RP ca muoroznaunn dyukuuu u h : R" — R?
e C'-yuxmusa. TpeTupar ce JBa THIA PEIICHHS, a UMEHHO W-MHHUMYME (c1abo
edekTuBHY perieHns) U i-MUHUMYME (M307upanu MuHuMyME). C U3II0I3BAHETO HA
MHOTO3HAYHa TIPOM3BO/HA 110 TIOCOKa Ha JIMHM ce M3BEXKIAT HEOOXOIUMH YCJIOBUS OT
I'bPBU PEJl €JHA TOYKA Jia ObJe W-MUHUMYM U JOCTATHLYHU YCJIOBUSI OT II'bPBU PEJL
€JTHa TOYKA /13 ObJIe --MIHUMYM. YCIOBUATA e (DOPMYJIMPAT KAKTO B I'bPBAYHA, TAKa
1 B JyaJiHa popMa.
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