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The set-valued optimization problem minC F (x), G(x) ∩ (−K) 6= ∅, h(x) = 0 is
considered, where C ⊂ R

m and K ⊂ R
p are closed convex cones, F : R

n
 R

m and
G : R

n
 R

p are set-valued functions, and h : R
n → R

q is C
1-function. Two type

of solutions, namely w-minimizers (weakly efficient point) and i-minimizers (isolated
minimizers), are treated. In terms of the Dini set-valued directional derivative first-
order necessary conditions a point to be a w-minimizers, and first-order sufficient
conditions a point to be an i-minimizer are established, both in primal and dual
form.

1. Introduction. The constrained set-valued optimization problem (svp)

(1) minCF (x), G(x) ∩ (−K) 6= ∅, h(x) = 0 ,

is considered, where F : Rn
 Rm and G : Rn

 Rp are set-valued functions (svf ) with
non-empty values, C ⊂ Rm and K ⊂ Rp are closed convex cones, and h : Rn → Rq is a
C1-function. First order optimality conditions, both in primal and dual form, in terms
of the Dini set-valued directional derivative are derived. Recently, optimality conditions
for svp are studied mainly by mean of epiderivatives, e. g. in [5], [6] and [2]. We consider
the optimality conditions based on directional derivatives as certain alternative of those
based on epiderivatives.

2. Preliminaries.

The dual pairing in Rk is denoted 〈·, ·〉. The notations Bk and B̄k are used for the
open and closed unit balls in R

k, and Bk(x0) and B̄k(x0) for the open and closed unit
balls with center x0.

For a given closed convex cone M ⊂ Rk its positive polar cone is defined by M ′ = {ξ ∈
Rk | 〈ξ, x〉 ≥ 0 for all y ∈ M}. When x0 ∈ M , we put M ′[x0] = {ξ ∈ M ′ | 〈ξ, x0〉 = 0}
and M [x0] = (M ′[x0]))′. It holds M ⊂ M [x0].

When Rk is considered with a concrete norm, then the distance from a point x ∈ Rk to
a set A ⊂ Rk is given by d(x, A) = inf{‖x− y‖ | a ∈ A}. The oriented distance from x to
A is defined by D(x, A) = d(x, A)−d(x, Rk \A). We define the oriented distance D(P, A)
from a set P ⊂ Rk to the set A ⊂ Rk by putting D(P, A) = inf{D(x, A) | x ∈ P}.

Let M ⊂ Rk be a cone and let a be a real number. Then, we put M(a) = {x ∈
Rk | D(x, M) ≤ a ‖x‖}. The weakly efficient frontier (w-frontier) w-MinMA and the
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properly efficient frontier (p-frontier) p-MinMA of A are defined by w-MinMA = {x ∈
A | A ∩ (x − int M) = ∅} and p-MinMA = {x ∈ A | ∃ a ∈ (0, 1) : A ∩ (x − M(a)) = {x}}
respectively.

The set of the feasible points of svp (1) is G = {x ∈ Rn | G(x)∩ (−K) 6= ∅, h(x) = 0}.
Further, N (x0) denotes the family of the neighbourhoods of x0. We deal with local
solutions of (1), which in any case are pairs (x0, y0), y0 ∈ F (x0), with x0 feasible. We
use the following concepts of solutions for problem (1). The pair (x0, y0), x0 ∈ Rn,
y0 ∈ F (x0), is said a w-minimizer (weakly efficient point) if there exists U ∈ N (x0) such
that x ∈ U ∩ G implies F (x) ∩ (y0 − int C) = ∅ (then necessary y0 ∈ w-MinCF (x0)).
The pair (x0, y0) is said an i-minimizer (isolated minimizer) if there exists U ∈ N (x0)
and a constant A > 0 such that D(F (x) − y0,−C) ≥ A ‖x− x0‖ and y0 ∈ p-MinCF (x0)
for x ∈ U ∩ G (the concept of i-minimizer is norm-independent, since all norms in finite-
dimensional spaces are equivalent).

The svf Φ : Rn
 Rk is said locally Lipschitz at x0 ∈ Rn, if there exists U ∈ N (x0)

and a constant L > 0, such that for x1, x2 ∈ U it holds Φ(x2) ⊂ Φ(x1) +L ‖x2 −x1‖ B̄k.
The svf Φ is said locally Lipschitz, if it is locally Lipschitz at each x0 ∈ Rn. Given a cone
M ⊂ Rk, we say that Φ is locally M -Lipschitz at x0 if the svf x  Φ(x) + M is locally
Lipschitz at x0. The svf Φ is said locally M -Lipschitz, if it is locally M -Lipschitz at each
point x0.

The convex cone M ⊂ R
k is said pointed, if (−M) ∩ M = {0}.

Our aim is to obtain optimality conditions for svp (1) in terms of Dini derivatives.
For the svf Φ : R

n
 R

k the Dini derivative of Φ at (x0, y0), y0 ∈ Φ(x0), in direction
u ∈ Rn is defined

Φ′(x0, y0; u) = Limsup
t → 0

+

1

t

(

Φ(x0 + tu) − y0
)

.

3. Problems without equality constraints. Without the equality constraints the
problem reduces to

(2) minCF (x), G(x) ∩ (−K) 6= ∅ .

This problem is investigated in [3]. There, generalizing [4] from vector to set-valued
problem, and [1] from unconstrained to constrained problem, the following results are
established.

Theorem 1. [Necessary Conditions] Consider svp (2) with C ⊂ R
m and K ⊂ R

p

closed convex cones, F : Rn
 Rm and G : Rn

 Rp svf. Let the pair (x0, y0), x0 ∈ Rn,
y0 ∈ F (x0), be a w-minimizer of svp (2) and let z0 ∈ G(x0) ∩ (−K). Then,

∀u ∈ R
m : (F × G)′(x0, (y0, z0); u) ∩ (−(int C × int K[−z0]) = ∅ .

Theorem 2. [Sufficient Conditions] Consider svp (2) with C ⊂ Rm pointed closed
convex cone, K ⊂ Rp closed convex cone, F : Rn

 Rm locally C-Lipschitz svf, and
G : Rn

 Rp locally Lipschitz svf. Suppose that the pair (x0, y0), x0 ∈ Rn, y0 ∈ F (x0),
is such that y0 ∈ p-MinCF (x0), and there exists z0 ∈ G(x0) ∩ (−K) for which

∀u ∈ R
n \ {0} : (F × G)′(x0, (y0, z0); u) ∩ (−(C × K[−z0])) = ∅.

Suppose also that the svf G satisfies the following condition:

G(x0, z0) :
∃U ∈ N (x0) : ∃ ` > 0 : ∀x ∈ U :

G(x) ∩ (−K) 6= ∅ ⇒ G(x) ∩ ` ‖x − x0‖ B̄p(z
0) ∩ (−K) 6= ∅
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Then, (x0, y0) is an i-minimizer of svp (2).

Let us point out that in [3] it was given an example showing that without condition
G(x0, x0) Theorem 2 is not true. Though condition G(x0, z0) does not appear in Theorem
3, the interesting applications of this theorem could be those when G(x)∩(−K) possesses
points near z0. Indeed, suppose that ∀ ` > 0 : ∃U ∈ N (x0) : ∀x ∈ U ∩ G : G(x) ∩ ` ‖x −
x0‖ B̄p(x

0) ∩ (−K) = ∅. Then, (F ×G)′(x0, (y0, z0); u) = ∅ for all u ∈ Rn, and condition
(3) is satisfied for arbitrary svf F .

4. Problems with equality constraints. In this section we generalize the results
from the previous one from the restricted problem (2) to the more generalize problem
(1). In fact, we prove the following results.

Theorem 3. [Necessary Conditions] Consider svp (1) with C ⊂ Rm and K ⊂ Rp

closed convex cones, F : Rn
 Rm and G : Rn

 Rp locally Lipschitz svf, and h :
Rn → Rq a C1-function such that at the point x0 ∈ Rn the vectors h′

1
(x0), . . . , h′

q(x
0),

where h1, . . . , hq are the components of h, are linearly independent. Let the pair (x0, y0),
y0 ∈ F (x0), be a w-minimizer of svp (1) and let z0 ∈ G(x0) ∩ (−K). Then,

(3) ∀u ∈ kerh′(x0) : (F × G)′(x0, (y0, z0); u) ∩ (−(int C × int K[−z0]) = ∅ .

Theorem 4. [Sufficient Conditions] Consider svp (1) with C ⊂ Rm pointed closed
convex cone, K ⊂ R

p closed convex cone, F : R
n
 R

m and G : R
n
 R

p locally
Lipschitz svf, and h : Rn → Rq a C1-function such that at the feasible point x0 ∈ Rn

the vectors h′

1
(x0), . . . , h′

q(x
0) are linearly independent. Suppose that the pair (x0, y0),

y0 ∈ F (x0), is such that y0 ∈ p-MinCF (x0), and there exists z0 ∈ G(x0) ∩ (−K) for
which

(4) ∀u ∈ kerh′(x0) \ {0} : (F × G)′(x0, (y0, z0); u) ∩ (−(C × K[−z0])) = ∅ .

Suppose also that the svf G satisfies the following condition:

G(x0, z0) :
∃U ∈ N (x0) : ∃ ` > 0 : ∀x ∈ U :

G(x) ∩ (−K) 6= ∅ ⇒ G(x) ∩ ` ‖x − x0‖ B̄p(z
0) ∩ (−K) 6= ∅

Then, (x0, y0) is an i-minimizer of svp (1).

Remark. Condition (4), which can be regarded as a primal form condition, can be
substituted by the equivalent dual form condition

(5)
∀u ∈ kerh′(x0) \ {0} : ∀, (ȳ0, z̄0) ∈ (F × G)′(x0, (y0, z0); u) :
∃ (ξ, η) ∈ C ′ × K ′[−z0], (ξ, η) 6= (0, 0) : 〈ξ, ȳ0〉 + 〈η, z̄0〉 > 0 .

A similar dual form admits condition (3), which differs from (5) only by the last expression,
which should be replaced by the non-strict inequality 〈ξ, ȳ0〉 + 〈η, z̄0〉 ≥ 0.

Now, we prove Theorem 4 by transforming problem (1) to a problem without equality
constraints. The proof of Theorem 3 can be obtained similarly.

Proof of Theorem 4. Let the vector ūj ∈ Rn, j = 1, . . . , q, be determined by the
system of equations

(6) h′

k(x0)ūj = 0 for k 6= j, and h′

j(x
0)ūj = 1 .

For each j = 1, . . . , q, equalities (6) constitute a system of linear equations with respect
to the components of ūj , which due to the linear independence of h′

1
(x0), . . . , h′

q(x
0)

has a unique solution. Moreover, the vectors ū1, . . . , ūq solving this system are linearly
independent and Rn is decomposed into a direct sum Rn = L⊕L′, where L = kerh′(x0)
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and L′ = lin {ū1, . . . , ūq}. Let u1, . . . , un−q be n − q linearly independent vectors in
L = kerh′(x0). We consider the system of equations

hk(x0 +

n−q
∑

i=1

τiu
i +

q
∑

j=1

σj ū
j) = 0 , k = 1, . . . , q .

Taking τ1, . . . , τn−q as independent variables and σ1, . . . , σq as dependent variables, we see
that this system satisfies the requirements of the implicit function theorem at the point
τ1 = · · · = τn−q = 0, σ1 = · · · = σq = 0 (at this point hk(x0) = 0 because x0 is feasible,
and the Jacobian ∂h/∂σ is the unit matrix and, hence, it is non degenerate). The implicit
function theorem gives that in a neighbourhood of x0 given by |τi| < τ̄ , i = 1, . . . , n− q,
|σj | < σ̄, j = 1, · · · , q, this system possesses a unique solution σj = σj(τ1, . . . , τn−q),
j = 1, . . . , q. The functions σj = σj(τ1, . . . , τn−q) are C1, and

σj

∣

∣

τ0 = σj(0, . . . , 0) = 0, j = 1 . . . , q,

∂σj

∂τi

∣

∣

∣

∣

τ0

= 0, j = 1, . . . , q, i = 1, . . . , n − q ,

where τ0 = (0, . . . , 0). It is clear that (x0, y0) is a w-minimizer or i-minimizer of problem
(1) if and only if (τ0, y0) is, respectively, a w-minimizer or i-minimizer of the problem

(7) minC F̄ (τ1, . . . , τn−q), Ḡ(τ1, . . . , τn−q) ∩ (−K) 6= ∅,

where

F̄ (τ1, . . . , τn−q) = F (x0 +

n−q
∑

i=1

τiu
i +

q
∑

j=1

σj(τ1, . . . , τn−q) ūj) ,

Ḡ(τ1, . . . , τn−q) = G(x0 +

n−q
∑

i=1

τiu
i +

q
∑

j=1

σj(τ1, . . . , τn−q) ūj) .

Applying Theorem 2 to problem (7) and arguing routinely that

(F̄ × Ḡ)′(τ0, (y0, z0); τ) = (F × G)′(x0, (y0, z0); u) ,

where u =
∑n−q

i=1
τiu

i, we get the assertion of Theorem 4. Still, let us point out that the
proof of the above equality uses the Lipschitz property of F and G.

A particular case of (1) is the single-valued vector optimization problem

(8) minCf(x), g(x) ∈ −K, h(x) = 0 .

Then, from Theorems 3 and 4 we get the following theorem, which generalizes the results
of [4] from problems with only inequality constraints to problems with both inequality
and equality constraints.

Theorem 5. Consider problem (8) with f and g locally Lipschitz functions, h a C1-
function, C pointed closed convex cone, and K closed convex cone. Let x0 be a feasible
point and suppose that the vectors h′

1
(x0), . . . , h′

q(x
0), being the components of h′(x0),

are linearly independent.

(Necessary Conditions) Let x0 be a w-minimizer of problem (8). Then, for each u ∈
kerh′(x0) \ {0} the following condition is satisfied:

∀(y0, z0) ∈ (f, g)′(x0; u) : ∃(ξ0, η0) : (ξ0, η0) ∈ C ′ × K ′[−g(x0)],
(ξ0, η0) 6= (0, 0) and 〈ξ0, y0〉 + 〈η0, z0〉 ≥ 0 .
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(Sufficient Conditions) Suppose that for each u ∈ kerh′(x0)\{0} the following condition
is satisfied:

∀(y0, z0) ∈ (f, g)′(x0; u) : ∃(ξ0, η0) : (ξ0, η0) ∈ C ′ × K ′[−g(x0)],
(ξ0, η0) 6= (0, 0) and 〈ξ0, y0〉 + 〈η0, z0〉 > 0 .

Then, x0 is an i-minimizer of problem (8).
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ОПТИМИЗАЦИОННИ ЗАДАЧИ ЗА МНОГОЗНАЧНИ ФУНКЦИИ

СЪДЪРЖАЩИ ЕДНОЗНАЧНИ ИЗОБРАЖЕНИЯ ОТ ТИП

РАВЕНСТВА

Иван Гинчев, Матео Рока

Разглежда се оптимизационна задача с многозначни функции minC F (x), G(x)∩
(−K) 6= ∅, h(x) = 0, където C ⊂ R

m и K ⊂ R
p са затворени изпъкнали ко-

нуси, F : R
n
 R

m и G : R
n
 R

p са многозначни функции и h : R
n → R

q

е C
1-функция. Третират се два типа решения, а именно w-минимуми (слабо

ефективни решения) и i-минимуми (изолирани минимуми). С използването на
многозначна производна по посока на Дини се извеждат необходими условия от
първи ред една точка да бъде w-минимум и достатъчни условия от първи ред
една точка да бъде i-минимум. Условията се формулират както в първична, така
и в дуална форма.
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