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In scalar optimization it is well known that a solution of a Minty variational inequality
of differential type is a solution of the related optimization problem. This relation is
known as “Minty variational principle”. In the vector case, the links between Minty
variational inequalities and vector optimization problems have been investigated in
[8] and subsequently in [7]. In this paper we extend such results to the case of a set-
valued optimization problem distinguishing two different kinds of solutions, namely
ideal (or absolute) efficient points and weakly efficient points.

1. Introduction. Let X be a linear space, and let K be a convex subset of X . In
[2] and [3] we studied the Minty-type variational inequality (for short VI) of differential
type

(1) f ′

−
(x, x∗ − x) ≤ 0, x ∈ K .

Here f ′

−
(x, u) denotes the lower Dini directional derivative of f : X → R in direction

u ∈ X defined for x ∈ X as an element of R = R ∪ {−∞} ∪ {+∞} by

f ′

−
(x, u) = lim inf

t→0+

1

t
(f(x + tu) − f(x)) .

Clearly, inequality (1) is a generalization of the classical Minty VI of differential type [9].
It has been shown in [2], [3] that, under certain regularity assumptions on f , if x∗ is a
solution of VI (1), then it is also a solution of the minimization problem

(2) min f(x) , x ∈ K .

This, is usually called the “Minty variational principle”. Further, under convexity assump-
tions on the function f , every solution of problem (2) is a solution of the VI (1).

In [8] the Minty vector variational inequality (of differential type) has been introduced
and its solutions have been linked to the solutions of a vector optimization problem.
Subsequently, in [7] such results have been extended to a not necessarily differentiable
function f . In this paper, we extend the investigation started in [7], to the case of set-
valued optimization problems.

2. Preliminaries. In the sequel X denotes a real linear space and K is a convex
subset of X . Further, Y is a finite-dimensional normed space with dual space Y ∗, C ⊂ Y

is a pointed closed convex cone with nonempty interior, C ′ ⊂ Y ∗ is its positive polar
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cone, and S is the unit sphere in Y ∗. Recall that a vector ξ ∈ C ′ is said to be an extreme
direction of C ′ when ξ ∈ C ′\{0} and ξ = ξ1 + ξ2, ξ1, ξ2 ∈ C ′, implies ξ1 = λ1ξ, ξ2 = λ2ξ

for some positive reals λ1, λ2. We denote by extd C ′ the set of extreme directions of C ′.
In this paper we focus on the set-valued optimization problem

(3) minC F (x), x ∈ K ,

where F : K  Y is a set-valued function (for short, svf ) with nonempty values. In the
following we assume that F has also compact and convex values. Like in [6], the solutions
to (3) (minimizers) are defined as pairs (x0, y0), y0 ∈ F (x0). In this paper we deal with
global minimizers and next we recall some definitions.

The pair (x0, y0), y0 ∈ F (x0), is said to be a w-minimizer (weakly efficient point)
if F (K) ∩

(

y0 − int C
)

= ∅. The pair (x0, y0), y0 ∈ F (x0), is said to be a-minimizer
(absolute or ideal efficient point) if F (K) ⊂ y0 +C. For a given set M ⊂ Y we define the
a-frontier (absolute or ideal frontier) by a-MinCM = {y ∈ M | M ⊂ y +C}. Let us point
out that the a-frontier with respect to a pointed cone C, if not empty, is a singleton.

Besides the previous solution concepts which are classical in set-valued optimization,
we consider the following notions, introduced in [6]. The point x0 ∈ K is said to be a set
a-minimizer of problem (3), if F (x) ⊂ F (x0) + C for all x ∈ K. We say that x0 ∈ K is a
set w-minimizer of the set-valued problem (3) with a svf F : K  Y , if for each x ∈ K

there exists y0 ∈ F (x0) such that F (x) ∩ (y0 − int C) = ∅.
Following the approach of [5], the space Y can be extended with infinite elements. Indeed,
we introduce the set of infinite elements Y∞ = {v∞ | v ∈ Y \ {0}}. The element v∞ is
interpreted as the infinite element in direction v. We accept that v1

∞
= v2

∞
if and only if

v2 = λv1 for some λ > 0. We put Ỹ = Y ∪ Y∞.

A topology on Ỹ can be introduced in terms of local bases of neighbourhoods. If
y ∈ Y and B(y) is a local base of neighbourhoods of y in Y , then we accept that B(y) is
also a local base of neighbourhoods of y in Ỹ . The family B(v∞) = {(y + W )∪W∞ | y ∈
Y, v ∈ W, W open cone in Y } constitutes a local base of neighbourhoods of v∞. Here
W∞ = {w∞ | w ∈ W \ {0}}. Saying that W is an open cone in Y , we mean that W is
an open set in Y such that λW ⊂ W for all λ > 0. The extended topological space Ỹ

is compact [5]. Since Ỹ is a topological space, we can apply topological operations on
Ỹ . Obviously cl C = C̃ := C ∪ C∞, where C∞ = {v∞ | v ∈ C \ {0}}. We have also
int C̃ = int C ∪ C◦

∞
, where C◦

∞
= {v∞ | v ∈ int C}. Take into consideration that the

topological operations in Y in general lead to different results than those in Ỹ , e. g. in Y

it holds cl C = C. To avoid ambiguity, we will notice usually the cases when topological
operations in Ỹ are applied.

Dini derivatives for set-valued functions have been studied for instance in [4]. The
Dini derivative of svf F : K  Y at (x, y), y ∈ F (x), in the feasible direction u ∈ X is

(4) F ′(x, y; u) = Limsup
t → 0+

1

t
(F (x + tu) − y) ,

where the Limsup is calculated in Ỹ . Following the scheme developed in [5] and [7], we
propose the following variational inequalities (VI)

(5) F ′(x, y; x∗ − x) ∩ (−C̃) 6= ∅ , x ∈ K, y ∈ F (x) ;

(6) F ′(x, y; x∗ − x) 6⊆ int C̃ , x ∈ K, y ∈ F (x) .

We call a solution of (5) (resp. of (6)) a point x∗ ∈ K, such that for all x ∈ K and all
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y ∈ F (x) the property in (5) (resp. (6)) holds.
We recall that the svf F : K  Y is said to be C-convex when for every x1 , x2 ∈ K

and t ∈ [0, 1] it holds tF (x1) + (1 − t)F (x2) ⊆ F (tx1 + (1 − t)F (x2)) + C.

Theorem 2.1 [1] The svf F : K  Y is C-convex if and only if the function
φξ(x) = infy∈F (x)〈ξ, y〉 is convex for every ξ ∈ C ′.

We close this section recalling that a single valued function f : K → Y is said
to be radially lower semicontinuous along the rays starting at x∗ ∈ K and we write
f ∈ RLSC(K, x∗), if for every x ∈ K the function g : [0, 1] → Y , g(t) = f((x∗+t(x−x∗))
is lower semicontinuous.

3. Minty vector VI and vector optimization. We investigate the relationships
between solutions of VI (5) and (6) and of problem (3).

3.1. Case 1: VI (5) and a-minimizers.

Lemma 3.1. Let x∗ ∈ K and assume that for every x ∈ K and ξ ∈ C ′, it holds
(φξ)

′

−
(x, x∗ − x) ≤ 0. Then, x∗ is a solution of VI (5). Conversely, assume that x∗ ∈ K

is a solution of VI (5), which satisfies F ′(x, y; x∗ − x) ∩ (−int C̃) 6= ∅ (the interior is
taken in Ỹ ) when F ′(x, y; x∗ − x) ∩−C = ∅. Then, for every x ∈ K and ξ ∈ C ′, it holds
(φξ)

′

−
(x, x∗ − x) ≤ 0.

Proof. Consider a point x ∈ K and suppose that for every ξ ∈ C ′ it holds (φξ)
′

−
(x, x∗−

x) ≤ 0. For a fixed ξ ∈ C ′, let tk → 0+ be a sequence such that

(φξ)
′

−
(x, x∗ − x) = lim

k→+∞

1

tk
(φξ(x + tk(x∗ − x)) − φξ(x))

= lim
k→+∞

1

tk

(

min
y∈F (x+tk(x∗−x))

〈ξ, y〉 − min
y′∈F (x)

〈ξ, y′〉

)

≤ 0 .

If we take a vector ȳ ∈ F (x), such that 〈ξ, ȳ〉 = min
y∈F (x)

〈ξ, y〉 and a sequence of vectors yk ∈

F (x+tk(x∗−x)) such that 〈ξ, yk〉 = min
y∈F (x+tk(x∗−x))

〈ξ, y〉, then we have (φξ)
′

−
(x, x∗−x) =

lim
k→+∞

1

tk
〈ξ , yk − ȳ〉. Assume first

1

tk
〈ξ , yk − ȳ〉 is a bounded sequence. Hence, without

loss of generality, we have lim
k→+∞

1

tk
〈ξ , yk − ȳ〉 = v ∈ Y and we obtain 〈ξ , v〉 ≤ 0, for

every ξ ∈ C ′ that is v ∈ −C. If
1

tk
〈ξ , yk − ȳ〉 is unbounded, then, due to the compactness

of Ỹ , we can assume, without loss of generality that

lim
k→+∞

1

tk
〈ξ , yk − ȳ〉 = v∞ ∈ Ỹ .

If ab absurdo v∞ 6∈ −C̃, i.e. v 6∈ −C, then choose an open convex cone W ⊆ (−C)c with
v ∈ W and v + W ⊆ (−C)c. From the definition of convergence in Ỹ we have

1

tk
〈ξ , yk − ȳ〉 ∈ v + W .

Since v ∈ (−C)c, there exists ξ̄ ∈ C ′, such that 〈ξ̄ , v〉 > 0. Hence, it is possible to choose

the cone W such that 〈ξ̄, w〉 > 0 for every w ∈ W and so it holds
1

tk
〈ξ̄, yk−ȳ〉 > 〈ξ̄, v〉 > 0,

eventually, which contradicts (φξ)
′

−
(x, x∗ − x) ≤ 0 for every ξ ∈ C ′.
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Conversely, assume x∗ is a solution of VI (5). Then, for every x ∈ K and y ∈ F (x),
there exists ŷ ∈ F ′(x, y; x∗ − x), such that ŷ ∈ −C̃. Let ξ ∈ C ′ be fixed and choose
y = ȳ ∈ F (x) such that 〈ξ, ȳ〉 = min

y∈F (x)
〈ξ, y〉. Then, according to the assumptions, the

following alternative has place:

i) ŷ ∈ Y . In this case, we have for some sequence tk → 0+

ŷ = lim
k→+∞

1

tk
(yk − ȳ) ,

with yk ∈ F (x + tk(x∗ − x)). Since ŷ ∈ −C, for every ξ ∈ C ′ it holds 〈ξ , ŷ〉 ≤ 0 and we
obtain

(φξ)
′

−
(x, x∗ − x) ≤ lim

k→+∞

1

tk
〈ξ , yk − ȳ〉 = 〈ξ , ŷ〉 ≤ 0 .

ii) ŷ = v̂∞ ∈ (−C̃)\(−C). Let now tk → 0+ be such that ŷ = lim
k→+∞

1

tk
(yk − ȳ) (we

consider the convergence in Ỹ ). From the definition of convergence in Ỹ , it follows easily
the existence of a sequence αk ∈ R, αk → 0+, such that

lim
k→+∞

αk

1

tk
(yk − ȳ) = v̂ ∈ Y .

From ŷ ∈ (−C̃)\(−C) it follows v̂ ∈ −C and, hence, 〈ξ , v̂〉 ≤ 0. This easily entails
(φξ)

′

−
(x, x∗ − x) ≤ 0.

Theorem 3.1. Let F : K  Y , x∗ ∈ K and φξ ∈ RLSC(K, x∗) for all ξ ∈ C ′. If
for every x ∈ K and ξ ∈ C ′ it holds (φξ)

′

−
(x, x∗ − x) ≤ 0, then x∗ is a set a-minimizer

of problem (3).

Proof. Under the assumptions we made the point x∗ is a minimizer of function φξ

over the set K, when the vector ξ ∈ C ′ [2]. It follows [6] that x∗ is a set a-minimizer for
problem (3).

The proof of the next result follows immediately from Lemma 3.1 and Theorem 3.1.

Theorem 3.2. Let F : K  Y , x∗ ∈ K and φξ ∈ RLSC(K, x∗) for all ξ ∈ C ′. Let

x∗ be a solution of the VI (5) which satisfies F ′(x, y; x∗ −x)∩ (−int C̃) 6= ∅ (the interior
is taken in Ỹ ) when F ′(x, y; x∗ − x) ∩ −C = ∅. Then, x∗ is a set a-minimizer of the
associated optimization problem (3).

We can say that Theorem 3.2 states a Minty vector variational principle for set a-
minimizers.

3.2. Case 2: VI (6) and w-minimizers. In [7] in the case of vector optimization
problems it has been pointed out how this case marks the difference with respect to
the scalar case. Indeed, results analogous to Theorem 3.1 and Theorem 3.2 do not hold
in general, but only under convexity of the considered function. In this subsection we
give some extension of such results to the case of set-valued functions. We need first the
following lemma whose proof is similar to that of Lemma 3.1 and, hence, is omitted.

Lemma 3.2. Assume for every x ∈ K there exists ξ ∈ extd C ′, such that (φξ)
′

−
(x, x∗−

x) ≤ 0. Then, x∗ is a solution of VI (6)). Conversely, assume x∗ ∈ K is a solution of
VI (6)) which satisfies F ′(x, y; x∗ − x) ∩ C̃c 6= ∅ when F ′(x, y; x∗ − x) ∩ (int C)c = ∅
(the interior is taken in Ỹ ). Then, for every x ∈ K there exists ξ ∈ extd C ′, such that
(φξ)

′

−
(x, x∗ − x) ≤ 0.
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We observe that in Lemma 3.2, the vectors ξ can be chosen in extd C ′ ∩ S.

Theorem 3.3. In problem (3) assume C is a polyhedral cone and F : K  Y is
a C-convex svf. Assume further that φξ ∈ RLSC(K, x∗), for ξ ∈ extd C ′. If x∗ ∈ K

is such that for every x ∈ K there exists ξ ∈ C ′, such that (φξ)
′

−
(x, x∗ − x) ≤ 0 and

a-MinCF (x∗) 6= ∅, then x∗ is a set w-minimizer for problem (3).

Proof. Assume the contrary. Then, one can find a point x̄ ∈ K, such that F (x̄) −
y ∩ −intC 6= ∅, for every y ∈ F (x∗). If we choose in particular, y = y∗ ∈ a-MinCF (x∗),
then we can find ȳ ∈ F (x̄) such that ȳ − y∗ ∈ −int C. Consider the function φ̃ξ(t) =
infy∈F (x∗+t(x̄−x∗))〈ξ , y−y∗〉, with ξ ∈ extd C ′∩S and t ∈ [0, 1]. From y∗ ∈ a-MinCF (x∗),

we obtain φ̃ξ(0) = 0. Since φξ ∈ RLSC(K, x∗), we obtain that for every ξ ∈ extd C ′ ∩S,

the function φ̃ξ(t), attains a global minimum at a point t̄ = t̄(ξ) ∈ (0, 1] and we have

φ̃ξ(t̄(ξ)) ≤ min
t∈[0,1]

max
γ∈extdC′∩S

φ̃γ(t) ≤ max
γ∈extdC′∩S

φγ(1)

= max
γ∈extdC′∩S

inf
y∈F (x̄)

〈γ , y − y∗〉 ≤ max
γ∈extdC′∩S

〈γ , ȳ − y∗〉 = µ < 0

(observe that extd C ′ ∩ S is a finite set, since C is polyhedral and, hence, the use of
maxξ∈extdC′∩S is allowed). Since F is C-convex, the functions φ̃ξ(t), ξ ∈ extd C ′ ∩ S

are convex on the interval [0, 1]. It follows that for every ξ ∈ extd C ′ ∩ S one can find a
number δ ∈ (0, t̄(ξ)), such that φ̃ξ(t) is strictly decreasing on (0, δ). Put

δ̄(ξ) = inf{δ ∈ (0, 1) such that φ̃ξ(t) is strictly decreasing on (0, δ)} .

Clearly, δ̄(ξ) > 0 and the point δ̄(ξ) is a minimum point of φ̃ξ(t) on [0, 1] and, hence,
φξ(δ̄(ξ)) ≤ µ < 0. Further, we have δ̄ = max

ξ∈extd C′∩S
δ̄(ξ) > 0.

For t1, t2 ∈ (0, δ̄) with t2 > t1, we have φ̃ξ(t2) > φ̃ξ(t1) for every ξ ∈ extd C ′ ∩ S, i.e.
φξ(x

∗+t2(x̄−x∗)) > φξ(x
∗+t1(x̄−x∗)). Since φξ is convex, this entails (φξ)

′

−
(x∗+t1(x̄−

x∗)) < 0. Observe now that the convex functions φξ , ξ ∈ extd C ′ ∩ S are differentiable
a.e. and since extd C ′ ∩ S is a finite set, without loss of generality we can assume they
are differentiable at x∗ + t1(x̄ − x∗). This entails (φξ)

′

−
(x∗ + t1(x̄ − x∗)) = −(φξ)

′

−
(x∗ +

t1(x
∗ − x̄)) < 0, for every ξ ∈ extd C ′ ∩ S, which is a contradiction.

Theorem 3.4. In problem (3) assume C is polyhedral and F : K  Y is C-convex.
Assume further that φξ ∈ RLSC(K, x∗), for ξ ∈ extd C ′. Let x∗ ∈ K be a solution of the

vector VI (6)), such that F ′(x, y; x∗ − x) ∩ C̃c 6= ∅ when F ′(x, y; x∗ − x) ∩ (int C)c = ∅.
Then, x∗ is a set w-minimizer for problem (3).

Proof. It follows immediately from Lemma 3.2 and Theorem 3.3.
It remains an open question whether Theorems 3.3 and 3.4 can be extended to the

case of an arbitrary closed convex pointed cone C with nonempty interior.
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ВАРИАЦИОНЕН ПРИНЦИП НА МИНТИ В ОПТИМИЗАЦИОННИ
ЗАДАЧИ ЗА МНОГОЗНАЧНИ ФУНКЦИИ

Иван Гинчев, Матео Рока

За скаларна оптимизация е известно, че всяко решение на вариационно нера-
венство на Минти от диференциален тип е решение на съответната оптимиза-
ционна задача. Тази връзка е позната като “вариационен принцип на Минти”.
За векторния случай отношението между вариационни неравенства на Минти
и векторни оптимизационни задачи е изследвана от Джанеси [F. Giannessi, T.
Rapcsác, S. Komlósi (eds.), New trends in mathematical programming, 93–99, Kluwer
Acad. Publ., Dordecht 1997], както и в няколко работи на Креспи, Гинчев и Рока.
В настоящата статия тези резултати се пренасят за оптимизационни задачи с
многозначни функции, като се разглеждат два типа решения, именно идеални
ефективни решения и слаби ефективни решения.
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