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GRAVITY WAVES IN A CHANNEL*

Dimitar Stanimirov Iliev, Stanimir Dimitrov Iliev

We study the dynamics of two-dimensional surface gravity waves of fluid in a channel.
The viscous dissipation in the bulk of the fluid is assumed to be negligible by
comparing with the dissipation in the vicinity of the contact line. Capillarity effects are
not considered. Dissipation in the vicinity of the contact line is described by contact
line dissipation model suggested in de Ruijter et al. (Langmuir 15 (1999), 2209)
who introduces a phenomenological dissipation term proportional to the contact line
length. We obtain numerically the time evolution of the fluid interfase. We compare
dynamics of the waves, triple contact line and contact angle with solution for standing
waves.

1. Introduction. The description of the contact line motion is still a subject of
active research in spite of a large number of articles published in the best scientific
journals each year. Conventional hydrodynamic approaches use the disparate boundary
conditions at the triple contact line – free movement of the contact line (in ideal liquid
model), movement with fixed three phase contact angle (in ideal liquid model when
added capillarity effects), stick-condition (in viscous liquid model) and give nonrealistic
description of the dissipation (zero or infinite large) of the contact line. It is not conventio-
nal approach to modify these models to describe large but finite contact line dissipation.
It is of actuality to analyze and compare different approaches and to add the finite
dissipation effects in these approaches for various fluid systems.

2. Formulation. Our goal here is to test the phenomenological contact line dis-
sipation model [1]–[4] for 2D surface gravity waves of fluid in a rectangular channel.
Dissipation along the contact line is described by dissipation function T (per unit length
of the contact line)

(1) T = ξv2,

where v is the contact line velocity. Only one parameter ξ (that we call the dissipation
coefficient) is necessary to describe the wedge dissipation. It depends on the three phase
system and according to various experimental data ξ � shear viscosity, it ranges from
30 [5] to 107 [6].
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Fig. 1. Definition sketch

We consider the 2D motion of an incompressible liquid in a rectangular homogeneous
solid channel with vertical walls under the action of the gravity g (see Fig. 1). The
Cartesian coordinate system (x, y) depicted in Fig. 1 is employed. The distance between
the walls L0, La is a; Lbot is the channel bottom; the depth is a. We denote by S the liquid

domain, by L ≡
{

R
L =

(

RL
x , RL

y

)

}

– the liquid interface with the boundaries A0 and

Aa. All lengths are normalized by a, time by
√

a/g, velocities by
√

ag, acceleration by g.
We are interested in the small-amplitude wave motion of the interface, so we can neglect
the fluid viscosity and assume that the energy is dissipated only at the contact line. The
liquid flow in S = {R (x, y)} is assumed to be irrotational, therefore it can be described
in terms of the velocity potential ϕ: v = gradϕ. We use dimensionless ξ = ξ

√

a/g/ρ and
the renormalized ϕ = ϕ/a

√
ag. ϕ must satisfy the Laplace equation in the domain S:

(2) ∇2ϕ (R, t) = 0, R(x, y) ∈ S.

The container bottom and walls are rigid and impermeable, therefore,

(3) ∂ϕ (R)/∂x = 0, R ∈ {L0, La} , ∂ϕ (R)/∂y = 0, R ∈ Lbot.

The dynamic boundary condition on L is based on the Bernoulli equation and is given
by

(4) ∂ϕ
(

R
L
)/

∂t = −v
(

R
L
)2

/

2 − RL
y ; R

L ∈ L/{A0 ∪ Aa},
in inner point of L and in boundary points

(5) ∂ϕ
(

R
L
)/

∂t = −v
(

R
L
)2

/

2 − RL
y − ξ

(

RL
x

)

ϕ, R
L ∈ A0 ∪ Aa.

As initial position of the free surface and the initial distribution of the potential we
take

ϕ (x, y, 0) =
(

µ + 5µ3
/

32
)

cos 2πx exp(2πy)
/

(2π)
3/2

+ o
(

µ3
)

,(6)

L(x, 0) = 0 + o
(

µ3
)
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i.e. the same as for the asymptotical solution [7] in a power series for small parameter µ �
1
(µ ≈ amplitude of the wave) for standing waves of finite amplitude in a channel:

L(x, t) =
((

µ + 3µ3
/

32
)

sin ωt + µ3 sin 3ωt
/

16
)

cos 2πx/2π + µ2 (1 − cos 2ωt) ·

· cos 4πx/8π +
(

9µ3 sin ωt − 3µ3 sin 3ωt
)

cos 6πx/64π + o
(

µ3
)

;(7)

ω =
√

2π
(

1 − µ2
/

4− 13µ4
/

128
)

We solve (2)–(5) numerically using the method, described in [8].

3. Numerical results. When a surface tension is not considered, there are no
limitations for the magnitude of the contact angle at the border point, but in standing
waves contact angle is always 90◦. According to the asymptotic solution (6), (7) border
point moves sinusoidaly. In numerical calculations for given µ we take the same initial
conditions (7) as in the asymptotic solution and investigate changes of the waves, contact
line and contact angle caused by dissipation ξ.

Fig. 2. The free line L as a function of the distance to the wall x at moments of time t = 0.5,
1, 1.5, 2, 2.5 in cases ξ = 0 (standing waves) – with circles, ξ = 0.05, 0.1, 0.15, 0.2 (µ = 0.157)

First, we fix the amplitude of the standing waves µ = 0.157 and then we study
the influence of the magnitude of the dissipation ξ. In Fig. 2 we show the numerically
obtained solutions for the free line L at dimensionless time moments t = 0.5, 1, 1.5, 2,
2.5 in the first period of oscillations for ξ = 0, 0.05, 0.1, 0.15, 0.2. The numerical solution
for the standing waves when the dissipation ξ = 0, is shown with empty circles. As it
can bee seen from Fig. 2, smooth change of dissipation ξ leads to a smooth change of the
fluctuations of the free line L. The solution for the free line L when ξ decreases to zero,
approaches uniformly to the solution for a standing wave when there is no dissipation
at the wall. The main difference with standing waves in the first period of oscillations
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is at border regions. In the next periods of oscillations the falling behind of the border
points the fluid interface L leads to a bigger and bigger changes of the whole free surface.
Similarly, when ξ decreases, the dynamical contact angle converges uniformly to 90◦. In
Fig. 3 we show the contact angle at the border point A0 of numerically obtained line L
in the time interval t ∈ [0, 8] for different values of the dissipation ξ = 0, 0.05, 0.1, 0.15,
0.2. It is seen that when ξ decreases, the dynamic contact angle converges uniformly to
90◦.

Fig. 3. The contact angle as a function of the dimensionless time at the border point A0

We obtain that the dynamics of the border points is not sinusoidal as for standing waves,
but it is complicate a function of the flow field. So is for dynamic contact angles. This
fact is illustrated for the first period of oscillation in Fig. 4 for ξ = 0.2. The change of the
height with time of the border point A0 (t) for ξ = 0.2 is shown in the figure with thick

Fig. 4. The change of the height with time of the border point for ξ = 0.2 - with thick solid
line; for ξ = 0 – with thick dashed line. The contact angle as a function of the time at the

border point A0 – with solid line

solid line and for ξ = 0 (standing wave) – with thick dotted line. In the same figure the
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contact angle for ξ = 0.2 is shown with thin solid line. The presence of the dissipation ξ
leads to slowing down of the motion of the border point in the first period of oscillation
at almost all time moments except in time interval [2.03–2.44]. The change in this time
interval is determined by the appearance of velocity at the contact points bigger than at
the neighboring parts of the free line.

Fig. 5. The contact angle as a function of the dimensionless time at the border point A0 in
cases µ = 0.157, 0.125, 0.094, 0.063, 0.031; t = [0, 8]

Now, we study the influence of the amplitude µ on the contact angle oscillations for
given ξ = 0.2. In Fig. 5 are shown the solutions for the contact angle at point A0 for
amplitudes µ = 0.157, 0.125, 0.094, 0.063, 0.031. It is seen that the contact angle changes
smoothly when we change smoothly the amplitude µ. As µ → 0, so does the deviation of
the contact angle from 90◦.

4. Conclusions. Numerical results for several cases, from which we could make a
conclusion about quality specifications of the theoretical model were obtained. We have
obtained, as well, that the contact angle behavior at the border points and the free line
could be described by friction coefficient. In our study we found that the friction at the
border points and free line lead to a qualitative change of the shape of the free surface
and the three phase dynamic contact angle. The obtained results show that with the
suggested numerical algorithm we can effectively solve the Laplace equation with mixed
boundary condition in non orthogonal domain and can study the behavior of the fluid in
a vessel when friction forces at the contact line are present.
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ЕФЕКТИ НА ДИСИПАЦИЯТА ОТ ОБЛАСТТА НА ТРИФАЗЕН

КОНТАКТ ВЪРХУ ПОВЪРХНОСТНИТЕ ГРАВИТАЦИОННИ

ВЪЛНИ НА ТЕЧНОСТ В КАНАЛ

Димитър Станимиров Илиев, Станимир Димитров Илиев

В статията се изследва динамиката на двумерни повърхностни гравитационни
вълни на флуид в канал. Вискозната дисипация във вътрешността на флуидна-
та среда се предполага пренебрежимо малка спрямо дисипацията в околността
на контактната линия. Капилярни ефекти не се разглеждат. Дисипацията в окол-
ността на контактната линия се описва чрез модела на “дисипация на контакт-
ната линия” предложен от de Ruijter et al. (Langmuir 15 (1999), 2209), в който се
въвежда феноменологичен дисипативен член, пропорционален на дължината на
контактната линия. Получена е числено еволюцията на повърхността на флуид-
ната среда. Сравнява се получената динамика на вълните, на контактните линии
и контактни ъгли с тези на стояща вълна.
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