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FUNCTIONAL TRANSFER THEOREMS FOR MAXIMA OF
MOVING AVERAGE"

Pavlina Kalcheva Jordanova

In this paper we investigate the asymptotic behavior of sequences of random processes,
whose time-intersections are maxima of random number of stationary moving average.
The distribution function (df) of the noise components is subexponential and belongs
to the domain of attraction of the Gumbel distribution. The time points are almost
surely strictly increasing to infinity. The max-increments of these processes are not
independent. Here it is proved that such a sequence of random processes converges
weakly to a compound extremal process.

In particular, we consider cases in which the counting process is a mixed Poisson, or
when the time points constitute a renewal process.

1. Introduction. The class of subexponential distributions (SE) was introduced by
Chistyakov [3] in 1964. In 1988 Davis and Resnick [4] use point-processes techniques for
studying the extremes of moving average sequence of random variables (rv’s) from the
max-domain of attraction (max-DA) of the Gumbel distribution. The same year Goldie
and Resnick [5] obtained necessary and sufficient conditions for F' € SE to belong to the
same max-DA.

The asymptotic behavior of sequences of random processes, whose time intersections
are random indexed maxima of independent identically distributed (iid) rv’s is investiga-
ted in a series of papers of Pancheva and Jordanova (see e.g. [7] and [10]). Independently
of them Satheesh et al. [12] investigate the properties of A-extremal processes. In [11],
Pancheva et al. obtained necessary and sufficient conditions for a compound extremal
process to have independent max-increments.

This paper contains analogous results for strictly stationary sequence and, more
precisely, for moving average sequence with SE noise in max-DA of the Gumbel distribution.

Throughout this paper let (2,4, P) be a given complete probability space with
filtration (A;)i>0. We assume that all P — null sets of A are added to Ag. We denote by
M([0,00)) the space of non-decreasing, right-continuous functions y(t) : [0, 00) — [0, 00)
with finite left limits in (0, 00), endowed with the Skorokhod topology (see Billingsley
[1]). When the sequence of random processes {7, }nen converges weakly in the Skorokhod
topology to a stochastic process 7, we write 1, = 7. All discussed random processes
here have sample paths in M([0,00)). As these processes have non-decreasing sample
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paths weak convergence of random processes, as random elements in M([0, 00)) coincide
with convergence in Ji-topology of Skorokhod (see e.g [1]).

The next lemma is very useful, when we have to prove weak convergence of random
processes. It describes a particular case when composition is a continuous mapping. It is
an immediate consequence of Theorem 13.2.4 of [1].

Lemma 1.1. Let Z,,, Z, 0,,, n € N and A be random processes, whose path functions
lie in M([0,00)). We suppose that Z, —> Z and 0,, = A. We assume that for all
n € N, Z, and 0,, are independent. If the random process Z 1is stochastically continuous
and A is such that for all t > 0,

(1) PVe>0,A(t—¢€) <At+¢)/Z(A(t)-) < Z(A(t)) =1 and
P(A(t—) = A®)/Z(A(t)—) < Z(A(t)) = 1,
then Z, 00, — Z o A, as n — oo and the random processes Z and A are independent.

If the process A has almost surely (a.s.) continuous and strictly increasing sample
paths, condition (1) is automatically satisfied.

2. Description of the Model and Main Results. We suppose that {&;};cz is a

sequence of iid rv’s with df F' € SE, in the max-DA of the Gumbel distribution
G(z) = exp{—e™"}, x>0.

We assume further, that the tails of F' are balanced in the sense that there exists

p € (0,1], such that
. P(&G > ) . P& <-x)

2 lim ————=p, lim ————~=1—p.
. A Pla s P R Pals o

We denote by { X, }ncz the sequence of linear processes

o0

(3) Xn= Y cilnj, n=...,-1,0,1,. ...

j=—o00
We assume that the real numbers {¢; };ez, satisfy the following condition:
There exists § € (0,1) such that

(o]
s
(4) S Jelf < oo
j=—o00
Without loss of generality we can assume that
(5) max|e;] = 1.
J
Under these conditions, the series in (3) is a.s. convergent and the sequence { X, }nez
is strictly stationary.
Let g=1—p, Tp =0 and
(6) N ={(Ty, Xy) : k€ {0,1,...}}
be a point process (pp) with Ty < T1 < ---, that are a.s. strictly increasing to infinity.
We denote the counting process of the time points by
(7) N(t) =maz{n >0 | T, < t}.
We suppose further that the sequences {&;};cz and Ty, 75, ... are independent.
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We denote by Y1 the extremal process, generated by the Poisson pp N T with mean

measure pt((0,¢] X (z,00)) = te”* and by Y~ the extremal process, generated by the

Poisson pp N~ with mean measure p= ((0,¢] x (z,00)) = 26~ We assume that Y+
b

and Y~ are independent.

The weak limit behavior of various quantities related to the extremes of {X, },cz is
discussed for example in [4], [8] and [12].

By the Invariance principle for the maxima of a linear process with SE noise in the
max-DA of the Gumbel distribution (see e.g. Theorem 5.5.11 [6]) we have, that there

1
exist sequences a,, ~ F— (1 — —) and b,, such that
n

[nt] X, —a, »
V=5 ez
(8) Va =4 =t — Y(t), in M([0,00)),
X, —
17%, 0<t<n!
by,
where
(9) Y#) =Y () VY (2).
is a G, extremal process, generated by the extreme-value distribution
(10) Gp(z) = exp{—e “p~'}.

Now we are ready to state our main result.

Theorem 2.1. Let N be the pp, defined in (6) with counting process N, defined in
(7). We assume that:
i) There exists a random process A with a.s. continuous and strictly increasing sample
paths, such that
N (nt)
n

= A(t), n—oo in M(0,00));

ii) The sequence {Xp,}necz has representation (3) with iid {&;}icz, that have SE
distribution functions in the mazx-DA of the Gumbel distribution with centering constants
{an tnen and normalizing constants {b, }nen and that satisfy condition (2). The sequence
of real numbers {c;}icz is such that (4) and (5) are satisfied;

iii) The sequences {&;}iez and Ty, T, ... are independent.
Then, Y, (t) = Y (A(t)), where
N(nt)Xi—an, t>g
- i=1 bn -n
(11) Yo(t) =
X, — T
17%7 O<t< _1
by n

and Y is defined in (9).

Sketch of the proof: By Theorem 5.5.11 [6], under conditions in ii) we get (8) with
Y, defined in (9). Because of i) and iii) we can apply Lemma 1.1. O

Corollary 2.1. Let N be the pp, defined in (6) with counting process N, which is a
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mized Poisson process with random intensity A and EA < co. We assume that condition
ii) is satisfied and the sequence {&;}icz and the random process N are independent.
Then, Y, (t) = Y (t) = Y(At) in M([0,00)), where Y is defined in (9).
Y (t) is a self-similar with respect to (w.r.t.) continuous one-parameter group (c.o.g.)
I'={(st,x+1ns) | s> 0}.
Proof. Since the counting process N is mixed Poisson,
N (nt)
n
The limiting process has continuous and strictly increasing sample paths, therefore we
can use Theorem 2.1.
It is easy to check that I' = {(st,x +1Ins) | s > 0} is a c.0.g. w.r.t. the composition.
Let ¢ > 0. By the Law of total probability we have, that for all s > 0
P(Y (st) < ) = P(Y(Ast) < x) = Eexp{—Aste *p~ 1} =
= Eexp{—Ate~ @0 9)p=1V — P(Y(At)+1In s <z)=P(Y(t)+1In s < ). O
If the time points Ty, T, ... of the pp N, defined in (6) constitute a renewal process,
with time between renewals Ji, Jo,..., with EJ; < oo, then the counting process N

= A, n— oo in M([0,00)).

could be interpreted as a mixed Poisson with constant intensity A = i An immediate
1

t
consequence of Renewal theory and this corollary is that the limiting processis Y (ﬁ) .
1

The last process is self-similar and max-stable.
When EJ; is not finite, we cannot apply the above theorem.

Theorem 2.2. Let Jy, Jo, ... be a.s. positive, iid random variables with df J, such that
1-J € RV_g, B€(0,1). Let N be the pp, defined in (6) with time points T, Ts, ..., that

constitute a renewal process with times between renewals Ji, Ja, ... and counting process
N, defined in (7). We suppose that conditions i) and iii) are satisfied. Then,
N(nt) X ~
\/ T — V(1) = Y(Bs(t), in M([0,00)),
k=1 n

where Y is the G extremal process, defined in (9), Eg(t) = inf{z > 0| Sg(z) > t} is
the hitting time process of the strictly stable Levy motion {S3(t)}t>0, with

and @, ~ F—(J(n)).

Moreover, Y is a self-similar process w.r.t. co.g. T ={(st,x+ B.Ins) : s > 0} and

ltﬁ)
P .
Z e L RN’

1 —

Proof. By Theorem 5.5.11 [6] we have (8) with Y, defined in (9) and a,~ (ﬁ) (n).

By Theorem 3.6 [9], for n — oo,
N (nt)

i = E3(t), in M(]0,0))
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where d,, ~ € RVjp.

1
1—J(n)

The sample paths of the processes and Ejg are in M[0,00), but the sample

n
paths of Eg(t) are not a.s. strictly increasing. That is why, we have to check condition

(1). This means that Eg should be a.s. continuous and strictly increasing at every point
to > 0, such that Eg(to) is a point of discontinuity of Y. When we interpret this for Sz and
Y, they a.s. should not have simultaneous jumps. This is obviously true, because these
processes are independent and stochastically continuous. So condition (1) is satisfied.
Now we use condition 4i), apply Lemma 1.1 and obtain
N(nt)
Vi, () = Y (Bs (1)
n
and ay, ~ aq, ~ F~(J(n)).
Let us now obtain self-similarity of the limiting process. Let ¢ > 0. As the mixing
process Eg is self-similar w.r.t. £ = {(st,zs?) | s > 0}, we have that for all s > 0

P(Y (st) < z) = P(Y (Es(st)) < z) = P(Y (s’ Ep(t)) < ).
By the Law of total probability we get
P(Y(s°Es(t)) < x) = Eexp{—Es(t)s’ep~1} =
= Eexp{—FEg(t)e” @A 9p=11 — P(Y(Es(t)) + fIn s <z) = P(Y(t) + Bln s < ).
To derive the df of the limiting process ¥ we use Corollary 3.2,(a) in [9]:
P(V(t) < ) = P(Y (Es(t)) < ) = Eexp{~t*Eg(1)e—p}
= Eexp{—tPe *p~1(S5)P}.

According to Bondesson, Kristiansen and Steutel [2], (S3)~" is Mittag-LefHler distri-
buted. So, we complete the proof. [

Note. The limiting processes in the above theorems are max-stable and stochastically
continuous, but their max-increments are not independent in general.
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OYHKIIMOHAJIHU TPAHNYHU TEOPEMMU 3A ITPEHOCA IIPU1
MAKCUMYMM HA IIJI'b3TAIIIN CE CPEJIHN

ITaBauna KamueBa MopaaHnosa

B Tasu craTus uscseaamMe aCUMITOTUYIHOTO IIOBEJCHUE HA PEIUIU OT CJIyYallHU ITPO-
I[ECH, YNNATO CEYCHUsI BbB (DUKCHPAHU MOMEHTH OT BPEME Ca MAKCHUMYMH OT CJIyJIaeH
Opoii cTanmoHapHU MJIb3raiy ce cpejaan. OyHKIusATa Ha pa3lpe/ie/ieHre Ha Iy MOBUTE
KOMITOHEHTH € CyDEKCIIOHEHIIMAIHA U IPUHAJJIE’KU Ha 00JIaCTTa HA MAKC-IPUBJIHIAHE
Ha pasnpejenennero Ha ['ymGesn. MomenTuTe OT Bpeme 0o0pa3yBar IOYTH CHUIYDPHO
CTPOro pacTsiia KbM 0e3kpaitHocT pejauna. Makc-HapacTBAHUSITA HA TE3U POILECH
He ca He3aBucuMH. TyK e JI0Ka3aHO, Y€ TaKaBa eJiHa PeIUulla OT CIyJailHU MPOLECU
KJIOHH €J1ab0 K'bM ChCTaBEH €KCTPEMAJIEH IIPOIIEC.

B gactHOCT pasriexkgame ciydanre, Koraro OposmusaT mpoiec e cmecen IloacoHos,
WJIK KOraTO MOMEHTHTE OT BpeMe 00pa3yBaT IpPOIEeC Ha Bb3CTaHOBsIBAHE.
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