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FUNCTIONAL TRANSFER THEOREMS FOR MAXIMA OF

MOVING AVERAGE*

Pavlina Kalcheva Jordanova

In this paper we investigate the asymptotic behavior of sequences of random processes,
whose time-intersections are maxima of random number of stationary moving average.
The distribution function (df) of the noise components is subexponential and belongs
to the domain of attraction of the Gumbel distribution. The time points are almost
surely strictly increasing to infinity. The max-increments of these processes are not
independent. Here it is proved that such a sequence of random processes converges
weakly to a compound extremal process.
In particular, we consider cases in which the counting process is a mixed Poisson, or
when the time points constitute a renewal process.

1. Introduction. The class of subexponential distributions (SE) was introduced by
Chistyakov [3] in 1964. In 1988 Davis and Resnick [4] use point-processes techniques for
studying the extremes of moving average sequence of random variables (rv’s) from the
max-domain of attraction (max-DA) of the Gumbel distribution. The same year Goldie
and Resnick [5] obtained necessary and sufficient conditions for F ∈ SE to belong to the
same max-DA.

The asymptotic behavior of sequences of random processes, whose time intersections
are random indexed maxima of independent identically distributed (iid) rv’s is investiga-
ted in a series of papers of Pancheva and Jordanova (see e.g. [7] and [10]). Independently
of them Satheesh et al. [12] investigate the properties of Λ-extremal processes. In [11],
Pancheva et al. obtained necessary and sufficient conditions for a compound extremal
process to have independent max-increments.

This paper contains analogous results for strictly stationary sequence and, more
precisely, for moving average sequence with SE noise in max-DA of the Gumbel distribution.

Throughout this paper let (Ω,A, P ) be a given complete probability space with
filtration (At)t≥0. We assume that all P – null sets of A are added to A0. We denote by
M([0,∞)) the space of non-decreasing, right-continuous functions y(t) : [0,∞) → [0,∞)
with finite left limits in (0,∞), endowed with the Skorokhod topology (see Billingsley
[1]). When the sequence of random processes {ηn}n∈N converges weakly in the Skorokhod
topology to a stochastic process η, we write ηn =⇒ η. All discussed random processes
here have sample paths in M([0,∞)). As these processes have non-decreasing sample
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paths weak convergence of random processes, as random elements in M([0,∞)) coincide
with convergence in J1-topology of Skorokhod (see e.g [1]).

The next lemma is very useful, when we have to prove weak convergence of random
processes. It describes a particular case when composition is a continuous mapping. It is
an immediate consequence of Theorem 13.2.4 of [1].

Lemma 1.1.Let Zn, Z, θn, n ∈ N and Λ be random processes, whose path functions
lie in M([0,∞)). We suppose that Zn =⇒ Z and θn =⇒ Λ. We assume that for all
n ∈ N, Zn and θn are independent. If the random process Z is stochastically continuous
and Λ is such that for all t > 0,

(1) P (∀ε > 0, Λ(t − ε) < Λ(t + ε)/Z(Λ(t)−) < Z(Λ(t)) = 1 and

P (Λ(t−) = Λ(t)/Z(Λ(t)−) < Z(Λ(t)) = 1,

then Zn ◦ θn =⇒ Z ◦ Λ, as n → ∞ and the random processes Z and Λ are independent.

If the process Λ has almost surely (a.s.) continuous and strictly increasing sample
paths, condition (1) is automatically satisfied.

2. Description of the Model and Main Results. We suppose that {ξi}i∈Z is a
sequence of iid rv’s with df F ∈ SE, in the max-DA of the Gumbel distribution

G(x) = exp{−e−x}, x > 0.

We assume further, that the tails of F are balanced in the sense that there exists
p ∈ (0, 1], such that

(2) lim
x→∞

P (ξ1 > x)

P (|ξ1| > x)
= p, lim

x→∞

P (ξ1 ≤ −x)

P (|ξ1| > x)
= 1 − p.

We denote by {Xn}n∈Z the sequence of linear processes

(3) Xn =

∞∑

j=−∞

cjξn−j , n = . . . ,−1, 0, 1, . . . .

We assume that the real numbers {ci}i∈Z, satisfy the following condition:
There exists δ ∈ (0, 1) such that

(4)
∞∑

j=−∞

|cj |
δ < ∞.

Without loss of generality we can assume that

(5) max
j

|cj | = 1.

Under these conditions, the series in (3) is a.s. convergent and the sequence {Xn}n∈Z

is strictly stationary.
Let q = 1 − p, T0 = 0 and

(6) Ñ = {(Tk, Xk) : k ∈ {0, 1, . . .}}

be a point process (pp) with T0 < T1 < · · · , that are a.s. strictly increasing to infinity.
We denote the counting process of the time points by

(7) N(t) = max{n ≥ 0 | Tn ≤ t}.

We suppose further that the sequences {ξi}i∈Z and T1, T2, . . . are independent.

211



We denote by Y + the extremal process, generated by the Poisson pp N+ with mean
measure µ+((0, t] × (x,∞)) = te−x and by Y − the extremal process, generated by the

Poisson pp N− with mean measure µ−((0, t] × (x,∞)) = t
q

p
e−x. We assume that Y +

and Y − are independent.
The weak limit behavior of various quantities related to the extremes of {Xn}n∈Z is

discussed for example in [4], [8] and [12].
By the Invariance principle for the maxima of a linear process with SE noise in the

max-DA of the Gumbel distribution (see e.g. Theorem 5.5.11 [6]) we have, that there

exist sequences an ∼ F←
(

1 −
1

n

)
and bn such that

(8) Yn(t) =





[nt]∨

i=1

Xi − an

bn

, t ≥ n−1

X1 − an

bn

, 0 < t < n−1

=⇒ Y (t), in M([0,∞)),

where

(9) Y (t) = Y +(t) ∨ Y −(t).

is a Gp extremal process, generated by the extreme-value distribution

(10) Gp(x) = exp{−e−xp−1}.

Now we are ready to state our main result.

Theorem 2.1.Let Ñ be the pp, defined in (6) with counting process N , defined in
(7). We assume that:

i) There exists a random process Λ with a.s. continuous and strictly increasing sample
paths, such that

N(nt)

n
=⇒ Λ(t), n → ∞ in M([0,∞));

ii) The sequence {Xn}n∈Z has representation (3) with iid {ξi}i∈Z, that have SE
distribution functions in the max-DA of the Gumbel distribution with centering constants
{an}n∈N and normalizing constants {bn}n∈N and that satisfy condition (2). The sequence
of real numbers {ci}i∈Z is such that (4) and (5) are satisfied;

iii) The sequences {ξi}i∈Z and T1, T2, . . . are independent.
Then, Ỹn(t) =⇒ Y (Λ(t)), where

(11) Ỹn(t) =





N(nt)∨
i=1

Xi − an

bn

, t ≥
T1

n

X1 − an

bn

, 0 < t <
T1

n

.

and Y is defined in (9).

Sketch of the proof: By Theorem 5.5.11 [6], under conditions in ii) we get (8) with
Y , defined in (9). Because of i) and iii) we can apply Lemma 1.1. �

Corollary 2.1.Let Ñ be the pp, defined in (6) with counting process N , which is a
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mixed Poisson process with random intensity Λ and EΛ < ∞. We assume that condition
ii) is satisfied and the sequence {ξi}i∈Z and the random process N are independent.

Then, Ỹn(t) =⇒ Ỹ (t) = Y (Λt) in M([0,∞)), where Y is defined in (9).

Ỹ (t) is a self-similar with respect to (w.r.t.) continuous one-parameter group (c.o.g.)
Γ = {(st, x + ln s) | s > 0}.

Proof. Since the counting process N is mixed Poisson,

N(nt)

n
=⇒ Λ.t, n → ∞ in M([0,∞)).

The limiting process has continuous and strictly increasing sample paths, therefore we
can use Theorem 2.1.

It is easy to check that Γ = {(st, x + ln s) | s > 0} is a c.o.g. w.r.t. the composition.
Let t > 0. By the Law of total probability we have, that for all s > 0

P (Ỹ (st) < x) = P (Y (Λst) < x) = E exp{−Λste−xp−1} =

= E exp{−Λte−(x−ln s)p−1} = P (Y (Λt) + ln s < x) = P (Ỹ (t) + ln s < x). �

If the time points T1, T2, . . . of the pp Ñ , defined in (6) constitute a renewal process,
with time between renewals J1, J2, . . . , with EJ1 < ∞, then the counting process N

could be interpreted as a mixed Poisson with constant intensity Λ =
1

EJ1
. An immediate

consequence of Renewal theory and this corollary is that the limiting process is Y

(
t

EJ1

)
.

The last process is self-similar and max-stable.
When EJ1 is not finite, we cannot apply the above theorem.

Theorem 2.2.Let J1, J2, . . . be a.s. positive, iid random variables with df J , such that
1−J ∈ RV−β, β ∈ (0, 1). Let Ñ be the pp, defined in (6) with time points T1, T2, . . . , that
constitute a renewal process with times between renewals J1, J2, . . . and counting process
N , defined in (7). We suppose that conditions ii) and iii) are satisfied. Then,

N(nt)∨

k=1

Xk − ãn

b̃n

=⇒ Ỹ (t) = Y (Eβ(t)), in M([0,∞)),

where Y is the Gp extremal process, defined in (9), Eβ(t) = inf{x ≥ 0 | Sβ(x) > t} is
the hitting time process of the strictly stable Levy motion {Sβ(t)}t≥0, with

Sβ(1) ∼ Sβ

(
β

√
(−β)Γ(−β) cos

πβ

2
, 1, 0

)

and ãn ∼ F←(J(n)).
Moreover, Ỹ is a self-similar process w.r.t. c.o.g. Γ = {(st, x + β. ln s) : s > 0} and

P (Ỹ (t) < x) =

∞∑

n=0

(−e−xp−1tβ)n

Γ(1 + nβ)
, x > 0.

Proof. By Theorem 5.5.11 [6] we have (8) with Y , defined in (9) and an∼

(
1

1 − F

)←
(n).

By Theorem 3.6 [9], for n → ∞,

N(nt)

dn

=⇒ Eβ(t), in M([0,∞))
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where dn ∼
1

1 − J(n)
∈ RVβ .

The sample paths of the processes
N(nt)

dn

and Eβ are in M[0,∞), but the sample

paths of Eβ(t) are not a.s. strictly increasing. That is why, we have to check condition
(1). This means that Eβ should be a.s. continuous and strictly increasing at every point
t0 > 0, such that Eβ(t0) is a point of discontinuity of Y . When we interpret this for Sβ and
Y , they a.s. should not have simultaneous jumps. This is obviously true, because these
processes are independent and stochastically continuous. So condition (1) is satisfied.
Now we use condition iii), apply Lemma 1.1 and obtain

Ydn
(
N(nt)

dn

) =⇒ Y (Eβ(t))

and ãn ∼ adn
∼ F←(J(n)).

Let us now obtain self-similarity of the limiting process. Let t > 0. As the mixing
process Eβ is self-similar w.r.t. L = {(st, xsβ) | s > 0}, we have that for all s > 0

P (Ỹ (st) < x) = P (Y (Eβ(st)) < x) = P (Y (sβEβ(t)) < x).

By the Law of total probability we get

P (Y (sβEβ(t)) < x) = E exp{−Eβ(t)sβe−xp−1} =

= E exp{−Eβ(t)e−(x−β ln s)p−1} = P (Y (Eβ(t)) + β ln s < x) = P (Ỹ (t) + β ln s < x).

To derive the df of the limiting process Ỹ we use Corollary 3.2,(a) in [9]:

P (Ỹ (t) < x) = P (Y (Eβ(t)) < x) = E exp{−tβEβ(1)e−xp−1}

= E exp{−tβe−xp−1(Sβ)−β}.

According to Bondesson, Kristiansen and Steutel [2], (Sβ)−β is Mittag-Leffler distri-
buted. So, we complete the proof. �

Note. The limiting processes in the above theorems are max-stable and stochastically
continuous, but their max-increments are not independent in general.
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ФУНКЦИОНАЛНИ ГРАНИЧНИ ТЕОРЕМИ ЗА ПРЕНОСА ПРИ
МАКСИМУМИ НА ПЛЪЗГАЩИ СЕ СРЕДНИ

Павлина Калчева Йорданова

В тази статия изследваме асимптотичното поведение на редици от случайни про-
цеси, чиито сечения във фиксирани моменти от време са максимуми от случаен
брой стационарни плъзгащи се средни. Функцията на разпределение на шумовите
компоненти е субекспоненциална и принадлежи на областта на макс-привличане
на разпределението на Гумбел. Моментите от време образуват почти сигурно
строго растяща към безкрайност редица. Макс-нарастванията на тези процеси
не са независими. Тук е доказано, че такава една редица от случайни процеси
клони слабо към съставен екстремален процес.
В частност разглеждаме случаите, когато броящият процес е смесен Поасонов,
или когато моментите от време образуват процес на възстановяване.
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