MATEMATИKA И MATEMATИЧЕСКО ОБРАЗОВАНИЕ, 2008 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2008 Proceedings of the Thirty Seventh Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 2–6, 2008

COMPOUND POISSON COUNTING DISTRIBUTIONS*

Leda D. Minkova, Rana Etemadi

In this paper discrete compound Poisson distributions are given. The Inflatedparameter Poisson distribution, Poissin distribution of order k and Pólya-Aeppli distribution of order k are defined. The probability mass functions and recursion formulas are given. An interpretation of Pólya-Aeppli distibution of order k is considered. The Pólya-Aeppli process of order k is defined.

1. Introduction. The Poisson distribution belongs to the family of Generalized Power Series Distributions (GPSO) and is basically used for counting [6]. The probability generating function (PGF) is given by

$$P(t) = e^{\lambda(t-1)}.$$

where $\lambda > 0$ is a parameter. In many cases it is of interest to obtain the probability distribution of a random sum of independent equally distributed random variables, for example, the claims payable by an insurance company.

The random variables considered are assumed to be defined on a fixed probability space $(\Omega, \mathcal{F}, \mathbf{P})$. Consider a random variable N that can be represented as

(1)
$$N = X_1 + X_2 + \ldots + X_Y,$$

where Y, X_1, X_2, \ldots are mutually independent, non-negative, integer valued random variables. Then, the random variable N is said to have a *compound distribution*. The distribution of X is a compounding distribution. We suppose that the random variable Y is Poisson distributed. The PGF of the random variable N is given by

(2)
$$P_N(t) = e^{\lambda(P_X(t)-1)}$$

where $P_X(t)$ is the PGF of the random variable X. The random variable N has a compound Poisson distribution and belongs to the family of Compound GPSDs.

In this note we consider three types of generalizations of the Poisson distribution by compounding. In Section 2 the Inflated-parameter Poisson distribution is given. In Section 3 we introduce the Poisson distribution of order k. In Section 4 the Pólya-Aeppli distribution of order k is defined. It is a compound Poisson distribution by truncated geometric compounding distribution. Finally, as an application, in Section 5 are given the properties of the Pólya-Aeppli process of order k.

2. Inflated-parameter Poisson distribution. In [7] and [8] the classical discrete distributions are generalized by including an additional parameter $\rho \in [0, 1)$. The new

^{*2000} Mathematics Subject Classification: 60E05, 62305.

Key words: Pólya-Aeppli distribution, distribution of order k, compound Poisson distribution. 226

family of compound distributions is called Inflated – parameter generalized power series distributions (IGPSD). In this family the compounding distribution is geometric, $Ge(1 - \rho)$, with parameter $\rho \in [0, 1)$. The probability mass function (PMF) and the PGF are given by

(3)
$$P(X=i) = (1-\rho)\rho^{i-1}, \quad i = 1, 2, \dots,$$

and

(4)
$$P_X(t) = \frac{(1-\rho)t}{1-\rho t}$$

In the case when $Y \sim Po(\lambda)$, we say that the r.v. N has an Inflated-parameter Poisson distribution with parameters $\lambda > 0$ and ρ ($N \sim IPo(\lambda, \rho)$). The PMF is given by

(5)
$$P(N=m) = \begin{cases} e^{-\lambda}, & m = 0, \\ e^{-\lambda} \sum_{i=1}^{m} {m-1 \choose i-1} \frac{[(1-\rho)\lambda]^i}{i!} \rho^{m-i}, & m = 1, 2, \dots \end{cases}$$

In the case when $\rho = 0$, the PMF (5) coincides with the PMF of the classical Poisson distribution.

The Inflated-parameter Poisson distribution coincides with the Pólya-Aeppli distribution, studied by Evans [4], see also [6].

The PMF of the Pólya-Aeppli distribution satisfies the following second order recurrent formula [8]:

$$p_m = \left(2\rho + \frac{\lambda(1-\rho) - 2\rho}{m}\right)p_{m-1} - \left(1 - \frac{2}{m}\right)\rho^2 p_{m-2},$$

for $m = 1, 2, \dots$ and $p_{-1} = 0$.

3. Poisson distribution of order k. The probability distributions of order k are introduced by A. Philippou, C. Georghiou and G. Philippou [11]. The geometric distribution of order k, $(Ge_k(p))$ is defined by the number of trials until the first occurrence of k consecutive successes in a sequence of independent trials with success probability p. The negative binomial $(NB_k(r, p))$ distribution of order k is the distribution of the sum of r independent, equally $Ge_k(p)$ distributed random variables. The Poisson distribution of order k, $(Po_k(\lambda))$, is a limiting distribution of a sequence of shifted NB_k distributed random variables.

Hirano [5] introduced the binomial distribution of order k ($Bi_k(n, p)$). Aki, Kuboku and Hirano [1] derived the logarithmic series distribution of order k, ($LS_k(p)$), as a limiting distribution of a sequence of NB_k distributed random variables. It is proved that the discrete distributions of order k can be represented as a Compound GPSDs, (see [2] and also [3]).

Let the random variable N have a compound distribution.

Definition 3.1. If the compounding random variable X is a discrete distributed, truncated at 0 and from the right away from k + 1, then the random variable N has a distribution of order k.

The $Ge_k(p)$, $NB_k(r,p)$ and $LS_k(p)$ distributions belong to the family of Compound GPSDs by truncated geometric compounding distribution.

The random variable X has a PMF and PGF, given by

(6)
$$P(X=m) = \frac{1-\rho}{1-\rho^k} \rho^{m-1}, \quad m = 1, 2, \dots k,$$

and

(7)
$$P_X(t) = \frac{(1-\rho)t}{1-\rho^k} \frac{1-\rho^k t^k}{1-\rho t},$$

where $\rho \in [0, 1)$ and $k \ge 1$ is a fixed integer.

If $k \to \infty$, then the truncated geometric distribution asymptotically coincides with the $Ge(1-\rho)$ distribution, defined by (3) and (4).

In this way, the $Ge_k(p)$, $NB_k(r,p)$ and $LS_k(p)$ distributions converge to the corresponding IGPSD.

The $Po_k(\lambda)$ distribution is obtained by a discrete uniform compounding distribution.

4. The Pólya-Aeppli distribution of order k. In this section we introduce the Pólya-Aeppli distribution of order k, defined in [10]. It is a compound Poisson distribution with PGF given by (2). The compounding distribution is a truncated geometric with PMF and PGF, given by (6) and (7).

Definition 4.1. The probability distribution defined by the PGF (2) and compounding distribution, given by (6) and (7) is called a Pólya-Aeppli distribution of order k, $(PA_k(\lambda, \rho))$.

The Pólya-Aeppli distribution of order k belongs to the family of Compound GPSD, compounded by the truncated geometric distribution. The following theorem gives the probability mass function of the $PA_k(\lambda, \rho)$ distribution. Let us denote $Z = \frac{\lambda(1-\rho)}{1-\rho^k}$, for simplicity.

Theorem 4.1. The probability mass function of the $PA_k(\lambda, \rho)$ distributed random variable is given by:

$$p_{0} = e^{-\lambda},$$

$$p_{i} = e^{-\lambda} \sum_{j=1}^{i} {\binom{i-1}{j-1}} \frac{Z^{j}}{j!} \rho^{i-j}, \quad i = 1, 2, \dots, k,$$

$$p_{i} = e^{-\lambda} [\sum_{j=1}^{i} {\binom{i-1}{j-1}} \frac{Z^{j}}{j!} \rho^{i-j} - Z \rho^{k} \sum_{j=0}^{i-k-1} {\binom{i-k-1}{j}} \frac{Z^{j}}{j!} \rho^{i-k-1-j}],$$

$$i = k+1, k+2, \dots, 2k+1,$$

$$p_{i} = e^{-\lambda} [\sum_{j=1}^{i} {\binom{i-1}{j-1}} \frac{Z^{j}}{j!} \rho^{i-j} - Z \rho^{k} \sum_{j=0}^{i-k-1} {\binom{i-k-1}{j}} \frac{Z^{j}}{j!} \rho^{i-k-1-j} +$$

$$+ \frac{(Z \rho^{k})^{2}}{2!} \sum_{j=0}^{i-2k-2} {\binom{i-2k-1}{j+1}} \frac{Z^{j}}{j!} \rho^{i-2k-2-j}], \quad i = 2k+2, \dots, 3k+2,$$
8

228

$$p_{i} = e^{-\lambda} \left[\sum_{j=1}^{i} {\binom{i-1}{j-1}} \frac{Z^{j}}{j!} \rho^{i-j} - Z \rho^{k} \sum_{j=0}^{i-k-1} {\binom{i-k-1}{j}} \frac{Z^{j}}{j!} \rho^{i-k-1-j} \right. \\ \left. + \frac{(Z\rho^{k})^{2}}{2!} \sum_{j=0}^{i-2k-2} {\binom{i-2k-1}{j+1}} \frac{Z^{j}}{j!} \rho^{i-2k-2-j} - \left. - \frac{(Z\rho^{k})^{3}}{3!} \sum_{j=0}^{i-3k-3} {\binom{i-3k-1}{j+2}} \frac{Z^{j}}{j!} \rho^{i-3k-3-j}\right], \quad i = 3k+3, \dots, 4k+3$$

Remark 4.1. If $k \to \infty$, then the Pólya-Aeppli distribution of order k asymptotically coincides with the usual Pólya-Aeppli distribution. If $\rho = 0$, then it is a Poisson distribution.

Remark 4.2. The mean and the variance of the Pólya-Aeppli distribution of order k are given by

$$EN = \frac{1+\rho+\ldots+\rho^{k-2}+\rho^{k-1}-k\rho^k}{1-\rho^k}\lambda$$

and

$$Var(N) = \frac{1+3\rho+5\rho^2+7\rho^3+\ldots+(2k-3)\rho^{k-2}+(2k-1)\rho^{k-1}-k^2\rho^k}{1-\rho^k}\lambda$$

The following proposition gives an extension of the Panjer recurrence formulas.

Proposition 4.1. The PMF of the Pólya-Aeppli distribution of order k satisfies the following recurrence formulas:

$$p_{1} = Zp_{0},$$

$$p_{i} = \left(2\rho + \frac{Z - 2\rho}{i}\right)p_{i-1} - \left(1 - \frac{2}{i}\right)\rho^{2}p_{i-2}, \ i = 2, 3, \dots k,$$

$$p_{i} = \left(2\rho + \frac{Z - 2\rho}{i}\right)p_{i-1} - \left(1 - \frac{2}{i}\right)\rho^{2}p_{i-2} - \frac{k+1}{i}Z\rho^{k}p_{i-k-1} + \frac{k}{i}Z\rho^{k+1}p_{i-k-2},$$

$$i = k + 1, k + 2, \dots,$$

where $p_{-1} = 0$.

Proof. Differentiation of (2) with $P_X(t)$, given by (7), leads to

$$(1 - \rho t)^2 P'_N(t) = \frac{1 - \rho}{1 - \rho^k} [1 - (k+1)\rho^k t^k + k\rho^{k+1} t^{k+1}] P_N(t),$$

where $P_N(t) = \sum_{m=0}^{\infty} p_m t^m$ and $P'_N(t) = \sum_{m=0}^{\infty} (m+1)p_{m+1}t^m$. The recurrence formulas are obtained by equating the coefficients of t^m on both sides for fixed m = 0, 1, 2, ...

5. Pólya-Aeppli process of order k. Let N(t) represents the state of the system at time $t \ge 0$. It is assumed that the process has state space \mathcal{N} , the non-negative integers. Let $\lambda > 0$ be any real number and $\rho \in [0, 1)$.

Suppose that N(t) has a $PA_k(\lambda t, \rho)$ distribution. Then, the PGF of N(t) is given by (8) $h(u, t) = e^{\lambda t [P_X(u) - 1]},$

229

where $P_X(u)$ is the PDF of the truncated geometric distribution. The properties of the defined process are specified by the following postulates:

$$P(N(t+h) = n \mid N(t) = m) = \begin{cases} 1 - \lambda h + o(h), & n = m, \\ \frac{1 - \rho}{1 - \rho^k} \rho^{i-1} \lambda h + o(h), & n = m + i, i = 1, 2, \dots, k \end{cases}$$

for every $m = 0, 1, ..., where o(h) \to 0$ as $h \to 0$. Note that the postulates imply that for i = k + 1, k + 2, ..., P(N(t+h) = m + i | N(t) = m) = o(h).

Let $P_m(t) = P(N(t) = m)$, m = 0, 1, 2, ... Then, the above postulates yield the following Kolmogorov forward equations:

$$P_0'(t) = -\lambda P_0(t),$$

(9)
$$P'_{m}(t) = -\lambda P_{m}(t) + \frac{1-\rho}{1-\rho^{k}} \lambda \sum_{j=1}^{m \wedge k} \rho^{j-1} P_{m-j}(t), \quad m = 1, 2, \dots,$$

with the conditions

(10)
$$P_0(0) = 1$$
 and $P_m(0) = 0, \quad m = 1, 2, \dots$

Multiplying the *m*-th equation of (9) by u^m and summing for all m = 0, 1, 2, ..., we get the following differential equation

(11)
$$\frac{\partial h(u,t)}{\partial t} = -\lambda [1 - P_X(u)]h(u,t).$$

The solution of (11) with the initial condition

$$h(u,0) = 1$$

is given by (8), which is the PGF of the $PA_k(\lambda t, \rho)$ distribution.

Definition 5.1. The process defined by (9) and (10) is called a Pólya-Aeppli process of order k.

Remark 5.1. In the case of $k \to \infty$, the Pólya-Aeppli process of order k approaches to the Pólya-Aeppli proces, defined by Minkova [9]. If $\rho = 0$, then it is a homogeneous Poisson process.

REFERENCES

[1] S. AKI, H. KUBOKU, K. HIRANO. On discrete distributions of order k. Ann. Inst. Statist. Math. 36, (1984), Part A, 431–440.

[2] N. BALAKRISHNAN. M. V. KOUTRAS. Runs and Scans with Applications. Wiley Series in Probability and Statistics, 2002.

[3] CH. CHARALAMBIDES. On discrete distributions of order k. Ann. Inst. Statist. Math. 38, (1986), Part A, 557–568.

[4] D. A. EVANS. Experimental evidence concerning contagious distributions in ecology. *Bio-metrika* **4**, (1953), 186–211.

[5] K. HIRANO. Some properties of the distributions of order k. In: Fibonacci Numbers and Their Applications (Eds A. N. Philippou et al.), 1986, 43–53.

[6] N. L. JOHNSON, S. KOTZ, A. W. KEMP. Univariate Discrete Distributions, 2nd ed.. Wiley Series in Probability and Mathematical Statistics, 1992.

[7] L. D. MINKOVA. A Family of Compound Discrete Distributions. Compt. Rand. Bulg. Acad. Sci. 54, 2 (2001), 9–12.

[8] L. D. MINKOVA. A generalization of the classical discrete distributions. Commun. Statist. – Theory and Methods **31**, 6 (2002), 871–888.

[9] L. D. MINKOVA. The Pólya-Aeppli process and ruin problems. J. Appl. Math. Stoch. Analysis **3** (2004), 221–234.

[10] L. D. MINKOVA. Pólya-Aeppli distribution of order k. 2007, submitted.

[11] A. N. PHILIPOU, C. GEORGIOU, G. N. PHILIPPOU. A Generalized Geometric Distribution and some of its Properties. *Statistics and Probability Letters* **1**, 4 (1983), 171–175.

Department of Probability, Operations Research and Statistics Faculty of Mathematics and Informatics Sofia University "St. Kl. Ohridski" 1164 Sofia, Bulgaria

СЛОЖНИ ПОАСОНОВИ БРОЯЩИ РАЗПРЕДЕЛЕНИЯ

Леда Минкова, Рана Етемади

В работата се разглеждат дискретни сложни Поасонови разпределения. Дефинирани са Поасоново разпределение с инфлационен параметър, Поасоново разпределение от ред k и разпределение на Пойа-Аепли от ред k. Дадени са вероятностните функции и рекурентни формули за вероятностите. Накрая е дадена интерпретация на разпределението на Пойа-Аепли от ред k. Дефиниран е и процес на Пойа-Аепли от ред k.