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COMPOUND POISSON COUNTING DISTRIBUTIONS*

Leda D. Minkova, Rana Etemadi

In this paper discrete compound Poisson distributions are given. The Inflated-
parameter Poisson distribution, Poissin distribution of order k and Pólya-Aeppli
distribution of order k are defined. The probability mass functions and recursion
formulas are given. An interpretation of Pólya-Aeppli distibution of order k is
considered. The Pólya-Aeppli process of order k is defined.

1. Introduction. The Poisson distribution belongs to the family of Generalized
Power Series Distributions (GPSO) and is basically used for counting [6]. The probability
generating function (PGF) is given by

P (t) = eλ(t−1),

where λ > 0 is a parameter. In many cases it is of interest to obtain the probability
distribution of a random sum of independent equally distributed random variables, for
example, the claims payable by an insurance company.

The random variables considered are assumed to be defined on a fixed probability
space (Ω,F ,P). Consider a random variable N that can be represented as

(1) N = X1 + X2 + . . . + XY ,

where Y, X1, X2, . . . are mutually independent, non-negative, integer valued random va-
riables. Then, the random variable N is said to have a compound distribution. The
distribution of X is a compounding distribution. We suppose that the random variable
Y is Poisson distributed. The PGF of the random variable N is given by

(2) PN (t) = eλ(PX (t)−1),

where PX(t) is the PGF of the random variable X . The random variable N has a
compound Poisson distribution and belongs to the family of Compound GPSDs.

In this note we consider three types of generalizations of the Poisson distribution
by compounding. In Section 2 the Inflated-parameter Poisson distribution is given. In
Section 3 we introduce the Poisson distribution of order k. In Section 4 the Pólya-Aeppli
distribution of order k is defined. It is a compound Poisson distribution by truncated
geometric compounding distribution. Finally, as an application, in Section 5 are given
the properties of the Pólya-Aeppli process of order k.

2. Inflated-parameter Poisson distribution. In [7] and [8] the classical discrete
distributions are generalized by including an additional parameter ρ ∈ [0, 1). The new
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family of compound distributions is called Inflated – parameter generalized power series
distributions (IGPSD). In this family the compounding distribution is geometric, Ge(1−
ρ), with parameter ρ ∈ [0, 1). The probability mass function (PMF) and the PGF are
given by

(3) P (X = i) = (1 − ρ)ρi−1, i = 1, 2, . . . ,

and

(4) PX(t) =
(1 − ρ)t

1 − ρt
.

In the case when Y ∼ Po(λ), we say that the r.v. N has an Inflated-parameter Poisson
distribution with parameters λ > 0 and ρ (N ∼ IPo(λ, ρ)). The PMF is given by

(5) P (N = m) =

{

e−λ, m = 0,

e−λ
∑m

i=1

(

m−1
i−1

) [(1−ρ)λ]i

i! ρm−i, m = 1, 2, . . . .

In the case when ρ = 0, the PMF (5) coincides with the PMF of the classical Poisson
distribution.

The Inflated-parameter Poisson distribution coincides with the Pólya-Aeppli distri-
bution, studied by Evans [4], see also [6].

The PMF of the Pólya-Aeppli distribution satisfies the following second order recur-
rent formula [8]:

pm =

(

2ρ +
λ(1 − ρ) − 2ρ

m

)

pm−1 −

(

1 −
2

m

)

ρ2pm−2,

for m = 1, 2, . . . and p−1 = 0.

3. Poisson distribution of order k. The probability distributions of order k

are introduced by A. Philippou, C. Georghiou and G. Philippou [11]. The geometric
distribution of order k, (Gek(p)) is defined by the number of trials until the first occur-
rence of k consecutive successes in a sequence of independent trials with success probabi-
lity p. The negative binomial (NBk(r, p)) distribution of order k is the distribution of
the sum of r independent, equally Gek(p) distributed random variables. The Poisson
distribution of order k, (Pok(λ)), is a limiting distribution of a sequence of shifted NBk

distributed random variables.

Hirano [5] introduced the binomial distribution of order k (Bik(n, p)). Aki, Kuboku
and Hirano [1] derived the logarithmic series distribution of order k, (LSk(p)), as a
limiting distribution of a sequence of NBk distributed random variables. It is proved
that the discrete distributions of order k can be represented as a Compound GPSDs,
(see [2] and also [3]).

Let the random variable N have a compound distribution.

Definition 3.1. If the compounding random variable X is a discrete distributed,

truncated at 0 and from the right away from k + 1, then the random variable N has

a distribution of order k.

The Gek(p), NBk(r, p) and LSk(p) distributions belong to the family of Compound
GPSDs by truncated geometric compounding distribution.
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The random variable X has a PMF and PGF, given by

(6) P (X = m) =
1 − ρ

1 − ρk
ρm−1, m = 1, 2, . . . k,

and

(7) PX (t) =
(1 − ρ)t

1 − ρk

1 − ρktk

1 − ρt
,

where ρ ∈ [0, 1) and k ≥ 1 is a fixed integer.

If k → ∞, then the truncated geometric distribution asymptotically coincides with
the Ge(1 − ρ) distribution, defined by (3) and (4).

In this way, the Gek(p), NBk(r, p) and LSk(p) distributions converge to the corres-
ponding IGPSD.

The Pok(λ) distribution is obtained by a discrete uniform compounding distribution.

4. The Pólya-Aeppli distribution of order k. In this section we introduce the
Pólya-Aeppli distribution of order k, defined in [10]. It is a compound Poisson distribution
with PGF given by (2). The compounding distribution is a truncated geometric with PMF
and PGF, given by (6) and (7).

Definition 4.1.The probability distribution defined by the PGF (2) and compounding

distribution, given by (6) and (7) is called a Pólya-Aeppli distribution of order k,

(PAk(λ, ρ)).

The Pólya-Aeppli distribution of order k belongs to the family of Compound GPSD,
compounded by the truncated geometric distribution. The following theorem gives the

probability mass function of the PAk(λ, ρ) distribution. Let us denote Z =
λ(1 − ρ)

1 − ρk
, for

simplicity.

Theorem 4.1.The probability mass function of the PAk(λ, ρ) distributed random

variable is given by:

p0 = e−λ,

pi = e−λ

i
∑

j=1

(

i − 1

j − 1

)

Zj

j!
ρi−j , i = 1, 2, . . . , k,

pi = e−λ[
∑i

j=1

(

i−1
j−1

)

Zj

j! ρi−j − Zρk
∑i−k−1

j=0

(

i−k−1
j

)

Zj

j! ρi−k−1−j ],

i = k + 1, k + 2, . . . , 2k + 1,

pi = e−λ[
∑i

j=1

(

i−1
j−1

)

Zj

j! ρi−j − Zρk
∑i−k−1

j=0

(

i−k−1
j

)

Zj

j! ρi−k−1−j+

+
(Zρk)2

2!

i−2k−2
∑

j=0

(

i − 2k − 1

j + 1

)

Zj

j!
ρi−2k−2−j ], i = 2k + 2, . . . , 3k + 2,
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pi = e−λ[

i
∑

j=1

(

i − 1

j − 1

)

Zj

j!
ρi−j − Zρk

i−k−1
∑

j=0

(

i − k − 1

j

)

Zj

j!
ρi−k−1−j

+
(Zρk)2

2!

i−2k−2
∑

j=0

(

i − 2k − 1

j + 1

)

Zj

j!
ρi−2k−2−j−

−
(Zρk)3

3!

i−3k−3
∑

j=0

(

i − 3k − 1

j + 2

)

Zj

j!
ρi−3k−3−j ], i = 3k + 3, . . . , 4k + 3,

. . .

Remark 4.1. If k → ∞, then the Pólya-Aeppli distribution of order k asymptotically
coincides with the usual Pólya-Aeppli distribution. If ρ = 0, then it is a Poisson distribu-
tion.

Remark 4.2.The mean and the variance of the Pólya-Aeppli distribution of order k

are given by

EN =
1 + ρ + . . . + ρk−2 + ρk−1 − kρk

1 − ρk
λ

and

V ar(N) =
1 + 3ρ + 5ρ2 + 7ρ3 + . . . + (2k − 3)ρk−2 + (2k − 1)ρk−1 − k2ρk

1 − ρk
λ.

The following proposition gives an extension of the Panjer recurrence formulas.

Proposition 4.1.The PMF of the Pólya-Aeppli distribution of order k satisfies the

following recurrence formulas:

p1 = Zp0,

pi =

(

2ρ +
Z − 2ρ

i

)

pi−1 −

(

1 −
2

i

)

ρ2pi−2, i = 2, 3, . . . k,

pi =

(

2ρ +
Z − 2ρ

i

)

pi−1 −

(

1 −
2

i

)

ρ2pi−2 −
k + 1

i
Zρkpi−k−1 +

k

i
Zρk+1pi−k−2,

i = k + 1, k + 2, . . . ,

where p−1 = 0.

Proof. Differentiation of (2) with PX(t), given by (7), leads to

(1 − ρt)2P ′

N (t) =
1 − ρ

1 − ρk
[1 − (k + 1)ρktk + kρk+1tk+1]PN (t),

where PN (t) =
∑

∞

m=0 pmtm and P ′

N (t) =
∑

∞

m=0(m+1)pm+1t
m. The recurrence formulas

are obtained by equating the coefficients of tm on both sides for fixed m = 0, 1, 2, . . .. �

5. Pólya-Aeppli process of order k. Let N(t) represents the state of the system
at time t ≥ 0. It is assumed that the process has state space N , the non-negative integers.
Let λ > 0 be any real number and ρ ∈ [0, 1).

Suppose that N(t) has a PAk(λt, ρ) distribution. Then, the PGF of N(t) is given by

(8) h(u, t) = eλt[PX (u)−1],
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where PX(u) is the PDF of the truncated geometric distribution. The properties of the
defined process are specified by the following postulates:

P (N(t + h) = n | N(t) = m) =











1 − λh + o(h), n = m,

1 − ρ

1 − ρk
ρi−1λh + o(h), n = m + i, i = 1, 2, . . . , k

for every m = 0, 1, . . ., where o(h) → 0 as h → 0. Note that the postulates imply that
for i = k + 1, k + 2, . . . , P (N(t + h) = m + i | N(t) = m) = o(h).

Let Pm(t) = P (N(t) = m), m = 0, 1, 2, . . .. Then, the above postulates yield the
following Kolmogorov forward equations:

(9)

P ′

0(t) = −λP0(t),

P ′

m(t) = −λPm(t) +
1− ρ

1 − ρk
λ

m∧k
∑

j=1

ρj−1Pm−j(t), m = 1, 2, . . . ,

with the conditions

(10) P0(0) = 1 and Pm(0) = 0, m = 1, 2, . . . .

Multiplying the m-th equation of (9) by um and summing for all m = 0, 1, 2, . . ., we
get the following differential equation

(11)
∂h(u, t)

∂t
= −λ[1 − PX (u)]h(u, t).

The solution of (11) with the initial condition

h(u, 0) = 1

is given by (8), which is the PGF of the PAk(λt, ρ) distribution.

Definition 5.1.The process defined by (9) and (10) is called a Pólya-Aeppli process

of order k.

Remark 5.1. In the case of k → ∞, the Pólya-Aeppli process of order k approaches

to the Pólya-Aeppli proces, defined by Minkova [9]. If ρ = 0, then it is a homogeneous

Poisson process.
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