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CONSISTENCY OF THE k-th NEAREST NEIGHBOR

ESTIMATOR OF THE RELATIVE RISK AND ITS

APPLICATION TO INJURY SURVEILLANCE*

Svetla Slavova, Richard Kryscio, Terry Bunn

The relative risk function is defined as the ratio of two probability density functions,
usually cases to controls, at a fixed point. The nonparametric k-th nearest neighbor
(kNN) approach is used for the density estimation. The kNN relative risk estimator
at a fixed location is shown to be asymptotically consistent. An application of the
kNN relative risk estimator to injury surveillance is discussed.

1. Introduction. Let X1, . . . ,Xn be a set of n independent and identically distribu-
ted (iid) random variables with values in R2 and continuous density function f(X). The
bold face type indicates random variables, and the capitals are used for vectors and
matrices. The kNN density estimator of the unknown density f(X) at a point X ∈ R2 is

defined as f̂n(X) =
k

nv(X)
, where k is the pre-specified number of nearest neighbors of

X ∈ R2; v(X) is the volume of minimal sphere S(X) centered at X and containing at least
k of the observations X1, . . . ,Xn. The volume of the region S(X) is v(X) ≡

∫

S(X)

dY . The

coverage of S(X) is defined as u(X) ≡
∫

S(X)

f(Y )dY = Pr{X ∈ S(X)} and it is known

to have a Beta distribution Beta(k, n − k + 1) with parameters k and n − k + 1, and to
be independent of the underlying distribution [1].

2. Moments of the coverage and the volume. Beta function B(a, b), a > 0, b > 0
is defined by B(a, b) =

∫

(0,1)

za−1(1 − z)b−1dz. For a,b positive integers Beta function can

be calculated as B(a, b) = (a−1)!(b−1)!/(a+b−1)! Suppose x has the Beta distribution
with parameters a and b. Then it can be shown that E [xm] = B(a + m, b)/B(a, b).
Therefore, some of the moments of u(X) ∼ Beta(k, n − k + 1) are:

E [u(X)] =
k

n + 1
, E

[
u

2(X)
]

=
k(k + 1)

(n + 1)(n + 2)
,
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E

[
1

u(X)

]

=
n

k − 1
, E

[
1

u2(X)

]

=
n(n − 1)

(k − 1)(k − 2)
.

Fukunaga and Hostetler [1] expressed the volume v(X) as a function of the coverage
of the region u(X) in order to take advantage of the Beta distribution. By definition,
the kNN estimator deals with a small local region around the point X . Therefore, the
local density f(X) can be approximated with a truncated Taylor series about X . Under
the assumption that f(X) has continuous partial derivatives of sufficient order in a
neighborhood of X ,

u(X) ≡

∫

S(X)

f(Y )dY ∼=

∫

S(X)

f(X)dY +

∫

S(X)

[
∂f(X)

∂X

]T

(Y − X)dY

+
1

2

∫

S(X)

(Y − X)T

[
∂2f(X)

∂X2

]

(Y − X)dY ,

where

[
∂f(X)

∂X

]T

=

(
∂f(X)

∂x1
,
∂f(X)

∂x2

)

and

[
∂2f(X)

∂X2

]

ij

=
∂2f(X)

∂xi∂xj

.

Due to the symmetry of the region,
∫

S(X)

(Y − X)dY = 0. Therefore,

u(X) ∼= f(X)v(X) +
1

2

∫

S(X)

(Y − X)T

[
∂2f(X)

∂X2

]

(Y − X)dY .

Using matrix properties a) ZT AZ = tr AZZT , b) tr AZ = tr ZA, c) linearity of the
trace, we have

u(X) ∼= f(X)v(X) +
1

2
tr












∫

S(X)

(Y − X)(Y − X)T dY






[
∂2f(X)

∂X2

]







,

Fukunaga and Hostetler [1] showed that
∫

S(X)

(Y − X)(Y − X)T dY = c(X)v(X), where

c(X) is a function of the second partial derivatives of f(X) in a neighborhood of X .
Then,

(1) u(X) ∼= f(X)v(X) + c(X)v2(X)

and

(2)
1

v(X)
∼=

f(X)

u(X)
+

c(X)v(X)

u(X)
.

Using only the first term in (2.1) as an approximation for u(X) we get that u(X) ∼=

f(X)v(X), and subsequently v(X) ∼=
u(X)

f(X)
. After substituting v(X) in the second term
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of (2.2), we have:

1

v(X)
∼=

f(X)

u(X)
+

c(X)u(X)

u(X)f(X)
=

f(X)

u(X)
+

c(X)

f(X)
.

Therefore,

E

[
1

v(X)

]

∼= f(X)E

[
1

u(X)

]

+
c(X)

f(X)
= f(X)

n

k − 1
+

c(X)

f(X)
,

E

[
1

v2(X)

]

∼= f2(X)
n(n − 1)

(k − 1)(k − 2)
+ 2c(X)

n

k − 1
+

c2(X)

f2(X)
,

E [v(X)] ∼= E

[
u(X)

f(X)

]

=
1

f(X)

k

n + 1
,

E
[
v
2(X)

]
∼= E

[
u2(X)

f2(X)

]

=
1

f2(X)

k(k + 1)

(n + 1)(n + 2)
.

3. Properties of the kNN estimator of the relative risk. Let X1, . . . ,Xn1

be iid random vectors with values in R2 and a probability density function f1(X). Let
Y1, . . . ,Yn2

be iid random vectors with values in R2 and a probability density function
f2(X). The kNN estimate of the relative risk γ(X) = f1(X)/f2(X) at a point X ∈ R2 is
defined as

γ̂(X) =
f̂1(X)

f̂2(X)
=

[
k1

n1v1(X)

]/[
k2

n2v2(X)

]

.

The Mean Square Error (MSE) of the relative risk estimator can be expressed as

MSE[γ̂(X)] =
k2
1n

2
2

k2
2n

2
1

E
[
v

2
2(X)

]
E

[
1

v2
1(X)

]

− 2γ(X)
k1n2

k2n1
E [v2(X)] E

[
1

v1(X)

]

+ γ2(X)

∼=
k2
1n

2
2

k2
2n

2
1

[
1

f2
2 (X)

k2(k2 + 1)

(n2 + 1)(n2 + 2)

] [

f2
1 (X)

n1(n1 − 1)

(k1 − 1)(k1 − 2)
+ 2c1(X)

n1

k1 − 1
+

c2
1(X)

f2
1 (X)

]

−2γ(X)
k1n2

k2n1

[
1

f2(X)

k2

n2 + 1

][

f1(X)
n1

k1 − 1
+

c1(X)

f1(X)

]

+ γ2(X)

=
f2
1 (X)

f2
2 (X)

k2
1(k2 + 1)n2

2(n1 − 1)

k2(k1 − 1)(k1 − 2)n1(n2 + 1)(n2 + 2)
︸ ︷︷ ︸

A

+ 2c1(X)
1

f2
2 (X)

k2
1(k2 + 1)n2

2

k2 (k1 − 1) n1(n2 + 1)(n2 + 2)
︸ ︷︷ ︸

B

+
c2
1(X)

f2
2 (X)f2

1 (X)

k2
1n

2
2(k2 + 1)

k2n2
1(n2 + 1)(n2 + 2)

︸ ︷︷ ︸

C

− 2γ(X)
f1(X)

f2(X)

k1n2

(k1 − 1) (n2 + 1)
︸ ︷︷ ︸

D
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− 2γ(X)
c1(X)

f1(X)f2(X)

k1n2

n1 (n2 + 1)
︸ ︷︷ ︸

F

+γ2(X).

When n1 → ∞, n2 → ∞, the terms B, C and F in the expression above tend to zero.
Assuming n1/(n1 − 1) ∼= 1, n2/(n2 + 1) ∼= 1, and n2/(n2 + 2) ∼= 1, we get the following
expression for the MSE:

MSE[γ̂(X)]−−−−−−→
n1,n2→∞

γ2(X)

[
k2
1(k2 + 1)

k2(k1 − 1)(k1 − 2)
− 2

k1

(k1 − 1)
+ 1

]

.

This result shows that when nearest neighbor parameters k1 and k2 tend to infinity,

and
k1

n1
→ 0,

k2

n2
→ 0 as n1 → ∞, and n2 → ∞, the kNN relative risk estimator is

asymptotically unbiased and consistent.

4. Asymptotic distribution. Let Fn1,n2
(t|k1, k2) be the distribution function of

γ̂(X).

Theorem.Let the probability density functions f1(X), f2(X) be strictly positive and

two times differentiable with bounded derivatives in a neighborhood of X. If n1 → ∞, n2 →
∞ such that n1/ n2 → const > 0, then for fixed k1, k2 and t ∈ (0,∞)

Fn1,n2
(t|k1, k2) = W (t|γ(X), k1, k2) + O

(
1

n1

)

+ O

(
1

n2

)

.

Here W (t|γ(X), k1, k2) = I[1−φ{t,γ(x)}](k2, k1), where φ{t, γ(X)} =

{

1 +
k2

k1

t

γ(X)

}−1

,

and Ia(i, j) =
1

B(i, j)

a∫

0

yi−1(1 − y)j−1dy, the incomplete beta-function.

The proof of the theorem for densities defined in R1 appears in the Appendix to
[2]. The proof in the higher-dimensional cases is similar, but requires minor changes
in the definition of the volume and the coverage function (details can be found in
[3]). The theorem states that for sufficiently large samples, γ̂(X) has approximately
the distribution W (t|γ(X), k1, k2). The large sample distribution, obtained under fairly
general conditions, provides easily computable critical regions, level of significance, power
of the test and confidence bounds, without relying on computationally dependent algo-
rithms.

Let f1(X) be the probability density function of cases (diseases or injuries) given
by their geographical coordinates. Let f2(X) be the probability density function of the
controls (or the population at risk), represented by their geographical locations. It is of
practical interest to test a hypothesis for excessive risk at a particular point (geographical
location) X . Consider testing H0 : γ(X) = 1 vs. H1 : γ(X) > 1. This is equivalent to
testing if the two unknown densities f1(X), f2(X) are equal at the point X , versus the
alternative hypothesis that the case group density is larger than the population group
density, indicating high risk. Let α be a fixed level of significance and tα be the lower
boundary of the critical region of the right-tailed test at a level α. Then, Pr{γ̂(X) ≥
tα|H0} = α = 1 − I[1−φ{tα,1}](k2, k1). For a given confidence level c and numbers of
nearest neighbors k1, k2, let ηc = ηc(k2, k1) be the c-th quantile of the Beta-distribution
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(k2, k1). Thus, from the last equation, we have φ(tα, 1) = 1 − η1−α. Solving for tα, we

reject H0 and claim excessive risk at X when γ̂(X) ≥ tα =
k1

k2

η1−α

1 − η1−α

.

5. Application. The kNN relative risk estimator has been implemented as an
exploratory tool in the Kentucky Occupational Safety and Health Surveillance (KOSHS)
program to create a continuous relative risk representation based on existing discrete
data for the purpose of hypothesis generation. KOSHS is part of a program, sponsored
by the US National Institute for Occupational Safety and Health (NIOSH), to conduct
surveillance of 19 basic state-wide indicators for occupational injury and health and to
build capacity for state-based occupational surveillance. Occupational injury surveillance
is defined as the routine, ongoing collection, analysis and dissemination of data for the
purpose of developing injury prevention programs in the workplace. More information
can be found at http://www.kiprc.uky.edu/projects/KOSHS or
http://www.cdc.gov/niosh/topics/surveillance/.

One emphasis area of the KOSHS program is on older drivers of large commercial
trucks because one in six of the US long-haul truck drivers is 55 years of age or older
(US Census, 2000). We want to identify geographical areas where the older large truck
drivers are at higher risk for creating collisions in order to improve our injury prevention
education programs. For the first step of the exploratory study, we obtained data from
the Kentucky State Police Collision Report Analysis for Safer Highways (CRASH) data
set. This electronic file contains information for all motor vehicle collisions in Kentucky:
drivers, passengers, and roadway conditions, human or environmental factors contributing
to the collision, and geographical coordinates of the collisions. Cases were identified
as male drivers 50 years of age or older in at-fault large truck collisions and controls
were male drivers 50 years of age or older in not-at-fault large truck collisions, using
the CRASH electronic database from 2002 to 2006. Unit type classifications included:
trucks and trailers, truck-single unit, truck-tractor and semi-trailer, and truck-other
combination. All vehicles were designated as commercial vehicles in the CRASH file.

We used the kNN method (n1 = 5528, n2 = 1584, k1 = 100, k2 = 50) to estimate the
density of the cases and the density of the controls and to construct the relative risk for
being at-fault versus being not-at-fault for the older commercial drivers on the Kentucky
roadways. The lower boundary tα of the critical region of the right-tailed test at a level
α = 0.05 had a value of 1.32. Therefore, when the value of the estimated relative risk at
a particular location was higher that 1.32, the geographical location was considered to
present significantly higher relative risk for the older large truck drivers to be at-fault.
The areas of high risk are marked with dashed lines on the contour map (Fig. 1).

Our exploratory analysis showed that the older commercial drivers are at higher risk
for creating collisions mainly in two geographical areas – in the western and eastern ends
of the state, off the interstates. A follow-up study, investigating the characteristics of
collisions involving at-fault and not-at-fault large truck older male drivers and the effect
of the passengers on working drivers, found that curvy and graded/hillcrest roads, and
roads with one or two lanes increased the odds that the driver would be at fault in a
large truck collision, and that passengers were protective in the prevention of at-fault
large truck collisions among older drivers (a detailed manuscript is in progress).
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Fig. 1
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CЪСТОЯТЕЛНОСТ НА ОЦЕНКАТА ПО МЕТОДА НА k-ТИЯ
НАЙ-БЛИЗЪК СЪСЕД ЗА ОТНОСИТЕЛНИЯ РИСК И НЕЙНОТО

ПРИЛОЖЕНИЕ В СИСТЕМАТА ЗА ПРОСЛЕДЯВАНЕ НА
НАРАНЯВАНИЯТА

Cветлa Cлaвoвa, Ричaрд Крисиo, Тери Бън

Функцията на относителния риск може да се дефинира като отношение на две
функции на вероятностна плътност. За оценка на плътността се използва непара-
метричният подход на k-тия най-близък съсед (kNN). Доказана е aсимптотична
състоятелност на kNN оценката за относителния риск във фиксирана точка. Об-
съдено е приложението на kNN оценката за относителен риск в системата за
проследяване на нараняванията.
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