CLASSIFICATION OF THE BINARY SELF-DUAL [44,22,8] CODES WITH AUTOMORPHISMS OF ORDER 7 *

Nikolay Ivanov Yankov, Radka Peneva Russeva

Abstract

All binary self-dual [44,22,8] codes with an automorphism of order 7 are classified up to equivalence. There are exactly three nonequivalent codes with automorphism of order 7 with 3 independent cycles, and 154 nonequivalent codes with automorphism of order 7 with 6 independent cycles.

1. Introduction. A linear $[n, k]$ code C is a k-dimensional subspace of the vector space \mathbb{F}_{q}^{n}, where \mathbb{F}_{q} is the finite field of q elements. The elements of C are called codewords, and the (Hamming) weight of a codeword is the number of its non-zero coordinates. The minimum weight d of C is the smallest weight among all non-zero codewords of C, and C is called an $[n, k, d]$ code. A matrix whose rows form a basis of C is called a generator matrix of this code. The weight enumerator $W(y)$ of a code C is given by $W(y)=\sum_{i=0}^{n} A_{i} y^{i}$, where A_{i} is the number of codewords of weight i in C. Two binary codes are equivalent if one can be obtained from the other by a permutation of coordinates. The permutation $\sigma \in S_{n}$ is an automorphism of C, if $C=\sigma(C)$. The set of all automorphisms of C forms the automorphism group $\operatorname{Aut}(C)$ of C. The dual code of C is $C^{\perp}=\left\{u \in \mathbb{F}_{q}^{n} \mid(u, v)=0\right.$ for all $\left.v \in C\right\}$ and C^{\perp} is a linear $[n, n-k]$ code. If $C \subseteq C^{\perp}$, then C is termed self-orthogonal, and if $C=C^{\perp}$, then C is self-dual. If C is self-dual, then $k=\frac{1}{2} n$. We call a binary code self-complementary if it contains all the ones vector. Every binary self-dual code is self-complementary.

In this paper, we consider optimal binary self-dual $[44,22,8]$ codes. The self-dual codes with these parameters have been constructed as double circulant and bordered double circulant codes and via automorphisms [3]. All odd primes p dividing the order of the automorphism group of a self-dual $[44,22,8]$ code are $11,7,5$, and 3 . The codes with automorphism of order 11 and 5 are classified in [9], [10], [5], [4]. The codes with automorphisms of order 3 with 6 independent 3 -cycles are classified in [5]. In this paper, we give a classification of the self-dual $[44,22,8]$ codes with an automorphism of order 7. To do that we apply the method developed by Huffman and Yorgov [2], [7].
2. Construction Method. Let C be a binary self-dual code of length $n=44$ with an automorphism σ of order 7 with exactly c independent 7 -cycles and $f=44-7 c$ fixed

[^0]points in its decomposition. We may assume that: $\sigma=(1,2, \ldots, 7)(8,9, \ldots, 14) \ldots(7(c-$ 1) $+1,7(c-1)+2, \ldots, 7 c)$, and say shortly that σ is of type $7-(c, f)$.

Theorem 1. (see [8]) Let the self-dual code C have an automorphism of type $7-(c, f)$. If $\lceil x\rceil$ denotes the smallest integer not less than x, then one has:

1) $7 c \geq \sum_{i=0}^{3 c-1}\left\lceil\frac{d}{2^{i}}\right\rceil$, where the sign of equality does not occur if $d \leq 2^{3 c-2}-2$;
2) if $f>c$, then $c \geq \sum_{i=0}^{\frac{f-c}{2}-1}\left\lceil\frac{d}{2^{i}}\right\rceil$, where the sign of equality does not occur if $d \leq$ $2^{\frac{f-c}{2}-2}-2$.

Denote the cycles of σ by $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{c}$, and the fixed points by $\Omega_{c+1}, \ldots, \Omega_{c+f}$. Let $F_{\sigma}(C)=\{v \in C \mid v \sigma=v\}$ and $E_{\sigma}(C)=\left\{v \in C \mid w t\left(v \mid \Omega_{i}\right) \equiv 0(\bmod 2), i=1, \ldots, c+f\right\}$, where $v \mid \Omega_{i}$ is the restriction of v on Ω_{i}. Then, we have $C=F_{\sigma}(C) \oplus E_{\sigma}(C)$ (see [2]).

Clearly, $v \in F_{\sigma}(C)$ iff $v \in C$ and v is constant on each cycle. Let $\pi: F_{\sigma}(C) \rightarrow \mathbb{F}_{2}^{c+f}$ be the projection map where if $v \in F_{\sigma}(C)$, then $(v \pi)_{i}=v_{j}$ for some $j \in \Omega_{i}, i=1,2, \ldots, c+f$. It is well-known that $\pi\left(F_{\sigma}(C)\right)$ is a binary $\left[c+f, \frac{c+f}{2}\right]$ self-dual code [2].

Denote by $E_{\sigma}(C)^{*}$ the code $E_{\sigma}(C)$ with the last f coordinates deleted. So $E_{\sigma}(C)^{*}$ is a self-orthogonal binary code of length $7 c$. For v in $E_{\sigma}(C)^{*}$, we let $v \mid \Omega_{i}=\left(v_{0}, v_{1}, \ldots, v_{6}\right)$ correspond to the polynomial $v_{0}+v_{1} x+v_{6} x^{6}$ from P, where P is the set of even-weight polynomials in $\mathbb{F}_{2}[x] /\left(x^{7}-1\right)$. Thus, we obtain the map $\varphi: E_{\sigma}(C)^{*} \rightarrow P^{c}$. P is a cyclic code of length 7 with generating polynomial $x+1$ and check polynomial $1+x+\cdots+x^{6}$.

It is well-known [2], [8] that $\varphi\left(E_{\sigma}(C)^{*}\right)$ is a P-module and for each $u, v \in \varphi\left(E_{\sigma}(C)^{*}\right)$ it holds.

$$
\begin{equation*}
u_{1}(x) v_{1}\left(x^{-1}\right)+u_{2}(x) v_{2}\left(x^{-1}\right)+\cdots+u_{c}(x) v_{c}\left(x^{-1}\right)=0 . \tag{1}
\end{equation*}
$$

Denote $h_{1}(x)=\left(x^{3}+x+1\right)$ and $h_{2}(x)=\left(x^{3}+x^{2}+1\right)$. As $x^{6}+x^{5}+\cdots+x+1=$ $h_{1}(x) h_{2}(x)$, we have $P=I_{1} \oplus I_{2}$, where I_{j} is an irreducible cyclic code of length 7 with parity-check polynomial $h_{j}(x), j=1,2$. Thus, $M_{j}=\left\{u_{i} \in \varphi\left(E_{\sigma}(C)^{*}\right) \mid u_{i} \in I_{j}, i=1,2\right\}$ is code over the field $I_{j}, j=1,2$. It is well-known [8] that $\varphi\left(E_{\sigma}(C)^{*}\right)=M_{1} \oplus M_{2}$ and $\operatorname{dim}_{I_{1}} M_{1}+\operatorname{dim}_{I_{2}} M_{2}=c$. The polynomials $e_{1}(x)=x^{4}+x^{2}+x+1$ and $e_{2}(x)=$ $x^{6}+x^{5}+x^{3}+1$ generate the ideals I_{1} and I_{2} defined above. Any nonzero element of $I_{j}=\left\{0, e_{j}, x e_{j} \ldots, x^{6} e_{j}\right\}, j=1,2$ generates a binary cyclic $[7,4,3]$ code. Since the minimum weight of the code C is 8 , every vector of $\varphi\left(E_{\sigma}(C)^{*}\right)$ must contain at least 2 nonzero coordinates.

The following result is a particular case of Theorem 3 from [7]:
Theorem 2. Let the permutation σ be an automorphism of the self-dual codes C and C^{\prime}. A sufficient condition for equivalence of C and C^{\prime} is that C^{\prime} can be obtained from C by application of a product of some of the following transformations:
a) ubstitution $x \rightarrow x^{t}$ for $t=1,2, \ldots, 6$ in $\varphi\left(E_{\sigma}(C)^{*}\right)$;
b) multiplication of the j-th coordinate of $\varphi\left(E_{\sigma}(C)^{*}\right)$ by $x^{t_{j}}$ where t_{j} is an integer, $0 \leq t_{j} \leq 6$, for $j=1,2, \ldots, c$;
c) permutation of the first c cycles of C;
d) permutation of the last f coordinates of C.

Since the transformation $x \rightarrow x^{3}$ from Theorem 2 a) interchange $e_{1}(x)$ into $e_{2}(x)$ and
vice versa then, without loss of generality, we can assume that $\operatorname{dim} M_{1} \leq \operatorname{dim} M_{2}$. Once chosen, M_{1} determines M_{2} and the whole $\varphi\left(E_{\sigma}(C)^{*}\right)$. Thus, we can examine only M_{1}.

Let \mathcal{B}, respectively \mathcal{D}, be the largest subcode of $\pi\left(F_{\sigma}(C)\right)$ whose support is contained entirely in the left c, respectively, right f, coordinates. Suppose \mathcal{B} and \mathcal{D} have dimensions k_{1} and k_{2}, respectively. Let $k_{3}=k-k_{1}-k_{2}$. Then, there exists a generator matrix for $\pi\left(F_{\sigma}(C)\right)$ of the form

$$
G_{\pi}=\left(\begin{array}{cc}
B & 0 \tag{2}\\
0 & D \\
E & F
\end{array}\right)
$$

where B is a $k_{1} \times c$ matrix with $\operatorname{gen}(\mathcal{B})=[B O], \mathrm{D}$ is a $k_{2} \times f$ matrix with $\operatorname{gen}(\mathcal{D})=[O \quad D]$, O is the appropriate size zero matrix, and $[E F]$ is a $k_{3} \times n$ matrix. Let \mathcal{B}^{*} be the code of length c generated by $\mathrm{B}, \mathcal{B}_{E}$ - the code of length c generated by the rows of B and E , \mathcal{D}^{*} - the code of length f generated by D , and \mathcal{D}_{F} - the code of length f generated by the rows of D and F . Then, we have the following lemma:

Lemma 1. With the notation of the previous paragraph:
(i) $k_{3}=\operatorname{rank}(E)=\operatorname{rank}(F)$,
(ii) $k_{2}=k+k_{1}-c=\frac{c+f}{2}+k_{1}$, and
(iii) $\mathcal{B}_{E}^{\perp}=\mathcal{B}^{*}$ and $\mathcal{D}_{F}^{\perp}=\mathcal{D}^{*}$.
3. Optimal Self-Dual Codes of Length 44 with automorphisms of order 7. The weight enumerators of self-dual codes of length 44 are known [1]:
$W_{44,1}(y)=1+(44+4 \beta) y^{8}+(976-8 \beta) y^{10}+(12289-20 \beta) y^{12}+\cdots$
for $10 \leq \beta \leq 122 \quad$ and
$W_{44,2}(y)=1+(44+4 \beta) y^{8}+(1232-8 \beta) y^{10}+(10241-20 \beta) y^{12}+\cdots$
for $10 \leq \beta \leq 154$.
Codes exist for $W_{44,1}$ when $\beta=10, \ldots, 68,70,72,74,82,86,90,122$ and for $W_{44,2}$ when $\beta=0, \ldots, 56,58, \ldots, 62,64,66,68,70,72,74,76,82,86,90,104,154$ (see [3]).

Theorem 3. If C is a binary self-dual $[44,22,8]$ code having an automorphism σ of order 7 , then σ is of type $7-(3,23)$ or $7-(6,2)$.

Proof. If C is a binary self-dual $[44,22,8]$ code having an automorphism σ of order 7 , then σ can be of type $7-(1,37), 7-(2,30), 7-(3,23), 7-(4,16), 7-(5,9)$, and $7-(6,2)$. Since $d=8$, the cases $7-(1,37)$ and $7-(2,30)$ are impossible due to condition $1)$ of Theorem 1 . The cases $7-(4,16)$ and $7-(5,9)$ are contradictions to the assertion 2) of the same Theorem.
3.1. Codes with automorphism of type $\mathbf{7 - (3 , 2 3)}$. Let C be a binary self-dual $[44,22,8]$ code having an automorphism of type $7-(3,23)$. Then, the subcode $\pi\left(F_{\sigma}(C)\right)$ is a binary $[26,13, \geq 4]$ self-dual code, $\operatorname{dim} \varphi\left(E_{\sigma}(C)^{*}\right)=3$, and we have $\operatorname{dim} M_{1}+$ $\operatorname{dim} M_{2}=3$. When $\operatorname{dim} M_{2}=3$, we have that $\varphi\left(E_{\sigma}(C)^{*}\right)$ is a $[3,3,1]$ code and this leads to a contradiction with the minimum weight 8 in C. When $\operatorname{dim} M_{2}=2$, we can choose the generator matrix in the form $\operatorname{gen}\left(\varphi\left(E_{\sigma}(C)^{*}\right)\right)=\left(\begin{array}{ccc}e_{2} & 0 & e_{2} \\ 0 & e_{2} & e_{2} \\ e_{1} & e_{1} & e_{1}\end{array}\right)$. The subcode $\pi\left(F_{\sigma}(C)\right)$ is a binary $[26,13, \geq 4]$ self-dual code. According to Lemma 1, we can take its generator
matrix in the form $\left(\begin{array}{c|c}\overbrace{B}^{3} & \overbrace{0}^{23} \\ \hline 0 & D \\ \hline E & F\end{array}\right)$, where $k_{1}+k_{2}+k_{3}=13, k_{2}=k_{1}+10$. So we have two cases:

Case I: $\quad k_{1}=1, k_{2}=11, k_{3}=1$. Then, $B=(110)$, gen $\pi\left(F_{\sigma}(C)\right)=\left(\begin{array}{c|c}110 & 0 \\ 0 & D \\ \hline E & F\end{array}\right)$, where the matrix D generates a $[23,11, \geq 8]$ binary self-orthogonal code. Since C is selfcomplimentary, $E=(111), F=(1 \ldots 1)$. All optimal [23,11] binary self-orthogonal codes are classified in [6]. There is a unique such code - the doubly-even subcode of the Golay code with weight enumerator $W_{23,11}=1+506 y^{8}+1288 y^{12}+253 y^{16}$. So we obtain one possible generator matrix for the code C and it has minimum weight 6 .

Case II: $\quad k_{1}=0, k_{2}=10, k_{3}=3$. gen $\pi\left(F_{\sigma}(C)\right)=\left(\begin{array}{c|c}0 & D \\ \hline E & F\end{array}\right)$, where the matrix D generates a $[23,10, \geq 8]$ binary self-orthogonal code. There are three such codes [6] $A_{23,10,1}, A_{23,10,2}$, and $A_{23,10,3}$ with generator matrices of the form $G_{A_{23,10, i}}=\left(I_{10} \mid G^{(i)}\right)$ and all are with minimum distance 8 .

$$
G^{(1)}=\left(\begin{array}{l}
1111111000000 \\
1111000111000 \\
1100110110100 \\
1010101101100 \\
1001011011100 \\
0110101110010 \\
1100011101010 \\
0101110011010 \\
0001111100110 \\
0101011110001
\end{array}\right), \quad G^{(2)}=\left(\begin{array}{l}
1111111000000 \\
1111000111000 \\
1100110110100 \\
1010101101100 \\
1001011011100 \\
0110101110010 \\
1100011101010 \\
0101110011010 \\
1010011110001 \\
0110110101001
\end{array}\right), \quad G^{(3)}=\left(\begin{array}{l}
1101001010110 \\
1100011101100 \\
1100110110010 \\
0110011011010 \\
0011001101110 \\
1011011110000 \\
0101101111000 \\
0010110111100 \\
1011100011010 \\
0101110001110
\end{array}\right) .
$$

Since $k_{3}=3$, the matrix $E=I_{3}$, and the matrix F is determined by the condition (iii) of Lemma 1. For each of the three codes there is a unique possibility for the matrix F, up to equivalence. In this way we obtain the codes $C_{44, i}, i=1,2,3$. Their weight distributions and order of automorphism group $|A u t(C)|$ are presented in Table 1. All of these codes have automorphism of order 5 and are well-known [4].

Table 1: All codes with automorphism of type $7-(3,23)$

Code	Weight Distibution	β	$\|A u t(C)\|$
$C_{44,1}$	$W_{44,1}$	122	$2^{15} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}=3251404800$
$C_{44,2}$	$W_{44,2}$	104	$2^{13} \cdot 3^{4} \cdot 5^{2} \cdot 7$
$C_{44,3}$	$W_{44,2}$	154	$2^{16} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2}=786839961600$

Theorem 4. There are exactly three nonequivalent binary $[44,22,8]$ codes having an automorphism of type $7-(3,23)$.
3.2. Codes with automorphism of type $\mathbf{7 - (6 , 2)}$. Let C be a binary self-dual $[44,22,8]$ code having an automorphism of type $7-(6,2) . \pi\left(F_{\sigma}(C)\right)$ is a binary $[8,4]$ self-dual code equivalent either to C_{2}^{4} or H_{8}, generated by the matrices $G_{1}=\left(I_{4} \mid I_{4}\right)$ and $G_{2}=\left(I_{4} \mid A+I_{4}\right)$, where I_{4} is the 4×4 identity matrix and A is the all-one 4×4
matrix. Then, $\operatorname{dim} \varphi\left(E_{\sigma}(C)^{*}\right)=6$ and so $\operatorname{dim} M_{1}+\operatorname{dim} M_{2}=6$. We have four cases: $\operatorname{dim} M_{1}=0,1,2$, and 3 .

Case I: $\operatorname{dim} M_{1}=0$. Then, $\operatorname{dim} M_{2}=6$ and we can take for its generator matrix the 6×6 diagonal matrix $\operatorname{diag}\left(e_{2}, e_{2} \ldots, e_{2}\right)$. This matrix leads to vectors with weight 4 in C, witch is a contradiction to the minimum weight 8 in C.

Case II: $\operatorname{dim} M_{1}=1$. We have $\operatorname{gen}\left(\varphi\left(M_{1}\right)=\left(e_{1}, e_{1}, e_{1}, e_{1}, e_{1}, e_{1}\right)\right.$. If $\pi\left(F_{\sigma}(C)\right) \cong C_{2}^{4}$, then we have not obtained any optimal $[44,22]$ codes. When $\pi\left(F_{\sigma}(C)\right) \cong H_{8}$, we found only one code with $W_{44,1}$ for $\beta=38$ and $|\operatorname{Aut}(C)|=8064$.

Case III: $\operatorname{dim} M_{1}=2$. We can take $\operatorname{gen}\left(M_{1}\right)=\left(\begin{array}{cccccc}e_{1} & 0 & \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \\ 0 & e_{1} & \alpha_{5} & \beta_{1} & \beta_{2} & \beta_{3}\end{array}\right)$, where $\alpha_{i} \in$ $\left\{0, e_{1}\right\}, i=1, \ldots, 5$, and $\beta_{i} \in I_{1}, i=1,2,3$. Actually, after considering all such matrices, it turns out that there is only one possibility up to equivalence $-\left(\begin{array}{cccccc}e_{1} & 0 & e_{1} & 0 & e_{1} & e_{1} \\ 0 & e_{1} & 0 & e_{1} & 0 & 0\end{array}\right)$. We fix the generator matrix of $\varphi\left(E_{\sigma}(C)^{*}\right)$ and consider all possibilities for $\pi\left(F_{\sigma}(C)\right)$. For $\pi\left(F_{\sigma}(C)\right) \cong C_{2}^{4}$ we found one code with weight distribution $W_{44,2}$ for $\beta=56$ and $|A u t(C)|=2688=2^{7} \cdot 3 \cdot 7$. When $\pi\left(F_{\sigma}(C)\right) \cong H_{8}$, we found one code with weight distribution $W_{44,1}$ for $\beta=59$ and $|\operatorname{Aut}(C)|=43008=2^{11} \cdot 3 \cdot 7$.

Case IV: $\operatorname{dim} M_{1}=\operatorname{dim} M_{2}=3$. We have $\operatorname{gen}\left(M_{1}\right)=\left(\begin{array}{cccccc}e_{1} & 0 & 0 & \alpha_{1} & \alpha_{2} & \alpha_{3} \\ 0 & e_{1} & 0 & \alpha_{4} & \beta_{1} & \beta_{2} \\ 0 & 0 & e_{1} & \alpha_{5} & \beta_{3} & \beta_{4}\end{array}\right)$, where $\alpha_{i} \in\left\{0, e_{1}\right\}, i=1, \ldots, 5$, and $\beta_{i} \in I_{1}, i=1,2,3,4$. There are 18 nonequivalent such codes with minimum weight $d \geq 8$. We can fix the generator matrix for $\varphi\left(E_{\sigma}(C)^{*}\right)$ and consider all possibilities for $\pi\left(F_{\sigma}(C)\right)$:

- If $\pi\left(F_{\sigma}(C)\right) \cong H_{8}$, then we have 64 nonequivalent codes with $W_{44,1}$ for $\beta=10,17$, $24,31,38,52,122$. The orders of their automorphism groups are given in Table 2. The code with $\beta=122$ is equivalent to the code $C_{44,1}$.

Table 2: Self-dual $[44,22,8]$ codes for $C_{\pi} \cong H_{8}$ and $\operatorname{dim} M_{1}=3$.

$\|A u t(C)\|$	7	14	28	42	56	84	112	126
Number of codes	11	29	4	6	1	1	1	1
$\|A u t(C)\|$	168	252	336	672	1344	5040	5376	$2^{15} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}$
Number of codes	1	1	2	2	1	1	1	1

- If $\pi\left(F_{\sigma}(C)\right) \cong C_{2}^{4}$, then we have 87 nonequivalent codes with $W_{44,2}$ for $\beta=0,7,14$, $21,28,35,42,56,154$. The orders of their automorphism groups are presented in Table 3. The code with $\beta=154$ is equivalent to $C_{44,3}$.

Table 3: Self-dual $[44,22,8]$ codes for $C_{\pi} \cong C_{2}^{4}$ and $\operatorname{dim} M_{1}=3$.

$\|A u t(C)\|$	7	14	28	42	56	112	336
Number of codes	42	28	3	1	2	1	2
$\|A u t(C)\|$	672	1344	2688	10752	43008	$2^{16} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2}$	
Number of codes	1	2	1	1	2	1	

Theorem 5. There are exactly 155 nonequivalent $[44,22,8]$ codes having an automorphism of order 7 .

REFERENCES

[1] J. H. Conway, N. J. A. Sloane. A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1991), 1319-1333.
[2] W. C. Huffman. Automorphisms of codes with application to extremal doubly-even codes of lenght 48, IEEE Trans. Inform. Theory, 28 (1982), 511-521.
[3] W. C. Huffman. On the classification and enumeration of self-dual codes, Finite Fields and Their Applications, 11 (2005), 451-490.
[4] St. Buyuklieva. New extremal self-dual codes of lengths 42 and 44, IEEE Trans. Inform. Theory, 43 (1997), 1607-1612.
[5] St. Buyuklieva. Some optimal self-orthogonal and self-dual codes, Discrete Mathematics, 287 (2004), 1-10.
[6] I. Bouyukliev, S. Bouyuklieva, T. A. Gulliver, P. R. J. Ostergard. Classification of optimal binary self-orthogonal codes up to length 24, Journal of Combinatorial Mathematics and Combinatorial Computing, 59 (2006), 33-87.
[7] V. Y. Yorgov. A method for constructing inequivalent self-dual codes with applications to length 56, IEEE Trans. Inform. Theory, 33 (1987), 77-82.
[8] V. Y. Yorgov. Binary self-dual codes with an automorphism of odd order, Problems Inform. Transm., 4 (1983) 13-24 (in Russian).
[9] V. Y. Yorgov. New extremal singly-even self-dual codes of lenght 44, Proceedings of the Sixth Joint Swedish-Russian International Workshop on Information Theory (Molle, Sweden) (1993), 372-375.
[10] V. Yorgov, R. Russeva. Two extremal codes of length 42 and 44, Probl. Pered. Inform., 29 (1994), 385-388.

University of Shumen
Faculty of Mathematics and Informatics
9700 Shumen, Bulgaria
e-mail: jankov_niki@yahoo.com; russeva@fmi.shu-bg.net

КЛАСИФИКАЦИЯ НА ДВОИЧНИТЕ САМОДУАЛНИ [44,22,8] КОДОВЕ, ПРИТЕЖАВАЩИ АВТОМОРФИЗЪМ ОТ РЕД 7

Николай Иванов Янков, Радка Пенева Русева

Класифицирани са всички нееквивалентни двоични самодуални $[44,22,8]$ кодове, притежаващи автоморфизми от ред 7. Съществуват точно три нееквивалентни кода с автоморфизъм от ред 7 с три независими цикъла и 154 нееквивалентни кода с автоморфизъм от ред 7 с шест независими цикъла.

[^0]: *2000 Mathematics Subject Classification: 94B05.
 Key words: Self-dual codes, automorphisms, optimal codes.
 The research is partially supported by Shumen Univesity under Project No 8/2007.

