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CODES WITH AUTOMORPHISMS OF ORDER 7*

Nikolay Ivanov Yankov, Radka Peneva Russeva

All binary self-dual [44,22,8] codes with an automorphism of order 7 are classified up
to equivalence. There are exactly three nonequivalent codes with automorphism of
order 7 with 3 independent cycles, and 154 nonequivalent codes with automorphism
of order 7 with 6 independent cycles.

1. Introduction. A linear [n, k] code C is a k-dimensional subspace of the vector
space F

n
q , where Fq is the finite field of q elements. The elements of C are called codewords,

and the (Hamming) weight of a codeword is the number of its non-zero coordinates.
The minimum weight d of C is the smallest weight among all non-zero codewords of
C, and C is called an [n, k, d] code. A matrix whose rows form a basis of C is called
a generator matrix of this code. The weight enumerator W (y) of a code C is given
by W (y) =

∑n
i=0 Aiy

i, where Ai is the number of codewords of weight i in C. Two
binary codes are equivalent if one can be obtained from the other by a permutation of
coordinates. The permutation σ ∈ Sn is an automorphism of C, if C = σ(C). The set of
all automorphisms of C forms the automorphism group Aut(C) of C. The dual code of C
is C⊥ = {u ∈ F

n
q | (u, v) = 0 for all v ∈ C} and C⊥ is a linear [n, n− k] code. If C ⊆ C⊥,

then C is termed self-orthogonal, and if C = C⊥, then C is self-dual. If C is self-dual,

then k =
1

2
n. We call a binary code self-complementary if it contains all the ones vector.

Every binary self-dual code is self-complementary.
In this paper, we consider optimal binary self-dual [44, 22, 8] codes. The self-dual

codes with these parameters have been constructed as double circulant and bordered
double circulant codes and via automorphisms [3]. All odd primes p dividing the order
of the automorphism group of a self-dual [44, 22, 8] code are 11, 7, 5, and 3. The codes
with automorphism of order 11 and 5 are classified in [9], [10], [5], [4]. The codes with
automorphisms of order 3 with 6 independent 3-cycles are classified in [5]. In this paper,
we give a classification of the self-dual [44, 22, 8] codes with an automorphism of order 7.
To do that we apply the method developed by Huffman and Yorgov [2], [7].

2. Construction Method. Let C be a binary self-dual code of length n = 44 with
an automorphism σ of order 7 with exactly c independent 7-cycles and f = 44− 7c fixed
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points in its decomposition. We may assume that: σ = (1, 2, . . . , 7)(8, 9, . . . , 14) . . . (7(c−
1) + 1, 7(c − 1) + 2, . . . , 7c), and say shortly that σ is of type 7 − (c, f).

Theorem 1. (see [8]) Let the self-dual code C have an automorphism of type 7−(c, f).
If dxe denotes the smallest integer not less than x, then one has:

1) 7c ≥

3c−1∑

i=0

⌈
d

2i

⌉

, where the sign of equality does not occur if d ≤ 23c−2 − 2;

2) if f > c, then c ≥

f−c
2

−1
∑

i=0

⌈
d

2i

⌉

, where the sign of equality does not occur if d ≤

2
f−c
2

−2 − 2.

Denote the cycles of σ by Ω1, Ω2, . . . , Ωc, and the fixed points by Ωc+1, . . . , Ωc+f . Let
Fσ(C)={v ∈ C | vσ = v} and Eσ(C)={v ∈ C | wt(v|Ωi) ≡ 0(mod 2), i = 1, . . . , c + f},
where v|Ωi is the restriction of v on Ωi. Then, we have C = Fσ(C) ⊕ Eσ(C) (see [2]).

Clearly, v ∈ Fσ(C) iff v ∈ C and v is constant on each cycle. Let π : Fσ(C) → F
c+f
2 be

the projection map where if v ∈ Fσ(C), then (vπ)i = vj for some j ∈ Ωi, i = 1, 2, . . . , c+f .

It is well-known that π(Fσ(C)) is a binary [c + f, c+f
2 ] self-dual code [2].

Denote by Eσ(C)∗ the code Eσ(C) with the last f coordinates deleted. So Eσ(C)∗ is
a self-orthogonal binary code of length 7c. For v in Eσ(C)∗, we let v|Ωi = (v0, v1, . . . , v6)
correspond to the polynomial v0 + v1x + v6x

6 from P , where P is the set of even-weight
polynomials in F2[x]/(x7 − 1). Thus, we obtain the map ϕ : Eσ(C)∗ → P c. P is a cyclic
code of length 7 with generating polynomial x+1 and check polynomial 1+x+ · · ·+x6.

It is well-known [2], [8] that ϕ(Eσ(C)∗) is a P -module and for each u, v ∈ ϕ(Eσ(C)∗)
it holds.

(1) u1(x)v1(x
−1) + u2(x)v2(x

−1) + · · · + uc(x)vc(x
−1) = 0.

Denote h1(x) = (x3 + x + 1) and h2(x) = (x3 + x2 + 1). As x6 + x5 + · · · + x + 1 =
h1(x)h2(x), we have P = I1 ⊕ I2, where Ij is an irreducible cyclic code of length 7 with
parity-check polynomial hj(x), j = 1, 2. Thus, Mj = {ui ∈ ϕ(Eσ(C)∗) | ui ∈ Ij , i = 1, 2}
is code over the field Ij , j = 1, 2. It is well-known [8] that ϕ(Eσ(C)∗) = M1 ⊕ M2

and dimI1 M1 + dimI2 M2 = c. The polynomials e1(x) = x4 + x2 + x + 1 and e2(x) =
x6 + x5 + x3 + 1 generate the ideals I1 and I2 defined above. Any nonzero element
of Ij = {0, ej, xej . . . , x6ej}, j = 1, 2 generates a binary cyclic [7, 4, 3] code. Since the
minimum weight of the code C is 8, every vector of ϕ(Eσ(C)∗) must contain at least 2
nonzero coordinates.

The following result is a particular case of Theorem 3 from [7]:

Theorem 2. Let the permutation σ be an automorphism of the self-dual codes C and
C ′. A sufficient condition for equivalence of C and C ′ is that C ′ can be obtained from C
by application of a product of some of the following transformations:

a) ubstitution x → xt for t = 1, 2, . . . , 6 in ϕ(Eσ(C)∗);
b) multiplication of the j-th coordinate of ϕ(Eσ(C)∗) by xtj where tj is an integer,

0 ≤ tj ≤ 6, for j = 1, 2, . . . , c;
c) permutation of the first c cycles of C;
d) permutation of the last f coordinates of C.

Since the transformation x → x3 from Theorem 2 a) interchange e1(x) into e2(x) and
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vice versa then, without loss of generality, we can assume that dim M1 ≤ dim M2. Once
chosen, M1 determines M2 and the whole ϕ(Eσ(C)∗). Thus, we can examine only M1.

Let B, respectively D, be the largest subcode of π(Fσ(C)) whose support is contained
entirely in the left c, respectively, right f , coordinates. Suppose B and D have dimensions
k1 and k2, respectively. Let k3 = k − k1 − k2. Then, there exists a generator matrix for
π(Fσ(C)) of the form

(2) Gπ =





B 0
0 D
E F

,





where B is a k1×c matrix with gen(B) = [B O], D is a k2×f matrix with gen(D) = [O D],
O is the appropriate size zero matrix, and [E F ] is a k3 × n matrix. Let B∗ be the code
of length c generated by B, BE – the code of length c generated by the rows of B and E,
D∗ – the code of length f generated by D, and DF – the code of length f generated by
the rows of D and F. Then, we have the following lemma:

Lemma 1. With the notation of the previous paragraph:

(i) k3 = rank (E) = rank (F ),

(ii) k2 = k + k1 − c =
c + f

2
+ k1, and

(iii) B⊥

E = B∗ and D⊥

F = D∗.

3. Optimal Self-Dual Codes of Length 44 with automorphisms of order 7.
The weight enumerators of self-dual codes of length 44 are known [1]:

W44,1(y) = 1 + (44 + 4β)y8 + (976− 8β)y10 + (12289− 20β)y12 + · · ·

for 10 ≤ β ≤ 122 and

W44,2(y) = 1 + (44 + 4β)y8 + (1232− 8β)y10 + (10241− 20β)y12 + · · ·

for 10 ≤ β ≤ 154.

Codes exist for W44,1 when β = 10, . . . , 68, 70, 72, 74, 82, 86, 90, 122 and for W44,2 when
β = 0, . . . , 56, 58, . . . , 62, 64, 66, 68, 70, 72, 74, 76, 82, 86, 90, 104, 154 (see [3]).

Theorem 3. If C is a binary self-dual [44, 22, 8] code having an automorphism σ of
order 7, then σ is of type 7 − (3, 23) or 7 − (6, 2).

Proof. If C is a binary self-dual [44, 22, 8] code having an automorphism σ of order
7, then σ can be of type 7 − (1, 37), 7 − (2, 30), 7 − (3, 23), 7 − (4, 16), 7 − (5, 9), and
7− (6, 2). Since d = 8, the cases 7− (1, 37) and 7− (2, 30) are impossible due to condition
1) of Theorem 1. The cases 7 − (4, 16) and 7 − (5, 9) are contradictions to the assertion
2) of the same Theorem.

3.1. Codes with automorphism of type 7-(3,23). Let C be a binary self-dual
[44, 22, 8] code having an automorphism of type 7− (3, 23). Then, the subcode π(Fσ(C))
is a binary [26, 13,≥ 4] self-dual code, dim ϕ(Eσ(C)∗) = 3, and we have dim M1 +
dim M2 = 3. When dim M2 = 3, we have that ϕ(Eσ(C)∗) is a [3, 3, 1] code and this leads
to a contradiction with the minimum weight 8 in C. When dim M2 = 2, we can choose the

generator matrix in the form gen(ϕ(Eσ(C)∗)) =

��
e2 0 e2

0 e2 e2

e1 e1 e1

��
. The subcode π(Fσ(C))

is a binary [26, 13,≥ 4] self-dual code. According to Lemma 1, we can take its generator
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matrix in the form







3
︷︸︸︷

B

23
︷︸︸︷

0
0 D
E F







, where k1 + k2 + k3 = 13, k2 = k1 + 10. So we have

two cases:

Case I: k1 = 1, k2 = 11, k3 = 1. Then, B = (110), gen π(Fσ(C)) =





110 0
0 D
E F



,

where the matrix D generates a [23, 11,≥ 8] binary self-orthogonal code. Since C is self-
complimentary, E = (111), F = (1 . . . 1). All optimal [23, 11] binary self-orthogonal codes
are classified in [6]. There is a unique such code – the doubly-even subcode of the Golay
code with weight enumerator W23,11 = 1 + 506y8 + 1288y12 + 253y16. So we obtain one
possible generator matrix for the code C and it has minimum weight 6.

Case II: k1 = 0, k2 = 10, k3 = 3. gen π(Fσ(C)) =

(
0 D
E F

)

, where the matrix

D generates a [23, 10,≥ 8] binary self-orthogonal code. There are three such codes [6] –
A23,10,1, A23,10,2, and A23,10,3 with generator matrices of the form GA23,10,i

= (I10|G
(i))

and all are with minimum distance 8.

G(1)
=

���������������

1111111000000

1111000111000

1100110110100

1010101101100

1001011011100

0110101110010

1100011101010

0101110011010

0001111100110

0101011110001

�	�������������



, G(2)
=

���������������

1111111000000

1111000111000

1100110110100

1010101101100

1001011011100

0110101110010

1100011101010

0101110011010

1010011110001

0110110101001

�	�������������



, G(3)
=

���������������

1101001010110

1100011101100

1100110110010

0110011011010

0011001101110

1011011110000

0101101111000

0010110111100

1011100011010

0101110001110

�	�������������



.

Since k3 = 3, the matrix E = I3, and the matrix F is determined by the condition
(iii) of Lemma 1. For each of the three codes there is a unique possibility for the matrix
F , up to equivalence. In this way we obtain the codes C44,i, i = 1, 2, 3. Their weight
distributions and order of automorphism group |Aut(C)| are presented in Table 1. All of
these codes have automorphism of order 5 and are well-known [4].

Table 1: All codes with automorphism of type 7 − (3, 23)

Code Weight Distibution β |Aut(C)|
C44,1 W44,1 122 215 · 34 · 52 · 72 = 3251404800
C44,2 W44,2 104 213 · 34 · 52 · 7
C44,3 W44,2 154 216 · 34 · 52 · 72 · 112 = 786839961600

Theorem 4. There are exactly three nonequivalent binary [44, 22, 8] codes having an
automorphism of type 7 − (3, 23).

3.2. Codes with automorphism of type 7-(6,2). Let C be a binary self-dual
[44, 22, 8] code having an automorphism of type 7 − (6, 2). π(Fσ(C)) is a binary [8, 4]
self-dual code equivalent either to C4

2 or H8, generated by the matrices G1 = (I4|I4)
and G2 = (I4|A + I4), where I4 is the 4 × 4 identity matrix and A is the all-one 4 × 4
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matrix. Then, dim ϕ(Eσ(C)∗) = 6 and so dim M1 + dim M2 = 6. We have four cases:
dim M1 = 0, 1, 2, and 3.

Case I: dim M1 = 0. Then, dim M2 = 6 and we can take for its generator matrix the
6 × 6 diagonal matrix diag(e2, e2 . . . , e2). This matrix leads to vectors with weight 4 in
C, witch is a contradiction to the minimum weight 8 in C.

Case II: dim M1 = 1. We have gen(ϕ(M1) = (e1, e1, e1, e1, e1, e1). If π(Fσ(C)) ∼= C4
2 ,

then we have not obtained any optimal [44, 22] codes. When π(Fσ(C)) ∼= H8, we found
only one code with W44,1 for β = 38 and |Aut(C)| = 8064.

Case III: dim M1 = 2. We can take gen(M1) =

(
e1 0 α1 α2 α3 α4

0 e1 α5 β1 β2 β3

)

, where αi ∈

{0, e1}, i = 1, . . . , 5, and βi ∈ I1, i = 1, 2, 3. Actually, after considering all such matrices,

it turns out that there is only one possibility up to equivalence –

(
e1 0 e1 0 e1 e1

0 e1 0 e1 0 0

)

.

We fix the generator matrix of ϕ(Eσ(C)∗) and consider all possibilities for π(Fσ(C)).
For π(Fσ(C)) ∼= C4

2 we found one code with weight distribution W44,2 for β = 56 and
|Aut(C)| = 2688 = 27 · 3 · 7. When π(Fσ(C)) ∼= H8, we found one code with weight
distribution W44,1 for β = 59 and |Aut(C)| = 43008 = 211 · 3 · 7.

Case IV: dim M1 = dim M2 = 3. We have gen(M1) =





e1 0 0 α1 α2 α3

0 e1 0 α4 β1 β2

0 0 e1 α5 β3 β4



, where

αi ∈ {0, e1}, i = 1, . . . , 5, and βi ∈ I1, i = 1, 2, 3, 4. There are 18 nonequivalent such codes
with minimum weight d ≥ 8. We can fix the generator matrix for ϕ(Eσ(C)∗) and consider
all possibilities for π(Fσ(C)):

– If π(Fσ(C)) ∼= H8, then we have 64 nonequivalent codes with W44,1 for β =10, 17,
24, 31, 38, 52, 122. The orders of their automorphism groups are given in Table 2. The
code with β = 122 is equivalent to the code C44,1.

Table 2: Self-dual [44, 22, 8] codes for Cπ
∼= H8 and dim M1 = 3.

|Aut(C)| 7 14 28 42 56 84 112 126
Number of codes 11 29 4 6 1 1 1 1

|Aut(C)| 168 252 336 672 1344 5040 5376 215 · 34 · 52 · 72

Number of codes 1 1 2 2 1 1 1 1

– If π(Fσ(C)) ∼= C4
2 , then we have 87 nonequivalent codes with W44,2 for β =0, 7, 14,

21, 28, 35, 42, 56, 154. The orders of their automorphism groups are presented in Table
3. The code with β = 154 is equivalent to C44,3.

Table 3: Self-dual [44, 22, 8] codes for Cπ
∼= C4

2 and dim M1 = 3.

|Aut(C)| 7 14 28 42 56 112 336
Number of codes 42 28 3 1 2 1 2

|Aut(C)| 672 1344 2688 10752 43008 216 · 34 · 52 · 72 · 112

Number of codes 1 2 1 1 2 1

Theorem 5. There are exactly 155 nonequivalent [44, 22, 8] codes having an automor-
phism of order 7.
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КЛАСИФИКАЦИЯ НА ДВОИЧНИТЕ САМОДУАЛНИ [44,22,8]
КОДОВЕ, ПРИТЕЖАВАЩИ АВТОМОРФИЗЪМ ОТ РЕД 7

Николай Иванов Янков, Радка Пенева Русева

Класифицирани са всички нееквивалентни двоични самодуални [44, 22, 8] кодове,
притежаващи автоморфизми от ред 7. Съществуват точно три нееквивалентни
кода с автоморфизъм от ред 7 с три независими цикъла и 154 нееквивалентни
кода с автоморфизъм от ред 7 с шест независими цикъла.
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