
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2008
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2008

Proceedings of the Thirty Seventh Spring Conference of
the Union of Bulgarian Mathematicians

Borovetz, April 2–6, 2008

ON A CLASS OF BINARY MATRICES

Krasimir Yankov Yordzhev

In the paper is studied the set of all square binary matrices containing an exact
number of 1’s in each rows and in each column. A connection is established between
the cardinality of this set and the cardinality of its subset of matrices containing 1 in
the lower right corner. With the help of this result, a new proof of the I. Good and
J. Grook theorem is given. In connection with the first result a classification is also
made of square binary matrices containing three 1’s in each row and column and 1
in the lower right corner.

1. Introduction. A binary (or boolean, or (0, 1))-matrix is a matrix whose elements
belong to the set B = {0, 1}. By Bn we denote the set of all n × n binary matrices.

Using the notation from [12], we call Λk
n-matrices all n × n binary matrices in each

row and each column of which there are exactly k ones.
Let us accept the associative operations ” + ” and ” · ” in the set B = {0, 1} to be

defined as: 0 + 0 = 0, 1 + 0 = 0 + 1 = 1 + 1 = 1, 0 · 0 = 1 · 0 = 0 · 1 = 0, 1 · 1 = 1.
Let the scalar product of two vectors (defined by the n-tuple) with elements from B be
determined by the operations thus introduced. Let us accept that in Bn the common
definition for the operation of matrix product as a scalar product of the corresponding
row vector and column vector is determined by the operation of scalar product introduced
above. Considering all this, Bn, along with the operation matrix product, is a semigroup
that is isomorphic to the semigroup B(M) comprising all binary relations in a set M ,
where |M | = n < ∞ (see for example [5]).

Let us consider the following combinatorial problem:

Problem 1. Find the number of all binary relations ω ∈ B(M), |M | = n < ∞, such

that for all a ∈ M the equation

|{x ∈ M | (a, x) ∈ ω}| = |{x ∈ M | (x, a) ∈ ω}| = k,

is correct, where n and k are positive integers.

Using the language of graph theory (see for example [1] or [4]) problem 1 is equivalent
to

Problem 2. Find the number of all bipartite graphs G = (V1 ∪ V2, E), such that

|V1| = |V2| = n and each vertex is incident with exactly k edges.

Clearly, problems 1 and 2 can be reduced to the following

Problem 3. Find the number of all n × n matrices containing exactly k 1’s in each

row and each column, i.e. the number of all Λk
n-matrices.
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The goal of this paper is to consider certain special cases of problem 3.
Let us denote the number of all Λk

n-matrices with λn,k.
The following formula is proved in [10]

(1) λn,2 =
∑

2x2+3x3+···+nxn=n

(n!)2

n∏

r=2

xr !(2r)xr

.

One of the first recurrence formula for calculation of λn,2 appeared in [2]:

(2)
λn,2 =

1

2
n(n − 1)2

[
(2n − 3)λ(n−2),2 + (n − 2)2λ(n−3),2

]
for n ≥ 4

λ1,2 = 0, λ2,2 = 1, λ3,2 = 6

Another recurrence formula for the calculation of λn,2 occurs in [4]:

(3) λn,2 = (n − 1)nλ(n−1),2 +
(n − 1)2n

2
λ(n−2),2 for n ≥ 3

λ1,2 = 0, λ2,2 = 1

The following recurrence system for calculation of λn,2 is put forward in [9]:

(4)

∣∣∣∣∣∣∣

λ(n+1),2 = n(2n − 1)λn,2 + n2λ(n−1),2 − πn+1 for n ≥ 2

πn+1 = n2(n−1)2

4 [8(n − 2)(n − 3)λ(n−2),2 + (n − 2)2λ(n−3),2 − 4πn−1] for n ≥ 4

λ1,2 = 0, λ2,2 = 1, π1 = π2 = π3 = 0, π4 = 9

where πn denotes the number of a special class of Λ2
n-matrices.

For the classification of all non defined concepts and notations as well as for common
assertion which have not been proved here, we reffer to [1, 6, 8, 11].

2. On a partition of the set Λk
n. Let us introduce the notations:

(5) Λk+
n = |{A = (aij) ∈ Λk

n| an n = 1}|

(6) Λk−
n = |{A = (aij) ∈ Λk

n| an n = 0}|

Obviously,

(7) Λk+
n ∩ Λk−

n = ∅ and Λk+
n ∪ Λk−

n = Λk
n,

in other words, {Λk+
n , Λk−

n } represents a partition of the set Λk
n.

We set:

(8) λ+
n,k = |Λk+

n |

(9) λ−

n,k = |Λk−
n |

Formula (3) occurs for the first time in [3]. It has been deduced in a manner applicable
only to the calculation of the number of the Λ2

n-matrices. The method for obtaining of
the recurrence relation (3) which we offer and which we describe in Section 3.1 is closer to
the discovery of the analogical formula for values greater than k. In this case, k represents
the number of units in each row and each column of the respective square matrices. The
method is based on the following assertion:

Theorem 1. The equation

(10) λk−
n =

n − k

k
λk+

n ,

where λ+
n,k and λ−

n,k are given by formulas (8) and (9), respectively, holds true.

246



Proof. Let A and B be Λk
n-matrices. We say that A and B are ρ-equivalent (AρB), if

the removing of the columns ending in 1 results in equal n× (n−k) matrices. Obviously,
ρ is an equivalence relation. We use ρA to denote the set of elements to which A is related
by the equivalence relation ρ.

Let A = (aij) be a Λk
n-matrix. Let us denote by p+ the number of all matrices ρ-

equivalent to A in which the element in the lower right corner is equal to 1 and by p− the
number of all matrices ρ-equivalent to A in which the element in the lower right corner
is equal to 0. Let Kj1 , Kj2 , . . . , Kjk

be the row-vectors of the matrix A with 1 in the final
position. The set J = {j1, j2, . . . , jk} is partitioned into subsets Jr, r = 1, 2, . . . s, such
that ju and jv are part of the same subset if and only if Kju

= Kjv
. It is easy to prove

that J =

s⋃

r=1

Jr and Ju ∩ Jv = ∅ for u 6= v. We set kr = |Jr|, r = 1, 2, . . . , s. Obviously,

(11) k1 + k2 + · · · + ks = k.

Let C be the n × (n − k) matrix which is obtained from A by removing the columns
Kj1 , Kj2 , . . . , Kjk

. In this case, with the help of the different ways of adding new columns
to C, we obtain all elements of the set ρA. Let us first add k1 columns which equal to
those columns of A whose numbers belong to the set J1. This can be done in

(
n−k+k1

k1

)

ways. We can then add k2 equal columns in
(
n−k+k1+k2

k2

)
possible ways. These equal

columns are also equal to the columns in A with number tags from J2, etc. Therefore,

|ρA| =

(
n − k + k1

k1

)(
n − k + k1 + k2

k2

)
· · ·

(
n − k + k1 + k2 + · · · + ks

ks

)
=

=

(
n

ks

)(
n − ks

ks−1

)(
n − ks − ks−1

ks−2

)
· · ·

(
n − ks − ks−1 − ks−2 + · · · + k2

k1

)
=

=
n!(n − ks)!(n − ks − ks−1)! · · · (n − ks − ks−1 − · · · − k2)!

ks!(n − ks)!ks−1!(n − ks − ks−1)! · · · k1!(n − ks − ks−1 − · · · − k2 − k1)!
=

=
n!

k1!k2! · · · ks!(n − k)!
.

Analogically, for p− we get p− =
(n − 1)!

k1!k2! · · · ks!(n − 1 − k)!
, having in mind the fact

that we cannot add new columns after the last column of matrix C.
For p+ we obtain the equation:

p+ = |ρA|−p− =
n!

k1!k2! · · · ks!(n − k)!
−

(n − 1)!

k1!k2! · · · ks!(n − 1 − k)!
=

k(n − 1)!

k1!k2! · · · ks!(n − k)!
.

Then,
p−

p+
=

n − k

k
, i.e. p− =

n − k

k
p+. Summing over the equivalence classes, we

arrive at the equation we had to prove.
By means of equations (5) ÷ (9) and theorem 1, we get

Corollary 1.

(12) λn,k = λ+
n,k + λ−

n,k = λ+
n,k +

n − k

k
λ+

n,k =
n

k
λ+

n,k.

3. Some applications. Theorem 1 and Corollary l are useful because they facilitate
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the calculation Λk+
n as compared to that of all Λk

n-matrices.

3.1. A different proof of the I. Good and J. Grook theorem. Using Corollary
1 in order to obtain a formula for the n×n binary matrices, it is enough to find a formula
for λ+

n,2. We can do this with the help of the following

Theorem 2. If n ≥ 3, then

λ+
n,2 = 2(n − 1)λ(n−1),2 + (n − 1)2λ(n−2),2.

Proof. Let A = (aij) be a Λ2
n−1-matrix. The matrix A gives rise to the Λ2

n-matrix
B = (bij) in the following manner: We choose p, q such that ap q = 1. This can be
accomplished in 2(n− 1) ways. We set bp q = 0, bp n = bn q = bn n = 1, bi n = bn j = 0 and
bij = aij for 1 ≤ i, j ≤ n−1, i 6= p, j 6= q. It is easy to see that B is a Λ2

n-matrix with 1 in
the lower right corner. Besides, p and q can be identified uniquely through B and matrix
A can be restored. Consequently, λ+

n,2 = 2(n − 1)λ(n−1),2 + t, where t is the number of

all Λ2
n-matrices containing 1 in the lower right corner, which cannot be generated in the

manner described above. These are Λ2
n-matrices. B = (bij) for which there are p and q

such that bp q = bn q = bp n = bn n = 1 and these are the only 1’s (2 in each row and
column) in rows with number p and n and in columns with number q and n. In this case,
however, removing rows with numbers p and n and columns with numbers q and n, we
obtain a Λ2

n−2-matrix. On the contrary, each Λ2
n−2-matrix gives rise to a Λ2

n-matrix by
inserting two new rows, their numbers are p and n, and two new columns, their numbers
are q and n, with 0 everywhere except for the places of intersection. Since p and q vary
from 1 to n − 1, t = (n − 1)2λ(n−2),2. This proves the theorem.

Applying Theorems 1 and 2 we obtain:

Theorem 3. [3] The number of all n×n square binary matrices with exactly two 1’s

in each row and each column is given by the next formula:

λn,2 = (n − 1)nλ(n−1),2 +
(n − 1)2n

2
λ(n−2),2 for n ≥ 3.

λ1,2 = 0, λ2,2 = 1

3.2. On the number of Λ3
n-matrices. The following formula gives an explicit way

for the calculation of λ3(n) offered in [3]:

(13) λ3(n) =
n!2

6n

∑ (−1)β(β + 3γ)!2α3β

α!β!γ!26γ
,

where the sum is wide-spread over all the
(n + 2)(n + 1)

2
solutions in nonnegative integers

of the equation α + β + γ = n.

As it is noted in [7], the formula (13) does not give us good opportunities to study
the behavior of λn,3. The aim of the current consideration is to go one step closer to
a new recurrence formula for the calculation of λn,3, which could help to avoid certain
inconveniences results by the use of formula (13).

Let X = (xij) ∈ Λ3+
n and all 1’s in the last columns and in the last row be respectively

the elements xs n, xt n, xn p, xn q, xn n, where s, t, p, q ∈ {1, 2, . . . , n− 1}, s 6= t, p 6= q. X̃
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denotes the 2 × 2 submatrix

(14) X̃ =

(
xsp xsq

xtp xtq

)
.

The set Λ3+
n is partitioned into the following nonintersecting subsets:

An =

{
X ∈ Λ3+

n

∣∣∣∣X̃ =

(
1 1
1 1

)}
(15)

Bn =

{
X ∈ Λ3+

n

∣∣∣∣X̃ ∈

{(
0 1
1 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
1 1
1 0

)}}
(16)

Γn =

{
X ∈ Λ3+

n

∣∣∣∣X̃ ∈

{(
1 0
1 0

)
,

(
0 1
0 1

)}}
(17)

∆n =

{
X ∈ Λ3+

n

∣∣∣∣X̃ ∈

{(
1 1
0 0

)
,

(
0 0
1 1

)}}
(18)

En =

{
X ∈ Λ3+

n

∣∣∣∣X̃ ∈

{(
1 0
0 1

)
,

(
0 1
1 0

)}}
(19)

Zn =

{
X ∈ Λ3+

n

∣∣∣∣X̃ ∈

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}}
(20)

Hn =

{
X ∈ Λ3+

n

∣∣∣∣X̃ =

(
0 0
0 0

)}
(21)

We set

(22)
αn = |An|, βn = |Bn|, γn = |Γn|, δn = |∆n|,

εn = |En|, ζn = |Zn|, ηn = |Hn|.

Obviously,

(23) γn = δn

and

(24) λ+
n,3 = αn + βn + γn + δn + εn + ζn + ηn.

Theorem 4.

λ+
n,3 =

3(n − 1)(3n − 8)

2
λ(n−1),3 + αn + βn + 2γn − ηn.

Proof. Let Y = (yij) ∈ Λ3
n−1. In Y we choose two 1’s not belonging to the same

row or column. Let then these be the elements ysp and ytq, s, t, p, q ∈ {1, 2, . . . , n − 1},

s 6= t, p 6= q. This can happen in
3(n − 1)[3(n − 1) − 5]

2
=

3(n − 1)(3n− 8)

2
ways. The

1’s, thus selected, are turned into 0’s and in Y in the last place one more column (number
n) and one more row (number n) is added, so that ysn = ytn = ynp = ynq = ynn = 1 and
yin = ynj = 0 for i /∈ {s, t, n}, j /∈ {p, q, n}. Obviously, the matrix, thus formed, belongs
to one of the sets En, Zn or Hn.

On the contrary, let X = (xij) be a matrix from En or Zn. Then X̃ has unique zero
diagonal whose elements we turn into 1’s and remove the last row (number n) and the
last column (number n). In this way a Λ3

n−1-matrix is generated.

Let X = (xij ) ∈ Hn and X̃ =

(
xsp xsq

xtp xtq

)
=

(
0 0
0 0

)
. We select one diagonal of
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X̃ and turn 0’s of this diagonal into 1’s. Then we remove the last row (with number n) and
the last column (with number n). We get a Λ3

n-matrix. Consequently, two Hn-matrices
correspond to each Λ3

n-matrix. Then,

λ+
n,3 =

3(n − 1)(3n − 8)

2
λ(n−1),3 − ηn + t,

where t = αn + βn + γn + δn. Considering (23) and (24), we prove the theorem.
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ВЪРХУ ЕДИН КЛАС БИНАРНИ МАТРИЦИ

Красимир Янков Йорджев

В работата е разгледано множеството от всички квадратни бинарни матрици с
точно k единици на всеки ред и всеки стълб. Получена е връзка между мощ-
ността на това множество и мощността на неговото подмножеството от матрици
с единица в долния десен ъгъл. С помощта на получения резултат е предложе-
но ново доказателство на теорема на I. Good и J. Grook. Във връзка с първия
резултат е направена и една класификация на квадратните бинарни матрици с
точно три единици на всеки ред и всеки стълб и единица в долния десен ъгъл.
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