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NONLOCAL BOUNDARY VALUE PROBLEMS®

Ivan Dimovski

The theory of the nonlocal linear boundary value problems is still on the level of
examples. Any attempt to encompass them by a unified scheme sticks upon the
lack of general methods. Here we are to outline an algebraic approach to linear
nonlocal boundary value problems. It is based on the notion of convolution of linear
operator and on operational calculus on it. Our operators are right inverses of the
differentiation operator and its square. These right inverse operators are determined
by the boundary value conditions of the problems we are to deal with. The idea of the
algebraic approach consists in algebraization of the problem by reducing it to a single
linear algebraic equation of the first degree in a corresponding commutative ring,
containing as subrings: the function space, the multipliers ring of the convolution
algebra and the number field. Thus we reduce all the consideration into a single
algebraic system: the ring of the multiplier fractions. As applications it is possible to be
considered the following nonlocal BVPs: 1) Nonlocal Cauchy problems; 2) Dezin BVP;
3) Samarskii — Ionkin problem; 4) Beilin problem; 5) Bitsadze — Samarskii problem.
Following our algebraic approach we obtain for all of them explicit representations of
the solutions. These representations may be considered as extensions of the classical
Duhamel principle. They can be used for numerical calculation of the solutions using
quadrature formulae.

1. Nonlocal Cauchy problems connected with the differentiation operator.

d

Here we consider an elementary BVP for the differentiation operator D; = T in the
space C([0,00)):
(1.1) y'=[f(t), x{y} =0
with an arbitrary non-zero linear functional y.

In order a solution to exist for arbitrary f, we are to assume x{1} # 0. We normalize
X by the restriction x{1} = 1.

The solution y = I f () has the explicit form

(1.2) lf(t):/f(T)dT—XT /f(o)da , a €A
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In Dimovski [2] an operational calculus is developed for the operator [ in C(A), the
space of the continuous functions in an interval A. It follows the pattern of Mikusiriski
but using convolution (1.3) instead of Duhamel convolution (Dimovski [1], p. 52)

(1.3) (rha) ) =x:{ [ 14 7-0)9(0) do

such that [f = {1}if.
This convolution as a rule, has a plenty of divisors of zero. Therefore C' is only a

t
commutative ring with the operations + and *, but not an integrity domain. Nevertheless,
the set N of the non-divisors of 0 in C is non-empty. This allows to use the process of
“localization” from the general algebra (see S. Lang [4]). Then we consider the ring M

= N7IC of the convolution fractions = with f € C, g € N. M is the quotient ring
g

(C x N)/ ~ where the factorization is with respect to the equivalence relation
(f, 9)~(f1, 1) & frgi=fig.
To say it differently, the fraction f is the class of all ordered pairs (f1, g1), f1 €
C, g1 € N, equivalent to (f,g), i.e. !

g ={(f1, 1) : (f1,.91) ~ (f, 9)}

The set M=N~1C of the convolution fractions is a commutative ring, containing as
a subring the space C' = C(A) with the multiplication (1.3).

The operator [ can be identified with the constant function {1} in A, since [f = {1} H f,
ie 1 ={1}.

As a nondivisor of 0 in M, [ has an inverse element
(1.4) s=1"1

Let a € C. Then the element QTf, f € N does not depend on f. Denoting it by [a]

and following Mikusiriski, we name it as numerical operator.

It is easy to show that [a + 5] = [ + [5] and [af] = [o] [5] for arbitrary «, 5 € C
Hence, the ring of the numerical operators is isomorphic to (C, .,+) and we may consider
C as subring of M.

d
The element s is the algebraic analogue of the differentiation operator TR The relation
between f’ and sf when f € C! is given by

Theorem 1. Let f € C' (A). Then
(1.5) fr=sf—x{r},
where x {f} is considered as a numerical operator.

Proof. It is easy to see that [’ (t) = f(t) — x {f}. This identity may be written in
the form If' (t) = f (t) — x {f} (. It remains to multiply it by s in order to obtain (1.5).

The identity (1.5) is the basic formula of our operational calculus.
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By induction, from (1.5) it follows the formula

(L.6) e T ) T T U SN FiLa

Let P (A) be a non-zero polynomial and x be a non-zero linear functional on a space
C (A) of continuous functions in an interval A.
Consider the BVP

(1) P(5)r=rw. reca.

X {y(k)} =, k=0,1,2,...deg P — 1 with given 4 € C. It bears the name of nonlocal
Cauchy problem, determined by the functional x.

A nonlocal Cauchy problem is, in fact, any problem for solution of LODEs with
constant coefficients in periodic functions. Indeed, if we are looking for a periodic solution
of (1.7) with a period T, then this is equivalent to the special nonlocal Cauchy problem

P(%)yzf@), y " (1) —y®) (0) =0, k=0, 1, 2, ..., degP — 1.

More generally, if we are looking for mean-periodic solutions of (1.7) with respect to
a given linear functional y in C (R), i.e. for solutions y(t) such that
X'r{y(t+7_)} =0, —o0 <t < o0,
then this problem is equivalent to the nonlocal Cauchy problem
d
(1.8) P <%> y=1), xr {y(k)} —0,k=0,1,2, ..., degP—1.

with homogeneous boundary conditions.
The identities (1.6) allow to reduce each nonlocal Cauchy problem (1.7) to a single
algebric equation

(1.9) P(s)y=f+Q(s),
with a polynomial Q(s) of degree < n.

1
The formal solution of (1.9) is y = 70 )f + . It is valid prodided P(s) is
s
non-divisor of zero in M.
To decide if P(s) is not a divisor of 0, we are to show that none of the zeros of P (1))
is a zero of the indicatriz E (\) = x,{e 7}

Further, as a routine operation, we use the Heaviside algorithm: 1) Factorize P (s); 2)

1
Develop Ps) and ggz; into partial fractions; 3) Interprete the partial fractions P
. 1 Q(s) .
and ————— as functions; 4) express ={G(t)} and =——= = {H (t)} as functions;
- ) express e = {G (0} and 55 = {H (1)}

5) Write down the solution as y = G x f + H.
In order to accomplish Step 3), we use the formulae:

si)\{];z;)}’ (5_1)\)k {(k_ll)!aa;_ll (;;;)}, k=23, ...

If P(s) is a divisor of 0, this is the so called resonance case. Obviously, then the
solution, if it ever exists, is not unique. In order it to exist some additional conditions
on the righthand side f should be imposed. The Heaviside algorithm in a modified form
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applies to the resonance case too. This application is not trivial (see Grozdev [6]).

At last, we state a generalization of the Duhamel principle for the homogeneous
nonlocal Cauchy problem (1.8).

Theorem 2. Let Y = {Y (¢)} be the solution of (1.8) for f(t) =1. Then

p t
y) = G N =x (DY O+ [YEsr—o)f oo
is the solution for arbitrary f € C1 (A).

2. Nonlocal BVP for the square of the differentiation operator. Consider a
space C ([0, a]) of the continuous functions f (x) on a segment [0, a]. Let ® be a non-
zero linear functional on C' ([0, a]). Further, for a technical simplification, we assume

@ {£} # 0. Then, without any loss of generality, we may assume ®¢ {{} = 1. Define the
2

right inverse operator L of o the solution y = Lf (x) of the elementary nonlocal
BVP:
y'=f(z), y(0)=0, ®{y} =0.
Its solution has the explicit form:
z £
(21) L@ = [(@-9r©d—secq [(€—nsman
0

0

Theorem 3 (Dimovski [1], p.119). The operation

3 n
(r39) @)= —5e8 [ | [1+2- 090 dc-
(2.2) 0 T

n
/f(ln—w—Cl)g(IC\)Sgn(n—:c—C)CdC dn

is a bilinear, commutative and associative operation in C ([0,a]) such that Lf = {z} % f.

Using convolution (2.2), it is possible to develop an operational calculus for the
operator L, similar to the operational calculus for the operator [ from Sect. 1

For details, see Dimovski [1], p. 136-137. It may be considered as a part of the
operational calculus developed in the next section.

3. Multivariate operational calculi and multivariate nonlocal BVP.

Case 1. Operational calculi with one space variable and one time variable.

We consider the space C' = C([0,1] x (0,00)) of the functions f(x,t) which are
continuous for 0 < z < 1, 0 < ¢t < oo and let ® be a non-zero linear functional on
C1 (]0,1]) and x be a non-zero linear functional on C'(]0,00)). As in Sections 1 and 2,
we assume x {1} = 1, ®¢ {{} = 1. We will show that it is possible to define an explicit
convolution u*wv in C such that the operators L and [ to be multipliers of the convolution
algebra (C, ) .
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Theorem 4. Let u,vu,v € C. Then the operation

S t n
(u*v)(m,t):—%XTég / //u(77+x—(,t—I—T—U)v(C,a)dCda
(3.1) ¢ n 0 \7 =z
[ [utn=a=clit s -0 u(dl.orsmin o) dcdr | dy

T —T

is a bilinear, commutative and associative operation in C' such that ILu = {z} * u.

Lemma 1. The operators | and L are multipliers of the convolution algebra (C, ).

The assertion is a special case of the more general fact that that the “partial” convolu-
tional operators {¢ (t)} ** and {f(z)} *® are multipliers in the convolution algebra(C, *).
Here we skip the routine proof. Next, we will introduce special notations for them.

Definition. If f € C ([0, 1]) then by [f], we denote the “partial” convolutional ope-

rator f** and call it numerical operator with respect to the variable ¢, i.e. [f],u = f ¥u.

Similarly, if ¢ € C([0,00)), then [p], u = gafku is denoted by [p], and it is called
numerical operator with respect to = , i.e. [p], u=¢ H Uu.
Case 2. Two space variables.

We consider the space C' = C ([0, a] x [0,b]) of the continuous functions u = u (z,y)
on the rectangle 0 < z < a,0 < y < b. Let ® and ¥ be non-zero linear functionals on
the spaces C' ([0, a]) and C* ([0,d]), respectively. We assume additionally that ®¢{¢} #
0 and ¥, {n} # 0. Then, without any loss of generality, we may assume that @, {{} =1
and ¥, {n} =1.

We define the right inverses L, and L, of the differential operators (9/dx)*and
(9/dy)* in C = C([0,a] x [0,b]) by (Lyu)(0,y) =0, Be{(Lyu)(&,y)} = 0 and (Lyu)(,0)
=0, ¥, {(Lyu)(z,n)} =0, correspondingly.

It is easy to find the following explicit expressions for these right inverse operators
(Sect. 2):

z ¢
Lyu = {z} fu = / (x = &u(,y) dE — P, / € — a)u(a,y)da p,
(3.2) 0 0

Yy

Lyu = {y} $u= /(y —nu(x,n)dn — ¥, /(77 — a)u(z, @) da

Theorem 5. The operation u v in C, defined by

€ n
(3.3) (uxv)(z,y) = i@gllfn //h(x,y,r, o)drdo
00
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where
£ n

h<x,y,g,n>=//u<£+x—a,n+y—r)v(m)dadr
Yy

u(|§¢ =z —al,n+y—7)v(lo|,7)sgn (§ —x — o)o dodr
wé+xz—o,|n—y—Tv(ol|r|)sgn(n —y —7)rdodr

+ w(l§¢ = —ol,In—y = 7ho(lo],[7])sgn (£ =z = o)(n =y — 7)o dodr.

|
\m?\mg@\m
\3@\d®\3

2y
is a bilinear, commutative and associative operation, such that the product L,L, of the
operators Ly and L, has the representations LyLyu = {xy}*u. Ly and L, are multipliers
of the convolutional algebra (C,*): Ly = [x]y, Ly = [y]s-

In both cases it is possible to develop a corresponding operational calculus. To this
end one may follow an approach similar to Mikusiiniski’s, using convolution fractions.
But, as it concerns the multivariate case, such an approach is more involved than the
alternative approach, using multiplier fractions. It is proposed in Dimovski [1], Sect. 1.4.

For the sake of uniformity, by C' we denote one of the spaces C ([0, 1] x [0,00)) or
C ([0,a] x [0,b]). Next, we consider the ring M of the multipliers of the convolution
algebra (C, x). Let us remind that a linear operator A : C'— C'is a multiplier iff it holds
A(f *xg) = (Af) x g identically for f, g € C. The theory of the multipliers of Banach and
other algebras is developed in Larsen [5]. An elementary, but basic for us result from this
theory is the fact that M is a commutative ring . Elements of M are the operators ! and
L in Case 1, and the operators L, and L, in Case 2.

Let us denote by IV the class of all non-zero non-divisors of zero in M. It is non-empty,
since at least the identity operator I and the above mentioned operators are non-divisors
of zero. Further, we apply the standard process of localization, known from the general
algebra (see, e.g. Lang [4]). We used it yet in Sect. 1.

Definition. The quotient ring M = N~ M of M x N with respect to the equivalence
relation

(A,B)~ (C,D) < AD = BC
i.e. M = (M x N)/~ is said to be the ring of the multiplier fractions of the convolution
algebra (C, *).
A
We will denote the multiplier fractions as usual fractions 5 As by usual fractions,

we may consider the basic field (R or C) as a part of M due to the embedding o@ —

[a]/[1], where [a] and[1] denote the corresponding numerical multipliers. The convolution

algebras (C([O, 1)), *) and (C([O,oo)),i) in Case 1, and the convolution algebras

(C([O,a]), i) and (C’([O,b])7 i)) in Case 2 also may be considered as parts of M due
to the embeddings f(x) — [f(z)], /I and @(t) — [p(t)]:/I and f(x) — [f(z)], /I,
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g(y) — [9(y)]=/I, correspondingly. Here I is the identity operator in C. As for the
convolution algebra (C,*) it also is considered as a part of M due to the embedding
u— {u}=* /I
1 1
For our aims, most important elements of M are: Case 1: s = 7 and S = f; Case 2:
1 1
Sy = i and Sy = T Here by 1 we denote the identity operator in C'.
x
The relationship between the elements s and S and the corresponding partial differen-

2
tial operators % and ) in Case 1 is given by the following theorem:

x

. .. Ou %u .
Theorem 6. Let u € C be such that the partial derivatives e and 902 erist and
x
are functions of C'. The the following identities in M hold:
ou
(3.4) a7 = st~ Derdule, M)}y,
0%u

(3.5) a2 = Su~ [@eful€, e — S{(1 = 2e{1}2)u(0, 1)},

where by [ | partial numerical multipliers are denoted, and the brackets { } are use to
denote functions of C.

The coresponding results for the Case 2 are stated in the next theorem:

2
U
Theorem 7. Let u € C be a function with continuous partial derivatives — and

0%u _ . » oz
+—- Then in M the following identities hold:
dy
82
(3.6) 5 = S — [@e{u(€y)}e — S:{(1 - e{1}a)u(0,9)}
and
0%u
(3.7) By? = Syu— [Upfu(z,n)}ly — Sy {(1 = Up{l}y)u(z,0)}.

Let us prove (3.4). To this end, we calculate [u;:

T

t
l% :/ut(m,r)dT—XT /ut(x,a)da =

0 0
= U(LL’, t) - U(Sﬂ, O) - XT{U(’JZ, T) - U(CU, O)} = u(m, t) - XT{U(IE, T)}
Multiplying by s, we get (3.4). The proofs of (3.5)—(3.7) proceed in one and the same
way. For definitness, let us prove (3.6). To this end we calculate L, tz,:
0%u
LCE@ = U(’l}, y) - uﬂ?(oa y)l’ - U(O, y) - ZL’((I)E{U(E, y)} - uﬂ?(oa y) - ’U,(O, y)) =

= u(z,y) — 2(Pe{u(§,y)}) — (1 = Pe{1}2)u(0,y).

Multiplying the identity obtained by S, we get (3.6).
k

U
—.7 by means of

By means of (3.4) it is possible to express the partial derivatives 5
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& . ou oF 1y
s"u using the boundary values x, {u (x,7)}, xr s (,7)pyeeyXr§ = (x,7) p and
anu 82 a2m72
a2 by means of S™u, using the boundary values: u (0,t),=—u (x,0), ...
82m—2u

2
62
and @¢ {u (§,1)}, D¢ {8_931; (§,t)} yeo, Dp {W(g,t)} For example,
o* 0? 0? 0?
rwo-s{Zt e {Then}-s{a-emaTion} -

= %= 5@ {u(e. O} - 5* {(1 - 2{1ha)u(0.0) - 0 { T4 | -

0“u

2
—-S<(1—o{1 —(0,t) ;.
{a-emwTion}
Similar to the last formula are the corresponding formulae for the Case 2.
Now we are ready to outline the idea of algebraizing of BVPs for certain classes of
PDEs in rectangular domains of the form [0, 1] x [0,00) or [0, a] x [0, b].
Case 1. Evolution equations of the form
0 02
(3.8) P<a>uQ<@)u+F(x,t),O§x§1,0§t<oo
with polynomials P and Q.

Case 2. Equations of the form
0? 0?
(3.9) P(w)UZQ(a—yQ>U+F(%y)7 0<z<a0<y<b
with polynomials P and Q.

Assume that u = {u(z,t)} is a solution of (3.8). Using the formulae (3.4)—(3.5) and
consider equation (3.8) in the ring M of the multiplier fractions, it takes the algebraic
form
(3.10) [P(s)~ Q(S)]u=F+F,

where Fj is a linear combination of boundary values of u(z,t) of the form

M

oF 0
XT{Mu(x,T)},Og k<degP —1; WU(O,t),Ogmgdengl, and

82m

If these boundary value functions are known, then the right hand sideF’ + F} is also
known as an element of M. Then the formal solution of (3.10) is

B F+ F

P(s) = Q(S)

It always exists, provided P (s) — Q (S) is a non-divisor of zero in M. This is true
when there a uniqueness theorem holds. A similar approach applies for (3.9), but using
formulae (3.6)—(3.7) instead of (3.4)—(3.5).

As illustrations, we consider two demonstrative examples.
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Example 1. Solve the boundary value problem:
3
Ut = Uz, 0< <1, 0<t; u(z,0)=0, u(l,t)=t u(x,0)= %
3
Remark. It is taken the polynomial solution u(zx, t) = zt+ % f% of the heat equation

T
6 .

in order to test the method.
Solution. In our case x {p} = ¢ (0) and ® {f} = f(1). It is easy to see that L? =
3
1
{% - g} Using formulae (3.4), we obtain u; = su — [u(z,0)], = su — L = su — o

1
and Uz, = Su — [u(0,t)], = Su—[t], = Su—1* = Su — =
1
The problem reduces to a single algebraic equation:su — 5= Su — =]

Its solution in M is

1 1 1 s+ S 1 1
—(=_-= = = —+ = = L+ LI~
“ <5'2 32)5—5’ 5252 525+552 *

If we interprete this as a function u = {u (z,t)}, we obtain
3 g
u=—— = +uzxt.
6 6

The test happened to be successful.
Example 2. Obtain u = xy as the solution of Bitsadze — Samarskii problem:
Ugy T Uyy =0, 0<xz<a, 0<y <
U(Z,O) :U(O,y) =0, u(va) :bl', u(aay) 7U(C,y) - (CL*C)y’ 0<e<a.
Solution. The boundary value functionals are ®{f} = (f (a) — f(¢))/(a —¢) and
U {g}=g(b)/b.
By (3.11) we have uzs = Syu — [y], = Szu — Ly and uyy = Syu — [z], = Syu — L.
The BVP reduces to the single equation
(Sy + Sy)u= Ly + Ly,

Hence
u= (Lo L)+ 8) = (gt 5 ) (804 8) = g = Ly = o)
s, 5, S.S,
The test of the method for Case 2 happened to be successful too.
Some more representative examples are considered in [6].
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HEJIOKAJIHV TPAHUYHN 3AJAYN

NBau TumoBcKu

IIpenmoxena e equnna aaredbpudna cxeMa 3a U3CJIeIBaHE HA MMUPOK KJIAC JINHEHHU He-
JIOKQJITHU TPAHUIHU 33/1a9U 32 yPABHEHUsI Ha MaTeMaTUdecKaTa (pU3nKa, BKIIOUBAIIA
HEeJIOKAJTHUTE TpaHundHu 3aja4n Ha [leswn, bunanze-Camapcku, Nonkun, Beitna u
np. Ta ce ocHOBaBa Ha HEKJIACHYECKM KOHBOJIIOINH, BbBEJIEHN OT aBTOPA U M3IOJI3BA
HOBU JUPEKTHO M3TPAJICHH OIEPAIMOHHN cMsaTaHus. [IpaBu ce mbiaHo anredbpusmpa-
He Ha IPaHUYHATA 33J1a9a YPEe3 CBEXKJAHETO U 10 JIMHEWHO aJrebpudHO ypaBHEHUE B
KOMYTATHBEH IPBCTEH OT MYJITHUIINKATOPHHU dacTHU. [lomydenoro dopmasno aared-
PHUYHO peIlleHre ce HHTEPIIPETHPA KaTo (DYHKIINS, KOSITO € KJIACHIECKO I 00OOIIEHO
pellieHne HA TpaHUYHATA 3a/a4a.
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