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STOCHASTIC PROCESSES IN FINANCE
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We consider an elementary definition of stochastic processes. The basic properties
of random walks, Markov processes and martingales are given. As applications we
consider the binomial model of financial markets and the basic risk model with an
upper bound of ruin probability. The particular case of the classical risk model is
given.

1. Introduction. The applications of stochastic processes and martingale methods
have attracted much attention in recent years. In this paper we consider some elementary
stochastic processes for modelling the basic properties in finance and insurance. The basic
processes are given in Section 2. The applications of the martingale methods in finance
and insurance risk model are discussed in Section 3 and Section 4.

2. Discrete time stochastic processes. In many cases we need a model for counting
some events or to describe data collected from some process in fixed times. These are
discrete time processes.

Definition 1. The sequence of random variables X1, X2, . . . with well defined joint

distribution, is called a stochastic process in discrete time.

We write also {Xn}, n = 1, 2, . . ., or simply Xn, n = 1, 2, . . . .

Example 1 (Pólya urn model). Consider an urn that contains b ≥ 1 black balls and

w ≥ 1 white balls. After randomly drawing a ball from the urn it is put back into the

urn together with an additional ball of the same color. The process of drawing continues

to infinity. Let Xn = 1 if the nth ball is white and Xn = 0 if the ball is black. Then

X1, X2, . . . is a stochastic process.

It is of interest to consider also the partial sum Sn = X1+X2+ · · ·+Xn, n = 1, 2, . . .

which is the number of white balls up to the nth drawing. The sequence S1, S2, . . . is also

a stochastic process.

2.1. Random Walks. Let X1, X2, . . . be a sequence of independent identically
distributed random variables distributed as the random variable X with distribution
function F (x). If u is a real number we set

Sn = u + X1 + . . . + Xn, S0 = u.
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Definition 2. The stochastic process Sn, n = 0, 1, 2, . . ., is called a random walk

starting at u.

The random variables X1 = S1−u, X2 = S2−S1, . . ., Xn = Sn−Sn−1, . . . , are called
the increments of the process Sn.

According to Definition 2, the sequence Sn = X1 + X2 + · · · + Xn, n = 1, 2, . . . , is a
random walk if and only if the increments are independent identically distributed random
variables.

Example 2. Let Xn be the average force of return of some stock between n − 1 and

n, n = 1, 2, . . . . If Vn is the value of the stock at time n, then

Vn = eXnVn−1 = eSnV0.

The sum of returns Sn is a random walk. If we suppose that the returns Xn are normally

distributed, then Sn has also normal distribution. In this case the distribution of eSn is

lognormal.

2.2. Markov processes. Suppose that the process S0, S1, . . . has the following
property. For any n, the joint conditional distribution of Sn, Sn+1, . . . given S0, . . . , Sn−1

is independent of S0, . . . , Sn−2. This property means that the future development of the
process depends on the past only by the last value and is called a Markov property. The
process Sn is a Markov process. The conditional distribution function is given by

(1) F (x, y, n) = P (Sn ≤ x|S0, S1, . . . , Sn−1 = y) = P (Sn ≤ x|Sn−1 = y)

and for all x, y, n is independent of S0, . . . , Sn−2.

If the distribution function (1) is independent of n, the Markov process is called
stationary.

Example 3. Let Sn be a random walk. Then the conditional distribution function is

given by

P (Sn ≤ x|Sn−1 = y) = P (Sn − Sn−1 ≤ x − y) = FX(x − y),

where FX is the distribution function of the increments X.

Definition 3. The function

F (x, y, n) = P (Sn ≤ x|Sn−1 = y)

is called the transition function of the Markov process. The functions

p(x, y, n) = P (Sn = x|Sn−1 = y), n = 1, 2, . . .

are called transition probabilities.

2.3. Martingales. The martingales are stochastic processes, determined by the
history of the process and suitable for modeling noises and sources of uncertainty if
finance and insurance. In this note we use the terminology of [2]. Suppose that H1, H2, . . .

are random vectors.

Definition 4.The process Sn, n = 0, 1, . . . , is called a martingale with respect to

{Hn} if for all n

1) E|Sn| < ∞ (integrability);
2) Sn is a function of H0, H1, . . . , Hn (measurability);
3) E(Sn+1|H0, H1, . . . , Hn) = Sn (martingale property).
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The vectors Hn are interpreted as the state of the system at time n. Let denote

Fn = (H0, H1, . . . , Hn), n = 0, 1, . . . .

Fn represents the history of the system or the available information up to time n. The
martingale property is equivalent to the following

(2) E(Sn+1|Fn) = Sn, n = 0, 1, . . . .

Note that (2) implies

(3) E(Sn+k |Fn) = Sn, n = 0, 1, . . . , k = 1, 2, . . . .

Indeed, repeatedly using the basic properties of conditional expectation (2) we have

E(Sn+k|Fn) = E(E(Sn+k |Fn+k−1)|Fn) = E(Sn+k−1|Fn)

= E(E(Sn+k−1|Fn+k−2)|Fn)
. . .

= E(Sn+1|Fn) = Sn.

Taking expectations on both sides of (3) we get

(4) ESn = ES0, n = 1, 2, . . . .

When Sn is interpreted as the gain of the gambler at time n, the condition (2) means
that the game is fair. If

E(Sn+1|Fn) ≥ Sn, n = 0, 1, . . .

the game is favorable for the gambler and the process is called a submartingale.
Let {Sn} be a martingale and let the increments Xn = Sn − Sn−1 have finite second

moments EX2
n < ∞. Then

EXn = 0, Cov(Xn, Xn+k) = 0

and consequently

V ar(Xn) =

n
∑

i=0

V ar(Xi).

Example 4. Let {Sn}, Sn =

n
∑

i=1

Xi, be a random walk with EX = 0. {Sn} is a

martingale with respect to Fn = FX
n , the history generated by the increments up to time

n, because

E(Sn+1|Fn) = E(Sn|Fn) + E(Xn+1|Fn) = Sn + EXn+1 = Sn.

Example 5. Let Y be a random variable with finite expectation and H1, H2, . . .

random vectors with history {Fn}. Denote

Sn = E(Y |Fn), n = 1, 2, . . . , S0 = EY.

The process {Sn} is a martingale with respect to {Fn}.

Example 6. Suppose that Y0, Y1, . . . is a sequence of random variables such that Yn

is a function of Hn. Let rn be a function of Fn which is a solution of the equation

(5) E(Yn+1|Fn) = ernYn.
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Denote

Sn = exp

(

−

n−1
∑

i=0

ri

)

Yn, n = 1, 2, . . . , S0 = Y0.

The process {Sn} is a martingale with respect to {Fn}. rn can be interpreted as a force

of interest between moments n and n + 1 given the history {Fn}. Sn is the present value

of Yn and is a martingale.

E(Sn+1|Fn) = E

(

exp

(

−

n
∑

i=0

ri

)

Yn+1|Fn

)

= exp

(

−

n
∑

i=0

ri

)

E (Yn+1|Fn)

= exp

(

−

n
∑

i=0

ri

)

exp(rn)Yn = exp

(

−

n−1
∑

i=0

ri

)

Yn = Sn.

Example 7. Let X1, X2, . . . be a sequence of independent identically distributed

random variables distributed as X and let X0 = 0. Denote M(t) = EetX the moment

generating function of X. For a fixed t and finite M(t) we denote

(6) Sn =
etXn

M(t)
, n = 1, 2, . . . .

The process {Sn} is a martingale with respect to {Xn}. Indeed, the conditional expectation

given the history Fn = (X0, X1, . . . , Xn), is

E(Sn|Fn−1) =
1

M(t)
E(etXn |Fn−1) =

1

M(t)
E[et(Xn−Xn−1)etXn−1 |Fn−1]

=
etXn−1

M(t)
Eet(Xn−Xn−1) = Sn−1.

The martingale (6) is called an exponential martingale. The condition (4) in this
case is

(7) ESn = 1, n = 1, 2, . . . .

Example 8. Let X1, X2, . . . be the sequence defined in Example 7. The process

(8) Sn =
et

�
n
i=1

Xi

[M(t)]n
, n = 1, 2, . . . , S0 = 1

is a martingale with respect to {Xn}. Let denote

Yn = et
� n

i=1
Xi , n = 0, 1, . . . ,

0
∑

1

= 0.

Then following relation

Yn+1 = eXn+1Yn, n = 0, 1, . . .

is true. For the martingale property we get

E(Sn+1|Fn) =
Yn

[M(t)]n+1
E(etXn+1 |Fn) =

Yn

[M(t)]n+1
M(t) = Sn.
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2.4. Submartingales. Note that the process is called a submartingale, if it is integrable,
measurable and

(9) E(Sn+1|Fn) ≥ Sn, n = 0, 1, . . . .

If the martingale condition is

E(Sn+1|Fn) ≤ Sn, n = 0, 1, . . . ,

the process is called supermartingale.
The condition (9) implies the more general condition

E(Sn+k|Fn) ≥ Sn, n = 0, 1, . . . , k = 1, 2, . . . .

Taking expectation in (9) we get that {ESn} is a non-decreasing sequence.

Example 9. Let {Sn}, Sn =
n
∑

i=1

Xi, be a random walk with EX ≥ 0. {Sn} is a

submartingale with respect to Fn = FX
n , the history generated by the increments up to

time n, because

E(Sn+1|Fn) = E(Sn|Fn) + E(Xn+1|Fn) = Sn + EXn+1 ≥ Sn.

Example 10. Let {Sn} be a martingale with respect to {Fn}. Then {S2
n} is a

submartingale.

E(S2
n+1|Fn) = S2

n + E(X2
n+1|Fn) ≥ S2

n,

where Xn+1 = Sn+1 − Sn.

Let S0, S1, . . . , Sn be a finite sequence of random variables with submartingale property
(9) and F0,F1, . . .Fn the corresponding histories.

Theorem 1 (Kolmogorov inequality for positive submartingales). If {Sk,Fk},
k = 0, 1, . . . , n is a submartingale, such that Sk ≥ 0 for every k, then for a > 0

(10) P (max(S0, S1, . . . , Sn) ≥ a) ≤
1

a
ESn.

Proof. Denote τ = k < n if S0 < a, S1 < a, . . . , Sk−1 < a, Sk ≥ a and τ = n if
S0 < a, S1 < a, . . . , Sn−1 < a. The event {τ = k} ∈ Fk, consequently τ is a stopping
time relative to {Fk}.

Let A be the event {max(S0, S1, . . . , Sn) ≥ a}. Clearly A ∈ Fτ since A∩{τ = k} ∈ Fk.

Hence

ESn = E(Sn|A)P (A) + E(Sn|A)(1 − P (A)) ≥ E(Sn|A)P (A) ≥ aP (A),

which is equivalent to (10). �

In the case when {Sk} is a martingale with Sk ≥ 0 it follows that ESn = ES0. Then
(10) implies that for any a > 0

P (max(S0, S1, . . . , Sn) ≥ a) ≤
1

a
ES0.

3. Martingales in Finance. One of the most elementary market models is the single
period binomial model. The reader can find more about this model in [4]. Suppose that
the beginning of the period is at time t = 0 and the end of the period is at time t = 1.
There are two securities: one risk-free bond B with interest rate r and a stock S. The
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market with two securities is called (B, S) market. At time zero the price of the stock
is S0. At time 1 the stock price will be one of the following positive values (1 + u)S0 or
(1 + d)S0, where u denotes “up” and d denotes “down”. Assume that the probability of
“up” is p > 0 and the probability of “down” is q = 1−p. A trading strategy for a portfolio
is a pair (B0, γ0), where B0 is the money amounts in the bond and γ0 is the number of
shares of the stock at time zero. If we were to buy this portfolio at time zero, it would
cost V (0) = B0 + γ0S0. At time 1 it would be worth one of the possible values

Vu(1) = B0(1 + r) + γ0(1 + u)S0, and Vd(1) = B0(1 + r) + γ0(1 + d)S0.

Definition 5. The strategy (B0, γ0) admits arbitrage opportunity if

V (0) = 0, V (1) ≥ 0 and P (V (1) > 0) > 0.

The market is said to be arbitrage-free if there are not arbitrage opportunity.

Proposition 1. The market is arbitrage-free if and only if −1 < d < r < u.

Proof. Suppose that r < d. In this case γ0 = 1 and B0 = S(0). This is an arbitrage
strategy. The case u ≤ r is similar. Conversely, if d < r < u and V (0) = 0, then

Vu(1) = γ0S0(u − r) and Vd(1) = γ0S0(d − r),

and V (1) can not be non-negative, i.e. there is no arbitrage strategy. �

We assume that the market is arbitrage-free.
An European call (put) option, written on risky security gives its holder the right,

but not obligation to buy (sell) a given number of shares of a stock for a fixed price at a
future date T . The exercise date T is called maturity date and the price K – an exercise
price. The problem of option pricing is to determine what value to assign to the option
at a time zero. The writer of the option has to calculate the fair price as the smallest
initial investment that would allow him to replicate the value of the option throughout
time T . The replication portfolio can be used to hedge the risk inherent in writing the
option.

Consider an option with payoff function f , which pays fu at the upstate and fd at
the downstate at time 1. To determine the price of this option, we construct a portfolio,
such that the expected payoff is the same as that of the option.

B0(1 + r) + γ0S0(1 + u) = fu,

B0(1 + r) + γ0S0(1 + d) = fd.

Solving these equations yields

(11) B0 =
(1 + u)fd − (1 + d)fu

(1 + r)(u − d)
, γ0S0 =

fu − fd

u − d
.

The portfolio consists
(1 + u)fd − (1 + d)fu

(1 + r)(u − d)
units of bonds and

fu − fd

u − d
units of stocks.

The price of the option is given by

(12) B0 + γ0S0 =
1

1 + r

[

r − d

u − d
fu +

u − r

u − d
fd

]

.

Setting q =
r − d

u − d
< 1 and 1−q =

u − r

u − d
it follows that V (0) =

1

1 + r
[qfu +(1−q)fd].

It follows from (12) that the price of the option is the expected discounted payoff of
the option under the probability measure Q, defined by {q, 1 − q}. The new probability
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measure Q depends only on the returns of the stock and the bond.

It is easy to see that q ∈ (0, 1) if and only if d < r < u.

According the Proposition 1 the (B, S) market is arbitrage-free if and only if the
defined probability measure Q exists.

The uncertainty of the (B, S) market is related to the risky asset S. The probability
measure P can give some characteristics of S, that are incompatible with B. In order to
compare the bond and the stock we need a new probability measure Q, such that the
expected return of S relative to Q is equal to the risk-free return. In this reason we have

(13) EQ

(

S1

B1

)

= EQ

(

S1

1 + r

)

=
1

1 + r
EQS1 = S0,

where EQ denotes the mathematical expectation with respect to Q and B1 = 1 + r is
the bond price at time 1. Let the measure Q be defined by the probabilities {q, 1 − q}.
According (13)

EQ

(

S1

B1

)

=
1

1 + r
[(1 + u)q + (1 + d)(1 − q)]S0 = S0.

Consequently (1 + u)q + (1 + d)(1 − q) = 1 + r and

q =
u − r

r − d
.

This measure coincides with the measure Q defined by the arbitrage-free price of the
option (12). The new probability measure Q is called a risk-neutral measure or
martingale measure.

Example 11 (European call option). Assume that the payoff function is

f = (S1 − K)+ and

(1 + d)S0 < K ≤ (1 + u)S0.

Then we have fu = (1 + u)S0 − K and fd = 0, so that γ0S0 =
(1 + u)S0 − K

u − d
. The call

option price is given by

V (0) =
1

1 + r

[

r − d

u − d
((1 + u)S0 − K)

]

.

Differentiation relative to u and d shows that, under the above condition, the call
option price is an increasing function of u and a decreasing function of d.

4. Insurance Risk Model. We consider the standard risk model, where the time
until first claim and the times between claims T1, T2, . . . are independent identically
distributed random variables distributed as T . Let Z1, Z2, . . . be a sequence of independent
identically distributed random variables, distributed as Z, independent of T . Zi denotes
the ith claim amount with mean value µ = EZ1 < ∞. Let c be the constant insurer’s

premium income per unit time and

n
∑

i=1

Zi the aggregate claim amount up to time n,

called also loss process. We assume that for each i

cETi > EZi

(see [1] and [5]).
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The surplus of an insurance company at time of nth claim is given by

Un = u +

n
∑

i=1

cTi −

n
∑

i=1

Zi, n = 1, 2, . . . U0 = u,

where u is the initial surplus. The process Xn =
n
∑

i=1

(cTi−Zi) is called a risk process. The

model could be applied to many non-insurance companies. The first sum in the model
represents the incomes. The second sum is the loss process.

The probability of ruin in the infinite horizon case for this risk process is defined as

(14) Ψ(u) = P (Un < 0 for some n, n = 1, 2, . . .)

We will show how to use martingale inequality to obtain some upper bounds for the
ruin probability. Note that

Sn =

n
∑

i=1

(Zi − cTi)

is a random walk. The ruin probability (14) can be written as

Ψ(u) = P

(

∞
⋃

n=1

{Sn > u}

)

, u ≥ 0.

Theorem 2. Assume that a constant R > 0 satisfies

(15) E
(

eRZ
)

E
(

e−RcT
)

= 1,

if the moment generating functions of Z and T exist. Then

(16) Ψ(u) ≤ e−Ru.

Proof. Since E
(

eRZ
)

E
(

e−RcT
)

= 1 the process eRSn =
∏n

i=1 eR(Zi−cTi) is a mar-
tingale with EeRSn = 1 (see Example 8 and [6]). According Kolmogorov inequality we
get

Ψ(u) = P

(

∞
⋃

i=1

{Si > u}

)

= P

(

lim
n→∞

n
⋃

i=1

{Si > u}

)

= lim
n→∞

P

(

n
⋃

i=1

{Si > u}

)

= lim
n→∞

P (max(S1, S2, . . . , Sn) > u)

= lim
n→∞

P
(

max(eRS1 , eRS2 , . . . , eRSn) > eRu
)

≤ lim
n→∞

e−RuEeRSn = e−Ru.

�

The condition (15) is known as Cramér condition. Inequality (16) is called Lund-
berg inequality and the constant R is the adjustment coefficient or Lundberg expo-
nent (see [3]).

68



Example 12 (Classical Risk Model). We consider the case of exponentially distributed

inter-claim times F (t) = 1 − e−λt, t ≥ 0, λ > 0. This model is called also Cramér–

Lundberg risk model. Suppose that the claim sizes are exponentially distributed with

parameter µ, that is F (z) = 1 − e−
z
µ , z ≥ 0, µ > 0. In this case

EeRZ =
1

1 − µR
and Ee−RcT =

λ

λ + Rc
.

The solution of equation (12) is

R =
c − λµ

µc
,

and consequently

Ψ(u) ≤ e−
c−λµ

µc
u.
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СЛУЧАЙНИ ПРОЦЕСИ ВЪВ ФИНАНСИ И ЗАСТРАХОВАНЕ

Леда Минкова

Разглежда се едно елементарно определение на случаен процес. Дадени са основ-
ните свойства на случайно блуждаене, Марковски процеси и мартингали. Като
приложения се разглеждат биномен модел на финансов пазар и модел на риск
с една горна граница на вероятността за фалит. Разгледан е частния случай на
класически модел на риск.
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