МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2009 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2009
 Proceedings of the Thirty Eighth Spring Conference of the Union of Bulgarian Mathematicians
 Borovetz, April 1-5, 2009

STOCHASTIC PROCESSES IN FINANCE AND INSURANCE*

Leda Minkova

We consider an elementary definition of stochastic processes. The basic properties of random walks, Markov processes and martingales are given. As applications we consider the binomial model of financial markets and the basic risk model with an upper bound of ruin probability. The particular case of the classical risk model is given.

1. Introduction. The applications of stochastic processes and martingale methods have attracted much attention in recent years. In this paper we consider some elementary stochastic processes for modelling the basic properties in finance and insurance. The basic processes are given in Section 2. The applications of the martingale methods in finance and insurance risk model are discussed in Section 3 and Section 4.
2. Discrete time stochastic processes. In many cases we need a model for counting some events or to describe data collected from some process in fixed times. These are discrete time processes

Definition 1. The sequence of random variables X_{1}, X_{2}, \ldots with well defined joint distribution, is called a stochastic process in discrete time.

We write also $\left\{X_{n}\right\}, n=1,2, \ldots$, or simply $X_{n}, n=1,2, \ldots$.
Example 1 (Pólya urn model). Consider an urn that contains $b \geq 1$ black balls and $w \geq 1$ white balls. After randomly drawing a ball from the urn it is put back into the urn together with an additional ball of the same color. The process of drawing continues to infinity. Let $X_{n}=1$ if the nth ball is white and $X_{n}=0$ if the ball is black. Then X_{1}, X_{2}, \ldots is a stochastic process.

It is of interest to consider also the partial sum $S_{n}=X_{1}+X_{2}+\cdots+X_{n}, \quad n=1,2, \ldots$ which is the number of white balls up to the nth drawing. The sequence S_{1}, S_{2}, \ldots is also a stochastic process.
2.1. Random Walks. Let X_{1}, X_{2}, \ldots be a sequence of independent identically distributed random variables distributed as the random variable X with distribution function $F(x)$. If u is a real number we set

$$
S_{n}=u+X_{1}+\ldots+X_{n}, \quad S_{0}=u .
$$

[^0]Definition 2. The stochastic process $S_{n}, n=0,1,2, \ldots$, is called a random walk starting at u.

The random variables $X_{1}=S_{1}-u, X_{2}=S_{2}-S_{1}, \ldots, X_{n}=S_{n}-S_{n-1}, \ldots$, are called the increments of the process S_{n}.

According to Definition 2, the sequence $S_{n}=X_{1}+X_{2}+\cdots+X_{n}, n=1,2, \ldots$, is a random walk if and only if the increments are independent identically distributed random variables.

Example 2. Let X_{n} be the average force of return of some stock between $n-1$ and $n, n=1,2, \ldots$ If V_{n} is the value of the stock at time n, then

$$
V_{n}=e^{X_{n}} V_{n-1}=e^{S_{n}} V_{0}
$$

The sum of returns S_{n} is a random walk. If we suppose that the returns X_{n} are normally distributed, then S_{n} has also normal distribution. In this case the distribution of $e^{S_{n}}$ is lognormal.
2.2. Markov processes. Suppose that the process S_{0}, S_{1}, \ldots has the following property. For any n, the joint conditional distribution of S_{n}, S_{n+1}, \ldots given S_{0}, \ldots, S_{n-1} is independent of S_{0}, \ldots, S_{n-2}. This property means that the future development of the process depends on the past only by the last value and is called a Markov property. The process S_{n} is a Markov process. The conditional distribution function is given by

$$
\begin{equation*}
F(x, y, n)=P\left(S_{n} \leq x \mid S_{0}, S_{1}, \ldots, S_{n-1}=y\right)=P\left(S_{n} \leq x \mid S_{n-1}=y\right) \tag{1}
\end{equation*}
$$

and for all x, y, n is independent of S_{0}, \ldots, S_{n-2}.
If the distribution function (1) is independent of n, the Markov process is called stationary.

Example 3. Let S_{n} be a random walk. Then the conditional distribution function is given by

$$
P\left(S_{n} \leq x \mid S_{n-1}=y\right)=P\left(S_{n}-S_{n-1} \leq x-y\right)=F_{X}(x-y)
$$

where F_{X} is the distribution function of the increments X.
Definition 3. The function

$$
F(x, y, n)=P\left(S_{n} \leq x \mid S_{n-1}=y\right)
$$

is called the transition function of the Markov process. The functions

$$
p(x, y, n)=P\left(S_{n}=x \mid S_{n-1}=y\right), \quad n=1,2, \ldots
$$

are called transition probabilities.
2.3. Martingales. The martingales are stochastic processes, determined by the history of the process and suitable for modeling noises and sources of uncertainty if finance and insurance. In this note we use the terminology of [2]. Suppose that H_{1}, H_{2}, \ldots are random vectors.

Definition 4. The process $S_{n}, n=0,1, \ldots$, is called a martingale with respect to $\left\{H_{n}\right\}$ if for all n

1) $E\left|S_{n}\right|<\infty$ (integrability);
2) S_{n} is a function of $H_{0}, H_{1}, \ldots, H_{n}$ (measurability);
3) $E\left(S_{n+1} \mid H_{0}, H_{1}, \ldots, H_{n}\right)=S_{n}$ (martingale property).

The vectors H_{n} are interpreted as the state of the system at time n. Let denote

$$
\mathcal{F}_{n}=\left(H_{0}, H_{1}, \ldots, H_{n}\right), \quad n=0,1, \ldots .
$$

\mathcal{F}_{n} represents the history of the system or the available information up to time n. The martingale property is equivalent to the following

$$
\begin{equation*}
E\left(S_{n+1} \mid \mathcal{F}_{n}\right)=S_{n}, \quad n=0,1, \ldots \tag{2}
\end{equation*}
$$

Note that (2) implies

$$
\begin{equation*}
E\left(S_{n+k} \mid \mathcal{F}_{n}\right)=S_{n}, \quad n=0,1, \ldots, \quad k=1,2, \ldots \tag{3}
\end{equation*}
$$

Indeed, repeatedly using the basic properties of conditional expectation (2) we have

$$
\begin{aligned}
E\left(S_{n+k} \mid \mathcal{F}_{n}\right) & =E\left(E\left(S_{n+k} \mid \mathcal{F}_{n+k-1}\right) \mid \mathcal{F}_{n}\right)=E\left(S_{n+k-1} \mid \mathcal{F}_{n}\right) \\
& =E\left(E\left(S_{n+k-1} \mid \mathcal{F}_{n+k-2}\right) \mid \mathcal{F}_{n}\right) \\
& \cdots \\
& =E\left(S_{n+1} \mid \mathcal{F}_{n}\right)=S_{n}
\end{aligned}
$$

Taking expectations on both sides of (3) we get

$$
\begin{equation*}
E S_{n}=E S_{0}, \quad n=1,2, \ldots \tag{4}
\end{equation*}
$$

When S_{n} is interpreted as the gain of the gambler at time n, the condition (2) means that the game is fair. If

$$
E\left(S_{n+1} \mid \mathcal{F}_{n}\right) \geq S_{n}, \quad n=0,1, \ldots
$$

the game is favorable for the gambler and the process is called a submartingale.
Let $\left\{S_{n}\right\}$ be a martingale and let the increments $X_{n}=S_{n}-S_{n-1}$ have finite second moments $E X_{n}^{2}<\infty$. Then

$$
E X_{n}=0, \quad \operatorname{Cov}\left(X_{n}, X_{n+k}\right)=0
$$

and consequently

$$
\operatorname{Var}\left(X_{n}\right)=\sum_{i=0}^{n} \operatorname{Var}\left(X_{i}\right)
$$

Example 4. Let $\left\{S_{n}\right\}, S_{n}=\sum_{i=1}^{n} X_{i}$, be a random walk with $E X=0 .\left\{S_{n}\right\}$ is a martingale with respect to $\mathcal{F}_{n}=\mathcal{F}_{n}^{X}$, the history generated by the increments up to time n, because

$$
E\left(S_{n+1} \mid \mathcal{F}_{n}\right)=E\left(S_{n} \mid \mathcal{F}_{n}\right)+E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=S_{n}+E X_{n+1}=S_{n}
$$

Example 5. Let Y be a random variable with finite expectation and H_{1}, H_{2}, \ldots random vectors with history $\left\{\mathcal{F}_{n}\right\}$. Denote

$$
S_{n}=E\left(Y \mid \mathcal{F}_{n}\right), \quad n=1,2, \ldots, S_{0}=E Y
$$

The process $\left\{S_{n}\right\}$ is a martingale with respect to $\left\{\mathcal{F}_{n}\right\}$.
Example 6. Suppose that Y_{0}, Y_{1}, \ldots is a sequence of random variables such that Y_{n} is a function of H_{n}. Let r_{n} be a function of \mathcal{F}_{n} which is a solution of the equation

$$
\begin{equation*}
E\left(Y_{n+1} \mid \mathcal{F}_{n}\right)=e^{r_{n}} Y_{n} \tag{5}
\end{equation*}
$$

Denote

$$
S_{n}=\exp \left(-\sum_{i=0}^{n-1} r_{i}\right) Y_{n}, \quad n=1,2, \ldots, \quad S_{0}=Y_{0}
$$

The process $\left\{S_{n}\right\}$ is a martingale with respect to $\left\{\mathcal{F}_{n}\right\} . r_{n}$ can be interpreted as a force of interest between moments n and $n+1$ given the history $\left\{\mathcal{F}_{n}\right\}$. S_{n} is the present value of Y_{n} and is a martingale.

$$
\begin{aligned}
E\left(S_{n+1} \mid \mathcal{F}_{n}\right) & =E\left(\exp \left(-\sum_{i=0}^{n} r_{i}\right) Y_{n+1} \mid \mathcal{F}_{n}\right)=\exp \left(-\sum_{i=0}^{n} r_{i}\right) E\left(Y_{n+1} \mid \mathcal{F}_{n}\right) \\
& =\exp \left(-\sum_{i=0}^{n} r_{i}\right) \exp \left(r_{n}\right) Y_{n}=\exp \left(-\sum_{i=0}^{n-1} r_{i}\right) Y_{n}=S_{n} .
\end{aligned}
$$

Example 7. Let X_{1}, X_{2}, \ldots be a sequence of independent identically distributed random variables distributed as X and let $X_{0}=0$. Denote $M(t)=E e^{t X}$ the moment generating function of X. For a fixed t and finite $M(t)$ we denote

$$
\begin{equation*}
S_{n}=\frac{e^{t X_{n}}}{M(t)}, \quad n=1,2, \ldots \tag{6}
\end{equation*}
$$

The process $\left\{S_{n}\right\}$ is a martingale with respect to $\left\{X_{n}\right\}$. Indeed, the conditional expectation given the history $\mathcal{F}_{n}=\left(X_{0}, X_{1}, \ldots, X_{n}\right)$, is

$$
\begin{aligned}
E\left(S_{n} \mid \mathcal{F}_{n-1}\right) & =\frac{1}{M(t)} E\left(e^{t X_{n}} \mid \mathcal{F}_{n-1}\right)=\frac{1}{M(t)} E\left[e^{t\left(X_{n}-X_{n-1}\right)} e^{t X_{n-1}} \mid \mathcal{F}_{n-1}\right] \\
& =\frac{e^{t X_{n-1}}}{M(t)} E e^{t\left(X_{n}-X_{n-1}\right)}=S_{n-1}
\end{aligned}
$$

The martingale (6) is called an exponential martingale. The condition (4) in this case is

$$
\begin{equation*}
E S_{n}=1, \quad n=1,2, \ldots \tag{7}
\end{equation*}
$$

Example 8. Let X_{1}, X_{2}, \ldots be the sequence defined in Example 7. The process

$$
\begin{equation*}
S_{n}=\frac{e^{t \sum_{i=1}^{n} X_{i}}}{[M(t)]^{n}}, \quad n=1,2, \ldots, \quad S_{0}=1 \tag{8}
\end{equation*}
$$

is a martingale with respect to $\left\{X_{n}\right\}$. Let denote

$$
Y_{n}=e^{t \sum_{i=1}^{n} X_{i}}, \quad n=0,1, \ldots, \quad \sum_{1}^{0}=0
$$

Then following relation

$$
Y_{n+1}=e^{X_{n+1}} Y_{n}, n=0,1, \ldots
$$

is true. For the martingale property we get

$$
E\left(S_{n+1} \mid \mathcal{F}_{n}\right)=\frac{Y_{n}}{[M(t)]^{n+1}} E\left(e^{t X_{n+1}} \mid \mathcal{F}_{n}\right)=\frac{Y_{n}}{[M(t)]^{n+1}} M(t)=S_{n}
$$

2.4. Submartingales. Note that the process is called a submartingale, if it is integrable, measurable and

$$
\begin{equation*}
E\left(S_{n+1} \mid \mathcal{F}_{n}\right) \geq S_{n}, \quad n=0,1, \ldots \tag{9}
\end{equation*}
$$

If the martingale condition is

$$
E\left(S_{n+1} \mid \mathcal{F}_{n}\right) \leq S_{n}, \quad n=0,1, \ldots
$$

the process is called supermartingale.
The condition (9) implies the more general condition

$$
E\left(S_{n+k} \mid \mathcal{F}_{n}\right) \geq S_{n}, \quad n=0,1, \ldots, \quad k=1,2, \ldots
$$

Taking expectation in (9) we get that $\left\{E S_{n}\right\}$ is a non-decreasing sequence.
Example 9. Let $\left\{S_{n}\right\}, S_{n}=\sum_{i=1}^{n} X_{i}$, be a random walk with $E X \geq 0 .\left\{S_{n}\right\}$ is a submartingale with respect to $\mathcal{F}_{n}=\mathcal{F}_{n}^{X}$, the history generated by the increments up to time n, because

$$
E\left(S_{n+1} \mid \mathcal{F}_{n}\right)=E\left(S_{n} \mid \mathcal{F}_{n}\right)+E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=S_{n}+E X_{n+1} \geq S_{n}
$$

Example 10. Let $\left\{S_{n}\right\}$ be a martingale with respect to $\left\{\mathcal{F}_{n}\right\}$. Then $\left\{S_{n}^{2}\right\}$ is a submartingale.

$$
E\left(S_{n+1}^{2} \mid \mathcal{F}_{n}\right)=S_{n}^{2}+E\left(X_{n+1}^{2} \mid \mathcal{F}_{n}\right) \geq S_{n}^{2}
$$

where $X_{n+1}=S_{n+1}-S_{n}$.
Let $S_{0}, S_{1}, \ldots, S_{n}$ be a finite sequence of random variables with submartingale property (9) and $\mathcal{F}_{0}, \mathcal{F}_{1}, \ldots \mathcal{F}_{n}$ the corresponding histories.

Theorem 1 (Kolmogorov inequality for positive submartingales). If $\left\{S_{k}, \mathcal{F}_{k}\right\}$, $k=0,1, \ldots, n$ is a submartingale, such that $S_{k} \geq 0$ for every k, then for $a>0$

$$
\begin{equation*}
P\left(\max \left(S_{0}, S_{1}, \ldots, S_{n}\right) \geq a\right) \leq \frac{1}{a} E S_{n} . \tag{10}
\end{equation*}
$$

Proof. Denote $\tau=k<n$ if $S_{0}<a, S_{1}<a, \ldots, S_{k-1}<a, S_{k} \geq a$ and $\tau=n$ if $S_{0}<a, S_{1}<a, \ldots, S_{n-1}<a$. The event $\{\tau=k\} \in \mathcal{F}_{k}$, consequently τ is a stopping time relative to $\left\{\mathcal{F}_{k}\right\}$.

Let A be the event $\left\{\max \left(S_{0}, S_{1}, \ldots, S_{n}\right) \geq a\right\}$. Clearly $A \in \mathcal{F}_{\tau}$ since $A \cap\{\tau=k\} \in \mathcal{F}_{k}$. Hence

$$
E S_{n}=E\left(S_{n} \mid A\right) P(A)+E\left(S_{n} \mid \bar{A}\right)(1-P(A)) \geq E\left(S_{n} \mid A\right) P(A) \geq a P(A)
$$

which is equivalent to (10).
In the case when $\left\{S_{k}\right\}$ is a martingale with $S_{k} \geq 0$ it follows that $E S_{n}=E S_{0}$. Then (10) implies that for any $a>0$

$$
P\left(\max \left(S_{0}, S_{1}, \ldots, S_{n}\right) \geq a\right) \leq \frac{1}{a} E S_{0} .
$$

3. Martingales in Finance. One of the most elementary market models is the single period binomial model. The reader can find more about this model in [4]. Suppose that the beginning of the period is at time $t=0$ and the end of the period is at time $t=1$. There are two securities: one risk-free bond B with interest rate r and a stock S. The
market with two securities is called (B, S) market. At time zero the price of the stock is S_{0}. At time 1 the stock price will be one of the following positive values $(1+u) S_{0}$ or $(1+d) S_{0}$, where u denotes "up" and d denotes "down". Assume that the probability of "up" is $p>0$ and the probability of "down" is $q=1-p$. A trading strategy for a portfolio is a pair $\left(B_{0}, \gamma_{0}\right)$, where B_{0} is the money amounts in the bond and γ_{0} is the number of shares of the stock at time zero. If we were to buy this portfolio at time zero, it would cost $V(0)=B_{0}+\gamma_{0} S_{0}$. At time 1 it would be worth one of the possible values

$$
V_{u}(1)=B_{0}(1+r)+\gamma_{0}(1+u) S_{0}, \quad \text { and } \quad V_{d}(1)=B_{0}(1+r)+\gamma_{0}(1+d) S_{0}
$$

Definition 5. The strategy $\left(B_{0}, \gamma_{0}\right)$ admits arbitrage opportunity if

$$
V(0)=0, \quad V(1) \geq 0 \quad \text { and } \quad P(V(1)>0)>0
$$

The market is said to be arbitrage-free if there are not arbitrage opportunity.
Proposition 1. The market is arbitrage-free if and only if $-1<d<r<u$.
Proof. Suppose that $r<d$. In this case $\gamma_{0}=1$ and $B_{0}=S(0)$. This is an arbitrage strategy. The case $u \leq r$ is similar. Conversely, if $d<r<u$ and $V(0)=0$, then

$$
V_{u}(1)=\gamma_{0} S_{0}(u-r) \text { and } V_{d}(1)=\gamma_{0} S_{0}(d-r)
$$

and $V(1)$ can not be non-negative, i.e. there is no arbitrage strategy.
We assume that the market is arbitrage-free.
An European call (put) option, written on risky security gives its holder the right, but not obligation to buy (sell) a given number of shares of a stock for a fixed price at a future date T. The exercise date T is called maturity date and the price K - an exercise price. The problem of option pricing is to determine what value to assign to the option at a time zero. The writer of the option has to calculate the fair price as the smallest initial investment that would allow him to replicate the value of the option throughout time T. The replication portfolio can be used to hedge the risk inherent in writing the option.

Consider an option with payoff function f, which pays f_{u} at the upstate and f_{d} at the downstate at time 1 . To determine the price of this option, we construct a portfolio, such that the expected payoff is the same as that of the option.

$$
\begin{aligned}
& B_{0}(1+r)+\gamma_{0} S_{0}(1+u)=f_{u} \\
& B_{0}(1+r)+\gamma_{0} S_{0}(1+d)=f_{d}
\end{aligned}
$$

Solving these equations yields

$$
\begin{equation*}
B_{0}=\frac{(1+u) f_{d}-(1+d) f_{u}}{(1+r)(u-d)}, \quad \gamma_{0} S_{0}=\frac{f_{u}-f_{d}}{u-d} . \tag{11}
\end{equation*}
$$

The portfolio consists $\frac{(1+u) f_{d}-(1+d) f_{u}}{(1+r)(u-d)}$ units of bonds and $\frac{f_{u}-f_{d}}{u-d}$ units of stocks. The price of the option is given by

$$
\begin{equation*}
B_{0}+\gamma_{0} S_{0}=\frac{1}{1+r}\left[\frac{r-d}{u-d} f_{u}+\frac{u-r}{u-d} f_{d}\right] \tag{12}
\end{equation*}
$$

Setting $q=\frac{r-d}{u-d}<1$ and $1-q=\frac{u-r}{u-d}$ it follows that $V(0)=\frac{1}{1+r}\left[q f_{u}+(1-q) f_{d}\right]$.
It follows from (12) that the price of the option is the expected discounted payoff of the option under the probability measure Q, defined by $\{q, 1-q\}$. The new probability 66
measure Q depends only on the returns of the stock and the bond.
It is easy to see that $q \in(0,1)$ if and only if $d<r<u$.
According the Proposition 1 the (B, S) market is arbitrage-free if and only if the defined probability measure Q exists.

The uncertainty of the (B, S) market is related to the risky asset S. The probability measure P can give some characteristics of S, that are incompatible with B. In order to compare the bond and the stock we need a new probability measure Q, such that the expected return of S relative to Q is equal to the risk-free return. In this reason we have

$$
\begin{equation*}
E_{Q}\left(\frac{S_{1}}{B_{1}}\right)=E_{Q}\left(\frac{S_{1}}{1+r}\right)=\frac{1}{1+r} E_{Q} S_{1}=S_{0} \tag{13}
\end{equation*}
$$

where E_{Q} denotes the mathematical expectation with respect to Q and $B_{1}=1+r$ is the bond price at time 1. Let the measure Q be defined by the probabilities $\{q, 1-q\}$. According (13)

$$
E_{Q}\left(\frac{S_{1}}{B_{1}}\right)=\frac{1}{1+r}[(1+u) q+(1+d)(1-q)] S_{0}=S_{0}
$$

Consequently $(1+u) q+(1+d)(1-q)=1+r$ and

$$
q=\frac{u-r}{r-d}
$$

This measure coincides with the measure Q defined by the arbitrage-free price of the option (12). The new probability measure Q is called a risk-neutral measure or martingale measure.

Example 11 (European call option). Assume that the payoff function is $f=\left(S_{1}-K\right)^{+}$and

$$
(1+d) S_{0}<K \leq(1+u) S_{0}
$$

Then we have $f_{u}=(1+u) S_{0}-K$ and $f_{d}=0$, so that $\gamma_{0} S_{0}=\frac{(1+u) S_{0}-K}{u-d}$. The call option price is given by

$$
V(0)=\frac{1}{1+r}\left[\frac{r-d}{u-d}\left((1+u) S_{0}-K\right)\right]
$$

Differentiation relative to u and d shows that, under the above condition, the call option price is an increasing function of u and a decreasing function of d.
4. Insurance Risk Model. We consider the standard risk model, where the time until first claim and the times between claims T_{1}, T_{2}, \ldots are independent identically distributed random variables distributed as T. Let Z_{1}, Z_{2}, \ldots be a sequence of independent identically distributed random variables, distributed as Z, independent of $T . Z_{i}$ denotes the i th claim amount with mean value $\mu=E Z_{1}<\infty$. Let c be the constant insurer's premium income per unit time and $\sum_{i=1}^{n} Z_{i}$ the aggregate claim amount up to time n, called also loss process. We assume that for each i

$$
c E T_{i}>E Z_{i}
$$

(see [1] and [5]).

The surplus of an insurance company at time of nth claim is given by

$$
U_{n}=u+\sum_{i=1}^{n} c T_{i}-\sum_{i=1}^{n} Z_{i}, \quad n=1,2, \ldots U_{0}=u
$$

where u is the initial surplus. The process $X_{n}=\sum_{i=1}^{n}\left(c T_{i}-Z_{i}\right)$ is called a risk process. The model could be applied to many non-insurance companies. The first sum in the model represents the incomes. The second sum is the loss process.

The probability of ruin in the infinite horizon case for this risk process is defined as

$$
\begin{equation*}
\Psi(u)=P\left(U_{n}<0 \text { for some } n, \quad n=1,2, \ldots\right) \tag{14}
\end{equation*}
$$

We will show how to use martingale inequality to obtain some upper bounds for the ruin probability. Note that

$$
S_{n}=\sum_{i=1}^{n}\left(Z_{i}-c T_{i}\right)
$$

is a random walk. The ruin probability (14) can be written as

$$
\Psi(u)=P\left(\bigcup_{n=1}^{\infty}\left\{S_{n}>u\right\}\right), u \geq 0
$$

Theorem 2. Assume that a constant $R>0$ satisfies

$$
\begin{equation*}
E\left(e^{R Z}\right) E\left(e^{-R c T}\right)=1 \tag{15}
\end{equation*}
$$

if the moment generating functions of Z and T exist. Then

$$
\begin{equation*}
\Psi(u) \leq e^{-R u} \tag{16}
\end{equation*}
$$

Proof. Since $E\left(e^{R Z}\right) E\left(e^{-R c T}\right)=1$ the process $e^{R S_{n}}=\prod_{i=1}^{n} e^{R\left(Z_{i}-c T_{i}\right)}$ is a martingale with $E e^{R S_{n}}=1$ (see Example 8 and [6]). According Kolmogorov inequality we get

$$
\begin{aligned}
\Psi(u) & =P\left(\bigcup_{i=1}^{\infty}\left\{S_{i}>u\right\}\right)=P\left(\lim _{n \rightarrow \infty} \bigcup_{i=1}^{n}\left\{S_{i}>u\right\}\right) \\
& =\lim _{n \rightarrow \infty} P\left(\bigcup_{i=1}^{n}\left\{S_{i}>u\right\}\right)=\lim _{n \rightarrow \infty} P\left(\max \left(S_{1}, S_{2}, \ldots, S_{n}\right)>u\right) \\
& =\lim _{n \rightarrow \infty} P\left(\max \left(e^{R S_{1}}, e^{R S_{2}}, \ldots, e^{R S_{n}}\right)>e^{R u}\right) \\
& \leq \lim _{n \rightarrow \infty} e^{-R u} E e^{R S_{n}}=e^{-R u} .
\end{aligned}
$$

The condition (15) is known as Cramér condition. Inequality (16) is called Lundberg inequality and the constant R is the adjustment coefficient or Lundberg exponent (see [3]).

Example 12 (Classical Risk Model). We consider the case of exponentially distributed inter-claim times $F(t)=1-e^{-\lambda t}, t \geq 0, \lambda>0$. This model is called also CramérLundberg risk model. Suppose that the claim sizes are exponentially distributed with parameter μ, that is $F(z)=1-e^{-\frac{z}{\mu}}, z \geq 0, \mu>0$. In this case

$$
E e^{R Z}=\frac{1}{1-\mu R} \quad \text { and } E e^{-R c T}=\frac{\lambda}{\lambda+R c} .
$$

The solution of equation (12) is

$$
R=\frac{c-\lambda \mu}{\mu c}
$$

and consequently

$$
\Psi(u) \leq e^{-\frac{c-\lambda \mu}{\mu c} u} .
$$

REFERENCES

[1] D. C. Dickson, C. Hipp. Ruin probabilities for Erlang(2) risk processes, Insurance: Mathematics and Economics, 22 (1998), 251-262.
[2] H. U. Gerber. An Introduction to Mathematical Risk Theory, S.S. Huebner Foundation, Wharton School, Philadelphia, 1979.
[3] J. Grandell. Aspects of Risk Theory, Springer-Verlag, New York, 1991.
[4] S. R. Pliska. Introduction to Mathematical Finance, Blackwell Publishers Inc., 1997.
[5] T. Rolski, H. Schmidli, V. Schmidt, J. Teugels. Stochastic Processes for Insurance and Finance, John Wiley \& Sons, Chichester, 1999.
[6] H. Schmidli. Martingales and Insurance Risk, in: 8th International Summer School on Probability Theory and Mathematical Statistics, 1996, 155-188.

Leda Minkova
Faculty of Mathematics and Informatics
St. Kl. Ohridski Sofia University
5, J. Bourchier Blvd.
1164 Sofia, Bulgaria
e-mail: leda@fmi.uni-sofia.bg

СЛУЧАЙНИ ПРОЦЕСИ ВЪВ ФИНАНСИ И ЗАСТРАХОВАНЕ

Леда Минкова

Разглежда се едно елементарно определение на случаен процес. Дадени са основните свойства на случайно блуждаене, Марковски процеси и мартингали. Като приложения се разглеждат биномен модел на финансов пазар и модел на риск с една горна граница на вероятността за фалит. Разгледан е частния случай на класически модел на риск.

[^0]: ${ }^{*} 2000$ Mathematics Subject Classification: 60J42, 91B28, 91B30.
 Key words: Stochastic process, martingale, ruin probability, Cramér-Lundberg risk model.

