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We describe some efficient perturbation techniques for algebraic matrix equations.
Among them are improved first order perturbation bounds, the method of equivalent
operators and the technique of Lyapunov majorants combined with application of
fixed point principles.

Introduction and notation. The sensitivity of computational problems is a major
factor determining the accuracy of computations in machine arithmetic. It may be
revealed and taken into account by the methods of perturbation analysis [14, 6]. Below
we consider the technique of Lyapunov majorants for perturbation analysis of algebraic
matrix equations F (A, X) = 0 arising in science and engineering, where A is a matrix
parameter and X is the solution.

We shall use the following notations: i :=
√
−1 – the imaginary unit; Rm×n and

Cm×n – the spaces of m × n matrices over the field of real R and complex C numbers;

Rn = Rn×1, In – the identity n×n matrix; A, A> and AH = A
>

– the complex conjugate,
the transpose and the complex conjugate transpose of the matrix A, respectively; vec(A)
– the column–wise vectorization of the matrix A; A ⊗B – the Kronecker product of the
matrices A and B; ‖ ·‖ – a vector or a matrix norm; ‖ ·‖F and ‖ ·‖2 – the Frobenius norm

and the 2–norm of a matrix or a vector, respectively; Vn ∈ Rn2
×n2

– the vec–permutation
matrix such that vec(Z>) = Vnvec(Z) for Z ∈ C

n×n. The relation δ � 0 (δ � 0) means
that the real vector δ has positive (non-negative) elements, while the notation ‘:=’ means
‘equal by definition’.

Improved first order perturbation bounds. Suppose that the data A in the
matrix algebraic equation

(1) F (A, X) = 0

in X is an m–tuple of matrices A = (A1, A2, . . . , Am). Let these matrices be perturbed as
Ai → Ai+Ei, and let X+Y be a solution of the perturbed equation F (X+Y, A+E) = 0,
where E = (E1, E2, . . . , Em). Using the Fréchet derivatives or pseudo-derivatives of the
function F it is usually possible to derive expressions of the form y ≈ z :=

∑m
i=1 Liei,

where y := vec(Y ), ei := vec(Ei), and Li are easily computable matrices. We note
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that ‖Y ‖F = ‖y‖2. Let ‖Ei‖F ≤ δi, where δ := [δ1, δ2, . . . , δm]> ∈ Rm
+ is a given non–

negative vector. For most problems we have ‖z − y‖ = O(‖δ‖2), δ → 0, and hence ‖z‖2

approximates ‖Y ‖F up to first order terms in ‖δ‖.
Now the problem is to find a bound from above for ‖z‖2 as a function of δ, where the

matrix L := [L1, L2, . . . , Lm] is considered as a parameter.

The first estimate is ‖z‖2 ≤ est1(L; δ) = est1(L1, L2, . . . , Lm; δ1, δ2, . . . , δm), where
est1(L; δ) :=

∑m
i=1 Kiδi and Ki := ‖Li‖2. This is a condition number based estimate

since Ki is the absolute condition number of the problem relative to Ai.

Another immediate estimate is ‖z‖2 ≤ est2(L; δ) := ‖L‖2 ‖δ‖2. A third easily compu-

table estimate [11] is ‖z‖2 ≤ est3(L; δ) :=
√

δ>Sδ, where the elements sij of the matrix
S = [sij ] ∈ R

m×m
+ are defined from sij :=

∥∥LH
i Lj

∥∥
2
.

It may be shown that est3(L; δ) ≤ est1(L; δ). Hence we have the perturbation result.

Theorem 1. The following improved estimate is valid

(2) ‖z‖2 ≤ est(L; δ) := min{est2(L; δ), est3(L; δ)}.

An interesting case arises in complex Lyapunov and Riccati equations, say

(3) A1 + A2X + XAH
2 = 0,

where A1, A2 ∈ Cn×n and X ∈ Cn×n. Suppose that λi(A2)+λj(A2) 6= 0, i, j = 1, 2, . . . , n,
where λi(A2) are the eigenvalues of the matrix A2 counted according to their algebraic

multiplicities. Under this assumption the matrix A0 := In ⊗A2 +A2⊗ In ∈ C
n2

×n2

of the
linear operator X 7→ A2X +XAH

2 is non–singular and equation (3) has a unique solution
X . Moreover, if AH

1 = A1 then XH = X as well.

Let the coefficients and the solution of equation (3) be perturbed as Ai → Ai + Ei,
X → X + Y , where ‖Ei‖F ≤ δi, i = 1, 2. Denote ei := vec(Ei) and y := vec(Y ). Setting
A3 := AH

2 we see that e3 = e2. Thus the perturbations e2 and e3 are not independent
and a special technique to find tight perturbation bounds must be applied [7, 6]. The
perturbed version of equation (3) is

(4) A1 + E1 + (A2 + E2)(X + Y ) + (X + Y )(A2 + E2)
H = 0.

It may be shown that the inequality δ2 < δ0
2 := 0.5 ‖A−1

0 ‖−1
2 is sufficient for equation (4)

in Y to have a unique solution. This condition is also “almost necessary” in the sense
that for δ2 = δ0

2 the perturbed equation may have no solution or may have a variety of
solutions.

It follows from (4) that y = z + O(‖δ‖2), δ → 0, where z := L1e1 + L2e2 + L3e2

and L1 := −A−1
0 , L2 := L1(X

> ⊗ In), L3 := L1(In ⊗ X)Vn. Here the function e2 7→
L2e2 + L3e2 in the expression for z is neither linear nor differentiable (it is additive but
not homogeneous). Such functions and their norms have been studied in [6].

We have the inequality ‖z‖2 ≤ est(L1, L2, L3; δ1, δ2, δ2) but this estimate is not tight
enough. Instead, we may derive an improved estimate as shown below. Let Li := Li0 +
iLi1, ek := ek0 + iek1 and z := z0 + iz1, where Lij , ekj and zj are real. Denote by

zR :=

[
z0

z1

]
, eR

k :=

[
ek0

ek1

]
∈ R

2n
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the real versions of the vectors z and ek, see [6]. Then we have zR = M1e
R

1 +M2e
R

2 , where

(5) M1 :=

[
L10 −L11

L11 L10

]
, M2 :=

[
L20 + L30 L31 − L21

L21 + L31 L20 − L30

]
∈ R

2n×2n.

Now since ‖zR‖2 = ‖z‖2 we have the improved estimate

(6) ‖z‖2 ≤ est(M1, M2; δ1, δ2)

of type (2) which is better than the previous one.

Equivalent operator equation. Consider again the algebraic matrix equation (1)
in X , where the matrix coefficients Ai are subject to perturbations Ai → Ai + Ei, and
let X + Y be the solution of the perturbed equation

(7) F (A + E, X + Y ) = 0, E := (E1, E2, . . . , Em).

Suppose that the norms of the perturbations satisfy ‖Ei‖F ≤ δi, where δi ≥ 0 are
given quantities. Then the aim of norm–wise perturbation analysis is to estimate the
norm ‖Y ‖F of Y as a function of the perturbation vector δ := [δ1, δ2, . . . , δm]> ∈ Rm

+ ,
Under some differentiability conditions for F the perturbed equation (7) may be

written as an equivalent operator equation Y = Π(E, Y ), where

Π(E, Y ) := −F−1
X (A, X)(FA(A, X)(E) + G(A, X, E, Y )),

G(A, X, E, Y ) := F (A + E, X + Y ) − F (A, X) − FA(A, X)(E) − FX (A, X)(Y ).

In turn, the matrix equation Y = Π(E, Y ) may be transformed into the vector equation
y = P (e, y), where y := vec(Y ), e := vec(E) and P (e, y) := vec(Π(vec−1(e), vec−1(y))).

Further on, it may be shown that the operator P (e, ·) transforms into itself a small
set Bρ of radius ρ = f(δ) vanishing together with δ. Thus according to the Schauder fixed
point principle, there is a small solution for Y with ‖Y ‖F ≤ f(δ). The last inequality
is the desired non–local perturbation estimate. This mechanism is described in the next
section.

Lyapunov majorants. The technique of Lyapunov majorants goes back to the
monographs [12, 2]. Of course, the first to use this technique was A.M. Lyapunov [13], see
also [4]. Further developments on this subject may be found in [6]. Lyapunov majorants
used in this paper are functions (δ, ρ) 7→ l(δ, ρ) described in the next three definitions.

Definition 2.A function l : Rm
+×R+ → R is said to be of class Lyap if it is continuous

and non–decreasing in all its arguments, convex and differentiable in ρ and satisfies the

conditions l(0, 0) = 0, and l′ρ(0, 0) < 1.

Consider again the matrix operator equation Y = Π(E, Y ) for the perturbation Y
together with its vector counterpart y = P (e, y), where A = (A1, A2, . . . , Am) and E =
(E1, E2, . . . , Em), and let δ := [δ1, δ2, . . . , δm]> be a given non–negative vector.

Definition 3.The function l : R
m
+ × R+ → R+, defined by the relation

l(δ, ρ) := max{‖Π(E, Y )‖F : ‖Ei‖F ≤ δi, ‖Y ‖F ≤ ρ}
= max{‖P (e, y)‖2 : ‖ei‖2 ≤ δi, ‖y‖2 ≤ ρ}

is said to be the exact Lyapunov majorant for the operator Π in the Frobenius norm.

It may be shown that the function l from Definition 3 is of class Lyap. Moreover,
for operators Π associated with non–linear algebraic matrix equations this function is
non–linear and strictly convex in ρ.
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Usually it is impossible to construct explicitly the exact Lyapunov majorant l. Instead,
we use an easily computable function h which majorizes l in the sense that h(δ, ρ) ≥
l(δ, ρ).

Definition 4.A function h : Rm
+ ×R+ → R+ of class Lyap such that h(δ, ρ) ≥ l(δ, ρ)

is said to be a Lyapunov majorant for the operator Π in the Frobenius norm.

The technique of Lyapunov majorants is based on the majorant equation

(8) ρ = h(δ, ρ)

for determining ρ as a function of δ. Denote by ∆ ⊂ Rm
+ the (non-empty) set of all

δ ∈ Rm
+ such that equation (8) has a real non–negative solution. Since h is of class Lyap

the set ∆ has a non–empty interior ∆o and for δ ∈ ∆ equation (8) has one or two
solutions ρ1(δ) ≤ ρ2(δ) depending continuously on δ. Denoting f(δ) := ρ1(δ) we see that
the solution f(δ) is small in the sense that the function f : ∆ → R+ is continuous and
f(0) = 0.

When the function h(δ, ·) : R+ → R+ is strictly convex for δ � 0 fixed, the boundary
of the domain ∆ consists of the non–negative coordinate semi–planes in Rm

+ and the
surface Σ is defined by the condition that equation (8) has multiple roots. The surface
Σ has codimension 1 in the set Rm

+ of the perturbation vectors δ. To obtain Σ we should
eliminate ρ from the system of two equations ρ = h(δ, ρ) and 1 = d(δ, ρ), where d(δ, ρ) :=
∂h(δ, ρ)/∂ρ.

When the function h is affine in ρ, i.e. h(δ, ρ) = a0(δ) + a1(δ)ρ then equation (8)
has the unique solution f(δ) = a0(δ)/(1− a1(δ)) provided a1(δ) < 1. The last inequality
defines the domain ∆. Here the set ∆ is not closed.

Consider now the more interesting case when the function h is non–linear (and hence
strictly convex) in ρ. We may summarize our observations for this case as follows.

Theorem 5. Let the Lyapunov majorant h be non–linear in ρ. Then

(i) the domain ∆ ⊂ Rm
+ has a non–empty interior ∆o;

(ii) for δ ∈ ∆ the majorant equation (8) has a small solution ρ1 = f(δ) such that

the function f : ∆ → R+ is continuous, non-decreasing in all its arguments and

f(0) = 0;

(iii) for δ ∈ ∆o the majorant equation (8) has two positive solutions ρ1(δ) < ρ2(δ);

(iv) for the points δ ∈ Σ on the boundary of ∆ it is fulfilled ρ1(δ) = ρ2(ρ).

Denote Bρ := {y : ‖y‖2 ≤ ρ}. For δ ∈ ∆ and ‖y‖2 ≤ f(δ) we have ‖Π(E, Y )‖F =
‖P (e, y)‖2 ≤ f(δ). Thus the operator P (e, ·) transforms the set Bf(δ) into itself. Hence,
according to the Schauder fixed point principle, there is a solution y ∈ Bf(δ) of the
operator equation y = P (e, y). As a corollary we have the following important perturba-
tion result.

Theorem 6.For δ ∈ ∆, the perturbed equation (7) has a solution satisfying the

non–local non–linear perturbation estimate ‖Y ‖F ≤ f(δ).

Hence the inclusion δ ∈ ∆ guarantees that the perturbed equation (7) is solvable and
that the estimate ‖Y ‖F ≤ f(δ) is rigorous.
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In practice the domain ∆ is not constructed explicitly. Rather, the inclusion δ ∈ ∆ is
verified directly by checking a few explicit inequalities.

We note finally that for systems of matrix equations the resulting Lyapunov majorant
is a vector valued function.

Linear equations. For linear matrix equations the Lyapunov majorant is affine in ρ,
namely h(δ, ρ) = a0(δ)+a1(δ)ρ, where the functions a0, a1 are non–negative, continuous,
non–decreasing in δ and satisfy a0(0) = a1(0) = 0. Actually, these functions are of type
est, described in Theorem 1. The domain ∆ here is defined by the inequality a1(δ) < 1
and is not closed. The perturbation estimate is

‖Y ‖F ≤ a0(δ)

1 − a1(δ)
, a1(δ) < 1.

Consider again equation (3) and its perturbed version (4). The equivalent vector
operator equation for the perturbation y = vec(Y ) here is

y = P (e, y) := L1e1 + L2e2 + L3e2 + L1vec
(
E2Y + Y EH

2

)
.

Therefore the Lyapunov majorant h is defined by

‖P (e, y)‖2 ≤ h(δ, ρ) := est(M1, M2; δ1, δ2) + 2‖L1‖2δ2ρ, ‖y‖2 ≤ ρ,

where the matrices M1, M2 are given in (5). For δ2 < δ0
2 := 0.5 ‖L1‖−1

2 the majorant
equation ρ = h(δ, ρ) has a unique solution ρ = f(δ). This result may be formulated as
follows.

Theorem 7.Let δ2 < δ0
2 . Then the perturbed version (4) of the Lyapunov equation

(3) has an unique solution Y so that the perturbation estimate

‖Y ‖F = ‖y‖2 ≤ f(δ) :=
est(M1, M2; δ1, δ2)

1 − 2‖L1‖2δ2

holds true.

Quadratic equations. Perturbation analysis of algebraic matrix quadratic equations
has been done by many authors, see for example [9, 10, 5, 15], the monograph [6] and the
references therein. For quadratic matrix equations Q+

∑
i AiXBi +

∑
k CkXDkXEk = 0

the Lyapunov majorant is quadratic, h(δ, ρ) = a0(δ)+a1(δ)ρ+a2(δ)ρ
2, where a0(δ), a1(δ)

are expressions of type est(L; δ). Hence the majorant equation is a2(δ)ρ
2 − (1−a1(δ))ρ+

a0(δ) = 0 and the domain ∆ is defined by ∆ = {δ ∈ Rm
+ : a1(δ) + 2

√
a0(δ)a2(δ)} ≤ 1}

(note that here ∆ is a closed subset of Rm
+ ). Thus we have established the following result.

Theorem 8.For δ ∈ ∆, the corresponding perturbed matrix quadratic equation has a

solution X + Y such that Y satisfies the non–local perturbation estimate

‖Y ‖F ≤ f(δ) :=
2a0(δ)

1 − a1(δ) +
√

(1 − a1(δ))2 − 4a0(δ)a2(δ)
.

Consider, for example, the matrix equation

F (A, X) := A1 + A2X + XA3 + XA4X = 0,

where A1 ∈ Cm×n, A2 ∈ Cm×m, A3 ∈ Cn×n, A4 ∈ Cn×m are given matrix coefficients
and X ∈ Cm×n is the solution. Let the matrices Ai be perturbed to Ai → Ai + Ei and
X + Y be a solution of the perturbed equation F (A + E, X + Y ) = 0.
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After elementary calculations, the perturbed equation can be written as

(A2 + XA4)Y + Y (A3 + A4X) = −E1 − E2X − XE4 − XE4X

− E2Y − Y E3 − XE4Y − Y E4X − Y (A4 + E4)Y.

Suppose that the linear matrix operator H : Cm×n → Cm×n (the Fréchet derivative
FX (A, X)), defined by H(Y ) := (A2 + XA4)Y + Y (A3 + A4X), is invertible. This is
equivalent to the assumption that the matrix H := In ⊗ (A2 + XA4) + (A3 + A4X)> ⊗
Im of H is non–singular. Then we may rewrite the vectorized perturbed equation as
y = P (e, y) := P1(e) + P2(e, y) + P3(e, y), where y := vec(Y ), e := [e>1 , e>2 , e>3 , e>4 ]>,
ek := vec(Ek),

P1(e) := L1e1 + L2e2 + L3e3 + L4e4,

P2(e, y) := L1vec(E2Y + Y E3) + L2vec(Y E4) + L3vec(E4Y ),

P3(e, y) := L1vec(Y (A4 + E4)Y )

and L1 := −H−1, L2 := L1(X
> ⊗ Im), L3 := L1(In ⊗ X), L4 := L1(X

> ⊗ X).

Remark. For notational convenience, we use the same symbols Li for matrices
different from these already used for the case of linear matrix equations; this will again
be done in the case of fractional-affine equations.

Suppose that ‖y‖2 ≤ ρ. Then it follows from the expressions for Pk that

‖P1(e)‖2 ≤ a0(δ) := est(L1, L2, L3, L4; δ1, δ2, δ3, δ4),

‖P2(e, y)‖2 ≤ ρa1(δ) := ρ est(L1, L2, L3; δ2 + δ3, δ4, δ4),(9)

‖P3(e, y)‖2 ≤ ρ2a2(δ) := ρ2‖L1‖2(‖A4‖2 + δ4).

Thus we have the following result.

Theorem 9.The perturbation estimate for Y in Theorem 8 is valid, where the ex-

pressions ak(δ) are determined by (9).

Higher degree equations. Matrix algebraic equations (1) involving r-th degree
expressions (r > 2) in the solution X give rise to Lyapunov majorants

hr(δ, ρ) :=

r∑

k=0

ak(δ)ρk , δ := [δ1, δ2, . . . , δm]> ∈ R
m
+ ,

which are polynomials in ρ ≥ 0 of degree r. Here ak are continuous non–negative non–
decreasing functions in δ of type est (see Theorem 1) or polynomials in δ with non–
negative coefficients satisfying the conditions a0(0) = 0, a1(0) < 1 and ar(δ) > 0 for
some δ � 0. In what follows we suppose that δ is small enough in order to guarantee
the inequality a1(δ) < 1 since for a1(δ) ≥ 1 the majorant equation ρ = hr(δ, ρ) has no
positive solutions.

Under these conditions and for small δ the majorant equation in ρ has a small positive
solution fr(δ) such that the Frobenius norm ‖Y ‖F of the perturbation Y in the solution
of the perturbed matrix equation (7) is bounded by the quantity fr(δ). The function fr

is continuous, non–negative, non–decreasing in all its arguments and satisfies fr(0) = 0.
Moreover, the bound ‖Y ‖F ≤ fr(δ) is valid for δ ∈ ∆r ⊂ Rm

+ , where ∆r is the domain of
all δ for which the majorant equation has non–negative roots.
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The boundary ∂∆r of the domain ∆r is defined by the pair of equations ρ = hr(δ, ρ),
1 = dr(δ, ρ) and the inequality δ � 0, where dr(δ, ρ) := ∂hr(δ, ρ)/∂ρ. Hence for δ ∈ ∂∆r

either the discriminant of the algebraic equation a0(δ) − (1 − a1(δ))ρ + a2(ρ)ρ2 + · · · +
ar(δ)ρ

r = 0 in ρ is zero or δk = 0 for some k = 1, 2, . . . , m.

The domain ∆r has a non–empty interior ∆o
r. In particular the inclusion δ ∈ ∆o

r

implies δ � 0.

In general, there is no convenient explicit expression for fr(δ) when r > 2. Therefore

the problem is to find a tight easily computable upper bound f̂r(δ) for fr(δ). For this
purpose and for small δ the r–th degree Lyapunov majorant hr(δ, ρ) is replaced by a

second degree Lyapunov majorant ĥr(δ, ρ) := a0(δ)+a1(δ)ρ+br(δ)ρ
2 such that ĥr(δ, ρ) ≥

hr(δ, ρ) for ρ ∈ [0, τ(δ)]. Here τ(δ) is a certain quantity which is positive for δ � 0 and
satisfies the inequality hr(δ, τ(δ)) ≤ τ(δ). Note that the first two terms in the expressions

hr(δ, ρ) and ĥr(δ, ρ) coincide which guarantees that the use of ĥr(δ, ρ) instead of hr(δ, ρ)
will produce a tight perturbation bound.

Denote by f̂r(δ) the small solution of the new majorant equation ρ = ĥr(δ, ρ). Then
we obtain the perturbation estimate

(10) ‖Y ‖F ≤ f̂r(δ) :=
2a0(δ)

1 − a1(δ) +
√

(1 − a1(δ))2 − 4a0(δ)br(δ)

provided a1(δ)+2
√

a0(δ)br(δ) ≤ 1 and f̂r(δ) ≤ τ(δ) (or, equivalently, hr(δ, τ(δ)) ≤ τ(δ)).

We stress that a0(δ) = O(‖δ‖), δ → 0. Then both quantities fr(δ) and f̂r(δ) have
asymptotic expansions a0(δ)/(1 − a1(0)) + O(‖δ‖2), δ → 0. Hence we have the following
result.

Theorem 10.The asymptotic relation f̂r(δ) = fr(δ) + O(‖δ‖2), δ → 0, takes place.

To find ĥr(δ, ρ) and τ(δ) we proceed as follows. For any τ > 0 and ρ ≤ τ we have

hr(δ, ρ) ≤ gr(δ, τ, ρ) := a0(δ) + a1(δ)ρ + βr(δ, τ)ρ2,

where

(11) βr(δ, τ) := a2(δ) +
r−1∑

k=2

ak+1(δ)τ
k−1.

Let τ(δ) be a positive non–decreasing expression in δ and ρ ≤ τ(δ). Then we may
find a bound from above for βr(δ, τ(δ)), e.g. br(δ) ≥ βr(δ, τ(δ)), and use it in the
estimate (10). Choosing different expressions τ(δ) we obtain different bounds br(δ) for

βr(δ, τ(δ)), different Lyapunov majorants ĥr(δ, ρ) and, as a result, different bounds f̂r(δ)
for ‖Y ‖F. An useful observation here is that if the majorant equation ρ = hr(δ, ρ) has
positive solutions, then the small solution fr(δ) does not exceed the value of ρ, where
dr(δ, ρ) reaches 1.

Consider the equation 1 = dr(δ, ρ), i.e.

(12) 1 =

r−1∑

k=0

(k + 1)ak+1(δ)ρ
k ,

in ρ. We have dr(δ, 0) = a1(δ) < 1 for δ sufficiently small and dr(δ, ρ) > 1 for e.g.
ρ > (rar(δ))

1/(1−r), and any δ � 0. Hence for small δ � 0 there is a unique positive
solution ρ = τr(δ) of equation (12). We stress that the solution τr(δ) may exist even when
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the majorant equation ρ = hr(δ, ρ) has no positive solution. But if the majorant equation
has positive solutions ρ1(δ) ≤ ρ2(δ) then ρ1(δ) ≤ τr(δ) ≤ ρ2(δ) and hr(δ, τr(δ)) ≤ τr(δ)
by necessity.

It is clear from the above considerations that we may replace the quantity τ(δ) by
τr(δ) or by some larger quantity. Furthermore, the terms ak+1(δ)τ

k−1
r (δ) in (11) are

bounded from above by suitable expressions, thus obtaining a new quadratic Lyapunov
majorant. Below we describe this technique in more detail.

The case r = 3. Here τ3(δ) can be computed directly from the quadratic equation
3a3(δ)ρ

2 + 2a2(δ)ρ − (1 − a1(δ)) = 0 as

(13) τ3(δ) =
1 − a1(δ)

a2(δ) +
√

a2
2(δ) + 3a3(δ)(1 − a1(δ))

.

For ρ ≤ τ3(δ) we have h3(δ, ρ) ≤ ĥ3(δ, ρ) := a0(δ) + a1(δ)ρ + b3(δ)ρ
2, where b3(δ) :=

a2(δ) + a3(δ)τ3(δ). Hence ĥ3(δ, ρ) is a new Lyapunov majorant, which is quadratic in ρ.
As a result we get the next result.

Theorem 11.Let a1(δ)+2
√

a0(δ)b3(δ) ≤ 1. Then we have the perturbation estimate

(14) ‖Y ‖F ≤ f̂3(δ) :=
2a0(δ)

1 − a1(δ) +
√

(1 − a1(δ))2 − 4a0(δ)b3(δ)

provided that f̂3(δ) ≤ τ3(δ).

It may be shown that the inequality f̂3(δ) ≤ τ3(δ) in Theorem 11 is equivalent to
h3(δ, τ3(δ)) ≤ τ3(δ). Any of these inequalities is easily checkable in view of the explicit
expression (13).

The case r > 3. Here the technique used is more involved since τr(δ) may not be
computed explicitly. Instead, we work with certain easily computable quantities αk+1(δ)
≥ ak+1(δ)τ

k−1
r (δ) in (11), see [6].

Consider again equation (12) for a given small δ � 0 which guarantees that the
equation has a (unique) root τr(δ) > 0. This in particular implies a1(δ) < 1. For k =
2, 3, . . . , r − 1 we have (k + 1)ak+1(δ)τ

k
r (δ) ≤ 1 − a1(δ) and τr(δ) ≤ ((1 − a1(δ)))/((k +

1)ak+1(δ)))
1/k whenever ak+1(δ) > 0. Hence

ak+1(δ)τ
k−1
r (δ) ≤ αk+1(δ) := a

1/k
k+1(δ)

(
1 − a1(δ)

k + 1

)1−1/k

and

βr(δ, τr(δ)) ≤ br(δ) := a2(δ) +

r−1∑

k=2

αk+1(δ).

Thus we have obtained the following perturbation result.

Theorem 12.The perturbation estimate

(15) ‖Y ‖F ≤ f̂r(δ) :=
2a0(δ)

1 − a1(δ) +
√

(1 − a1(δ))2 − 4a0(δ)br(δ)

is valid provided a1(δ)+2
√

a0(δ)br(δ) ≤ 1 and f̂r(δ) ≤ min{αk+1(δ) : k = 2, 3, . . . , r−1}.

Fractional–affine equations. Fractional–affine matrix equations involve inversions
of affine expressions in X . Typical example here is the discrete–time matrix Riccati
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equation Q − X + AHX(I + MX)−1A = 0 arising in optimal control and filtering of
discrete–time systems, where the matrices Q = QH and M = MH are non–negative
definite, the pair [A, M) is controllable, and the pair (Q, A] is detectable. The Lyapunov
majorants h(ρ, δ) for such equations may be chosen as quadratic polynomials or fractio-
nal–affine expressions in ρ.

Consider the following Lyapunov majorant arising from a certain fractional–affine
matrix equation

(16) h(δ, ρ) := b0(δ) + b1(δ)ρ +
b2(δ) + b3(δ)ρ + b4(δ)ρ

2

b5(δ) − b6(δ)ρ
,

where δ ∈ Rm
+ and bk(δ) ≥ 0. Suppose that a) the functions b1, b2, . . . , b6 are continuous,

b) the functions bk are non–decreasing in δ for k 6= 5, c) the function b5 is positive and
non-increasing in δ, and d) the relations b0(0) = b2(0) = 0, b1(0) < 1, b5(0) > 0, b6(0) > 0
and d(0, 0) = b1(0) + b3(0)/b5(0) < 1 take place, where d(δ, ρ) := ∂h(δ, ρ)/∂ρ.

Denote

c0(δ) := b2(δ) + b0(δ)b5(δ), c1(δ) := b5(δ)(1 − b1(δ)) + b0(δ)b6(δ) − b3(δ),

c2(δ) := b4(δ) + b6(δ)(1 − b1(δ)).(17)

Then we have c0(0) = 0 and c1(0) = b5(0)(1 − d(0, 0)) > 0. Hence for small δ � 0 it is
fulfilled that c1(δ) > 0 and c2

1(δ) > 4c0(δ)c2(δ).
The majorant equation ρ = h(δ, ρ) may be written as c2(δ)ρ

2 − c1(δ)ρ + c0(δ) = 0.
Therefore we come to the following result.

Theorem 13. (i) The set ∆ :=
{
δ ∈ Rm

+ : c1(δ) > 0, c2
1(δ) ≥ 4c0(δ)c2(δ)

}
has non–

empty interior.

(ii) A bound for the Frobenius norm of the perturbation in the solution of the correspon-

ding fractional–affine matrix equation is given by

(18) f(δ) :=
2c0(δ)

c1(δ) +
√

c2
1(δ) − 4c0(δ)c2(δ)

, δ ∈ ∆.

Consider for example the matrix equation

(19) F (A, X) := A1 + A2X + XA3 + A4X
−1A5 = 0,

where A := (A1, A2, A3, A4, A5) and Ai, X ∈ Cn×n. As before, let the matrix coefficients
Ai be perturbed to Ai + Ei and let X + Y be a solution of the perturbed equation
F (A + E, X + Y ) = 0, where E := (E1, E2, E3, E4, E5).

Suppose that ‖Y ‖F ≤ ρ and ρ < σ := ‖X−1‖−1
2 . Then the matrix Z := X + Y is

invertible, and Z−1 = X−1 − X−1Y Z−1 = X−1 − Z−1Y X−1 = X−1 − X−1Y X−1 +
X−1Y Z−1Y X−1. Moreover, we have ‖Z−1‖2 ≤ (σ − ρ)−1.

The perturbation analysis presented below is based on the identity F (A+E, X+Y ) =
F (A, X)+L(Y )+F0(E)+F1(E, Y )+F2(Y ), where L(Y ) := A2Y +Y A3−A4X

−1Y X−1A5

and

F0(E) := E1 + E2X + XE3 + A4X
−1E5 + E4X

−1A5 + E4Z
−1E5,

F1(E, Y ) := E2Y + Y E3 − A4X
−1Y Z−1E5 − E4Z

−1Y X−1A5,

F2(Y ) := A4X
−1Y Z−1Y X−1A5.

Suppose that the linear matrix operator L := FX(A, X) is invertible and denote
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B :=
(
X−1A5

)> ⊗
(
A4X

−1
)
. Then the matrix L := In ⊗ A2 + A>

3 ⊗ In − B of L
is also non–singular. Hence the perturbed equation may be written as y = P (e, y) :=
P0(e) + P1(e, y) + P2(y), where y := vec(Y ), e := vec(E), ek := vec(Ek) and

P0(e) := L1e1 + L2e2 + L3e3 + L4e4 + L5e5 + L1vec(E4Z
−1E5),

P1(e, y) := L1vec(E2Y + Y E3) − L4vec(E4Z
−1Y ) − L5vec(Y Z−1E5)

+ L1Bvec(Y Z−1Z), P2(y) := A4X
−1Y Z−1Y X−1A5.

Here the matrices Lk are defined by L1 := −L−1, L2 := L1(In ⊗ X), L3 := L1(In ⊗ X),

L4 := L1

((
X−1A5

)> ⊗ In

)
, L5 := L1

(
In ⊗

(
A4X

−1
))

.

For ‖y‖2 ≤ ρ < σ and after standard calculations we get

‖P0(e)‖2 ≤ est(L1, L2, L3, L4; δ1, δ2, δ3, δ4) +
λδ4δ5

σ − ρ
,

‖P1(e, y)‖ ≤ ρλ(δ2 + δ3) +
ρ est(L4, L5; δ4, δ5)

σ − ρ
, ‖P2(y)‖2 ≤ βρ2

σ − ρ
,

where λ := ‖L1‖2 and β := ‖L1B‖2. These inequalities give a Lyapunov majorant of
type (16) with b0(δ) := est(L1, L2, L3, L4; δ1, δ2, δ3, δ4), b1(δ) := λ(δ2+δ3), b2(δ) := λδ4δ5,
b3(δ) := est(L4, L5; δ4, δ5), b4 := β, b5 := σ, b6 := 1. Hence c0(0) = 0, c1(0) = σ > 0,
c2(0) = 1+β, the condition c2

1(0) > 4c0(0)c2(0) is fulfilled and the domain ∆ is correctly
defined. Hence we may formulate our last result as follows.

Theorem 14.The perturbation bound (18), (17) is valid for equation (19) with the

values of bk(δ) presented above.
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МАЖОРАНТИ НА ЛЯПУНОВ ЗА ПЕРТУРБАЦИОНЕН АНАЛИЗ
НА МАТРИЧНИ УРАВНЕНИЯ

Михаил Константинов, Петко Петков

Описани са някои ефективни техники за пертурбационен анализ на матрични
уравнения: подобрени пертурбационни граници от първи ред, метод на еквива-
лентните оператори и мажоранти на Ляпунов, в съчетание с прилагане на прин-
ципите на неподвижната точка.
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