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Using a Sato’s construction we define maps of the two-dimensional shape space into
itself. The two-dimensional Md&bius space and the unit disk are models of the two-
dimensional shape space.We prove that the considered maps form a one-parameter
subgroup of the Mobius group in the first model and the group of rotation in the
second model.

1. Introduction. The equivalence classes of triangles with respect to the group
G = Sim™(R?) of the direct similarities of the Euclidean plane R? can be considered as
a two-dimensional shape space ¥5. This space and the first model of Yo, so called the
shape sphere, were introduced by D. Kendall in [4]. There are several other models of
the space ¥g. One of these models is due to H. Sato (see [8]). For fixed non-degenerate
triangle Aabe, he considered a point (z, y, z) in the Euclidean space R?, where z = (bac),
y =<(cba), z = (acb). Thus the points of the set

O=A{(z,y,2) |z+y+z=m x>0,y >0,z>0}

represent the equivalence classes of similar triangles in R2. Let a(t), b(t), c(t) be points
lying on the sides ab, bc, €@ of Aabc such that the corresponding affine ratios are (aba(t)) =

(beb(t)) = (cac(t)) =t : (1 —t). H. Sato proves that the set of non-degenerate triangles
Aabc

T (A abe) = {Aa(t)b(t)e(t) | t € R}
is represented by a closed convex curve in II.

Another representation of the classes of similar triangles is the Euclidean plane exten-
ded with a point at infinity. This interpretation is realized by J. Lester in [6]. For that
purpose, the Euclidean plane is identified with the field of complex numbers C and it is
adjoined a point at infinity, i.e. Co, = C|J c0.

Let us recall some basic facts from [6] and [2]. If a, b, ¢ are three points in C and
at most two of them are coinciding then it is defined a triangle Aabc. Degenerated
triangles with distinct collinear vertices or two coinciding vertices are allowed. There
exists a complex number which determines the ordered triangle Aabc up to a direct
plane similarity. In according to [6], this is the number

(1) A, =2"Ccc,,

abc—a—b
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called a shape of the triangle Aabc. In particular, Aabc is isosceles with apex at a

1. V3

whenever [A el = 1, Aabc is equilateral when A p. = w = - +i.— or A jpe =

2 2
1 3

W = 5 —i.— and Aabc is right-angled at a whenever A4y . is imaginary. It is clear

2
that Ajpe =00 <= a=Db # c. For any degenerate triangle with a # b, A p . € R.
Then, C is also a model of the two-dimensional shape space ¥o. We call C, the
Lester’s model of Y.

b(t)

c(t)

a atty P

Fig. 1. Sato’s construction

Now, we shall obtain a relation between the shapes of triangles Aabc and Aa(t)b(t)c(t)
for any t € R. Let z € C be the shape of the triangle Aabc, i. e. Ay = z. Without
lost of generality we may suppose a = 0, b = 1, ¢ = z. If the points a(t) € ab, b(t) € bc
and c(t) € a (see Fig. 1) are such that a(t) = (1 —t)a+tb, b(t) = (1 —t)b+tc, c(t) =
(1—t)c+ta, where t € R, then a(t)—c(t) = (1—t)(a—c)+t(b—a) =[(1-t)z—t](a—Db)
and a(t)—b(t) = (1—t)(a— b)+t(b — ¢) = (1-2t)(a — b)+t(a — ¢) = (1-2t+tz)(a — b).
Using (1), we find that
(1—-t)z—t

@) W= Babbtel) ~ a1 T

Three distinct points a, b, ¢ € C define in general six distinct ordered triangles. The
triangles Aabc, Abca and Acab have the same orientation and different shapes. We

1 1
obtain the shapes of the triangles A 1. = 2, Apea = 14 and A,ap = 1— = replacing
—z z

t in (2) by 0, 1 and 1/2, respectively.

2. A special subgroup of the M&bius group. The linear-fractional transfor-
az+b
cz+d

the oriented two-dimensional M&bius group, denoted by Mob™(2) (see [1] and [5]). The
generators of this group are the similarities z —— az + b and the complex inversion

mations z ——

of Coo = C U oo, where bc —ad # 0, form a group which is

1
z — —. Let ¢y : C.o — C be the transformation defined by
z

(1-t)z—t

(3) Cod2— 75

€ Cyx for teRUoo.

Theorem 1. Any mapping ¢+ is an elliptic transformation in the extended plane.
Furthermore, ¢t is a product of a dilation with center at point 0, followed by a translation
onto a real line and an inversion with a pole on the same line.
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1—-t)z—t

Proof. Solving the equation z = with respect to z we find that w and @

tz+1—2t
are the unique fixed points of ¢4 for any ¢t € RUoco. Hence, the normal form of the linear-
. . LW —w 1l—t—twz—w . 1—t—tw .
fractional transformation 4 is — = —. —. Since |——— | = 1it
W —w l—t—twz—w 1—t—tw

follows that ¢4 is an elliptic transformation (see [3], p. 282). For the remaining assertion,
let h be a similarity of the form h(z) = Az + p, z € C, and let ¢ be an inversion with a

pole o and a power 3 € RT, ie. 1(z) = a + ——, z € C. Then ¢ = 1 o h whenever
Z—«

3t —3t+1 t2

A=———o— R p=—-r—5

(102 A el

In [8], H. Sato does not explore the case when the triangles Aabc are degenerate.
Having in mind the considerations above there is no restriction to examine this case.

a=tcRand 3= (1—-1t)?¢cR". O

Corollary 1. The mapping ¢ : Coo — Co, defined by (3), preserves the real line
for any t € RU oo.

Then the one-dimensional shape space {A a(t)b(t)c(t) | t € RU oo}, corresponding
to the degenerate triangles Aabc with a shape A,y € RJ oo, is the real line supplied
with the point at infinity co. Therefore the restriction npthR g :RUoco — RU is

00

defined by the equation
(1—t)r —t
=— " _ zeR, teRU.
PR oo™ T 1o " o

In other words, gothR U is a homography of the real projective line.
00

Some special cases:

. 1-t¢
(a) Ifa=Db,i e x=A p = oo then (pthRUoo(oo) =
(b) If ¢ is the midpoint of the segment [ab] then z = A, . = 1/2 and
(1/2) = 1-3t
PR U oo ot -y
If b=cth =A =1 )= —=",
(¢) If b =c then z abe andgpt'RUoo() —

Now, let us denote by & the set {¢; : Coo — Coo |t € RU 0}
Theorem 2. The transformations of £ form a subgroup of Mdb+(2).

Proof. It is clear that £ CM&b™(2) since —t? — (1 —¢)(1 — 2t) # 0 for t € R. When
i

t = oo we obtain the transformation z —— which is also linear-fractional. The

set £ is a subgroup if the following conditions are satisfied:
(a) <pt_1 €& forany op € & and (b) py, 0y, €& for any ¢, ¢y, € E.

Starting with (a) we find that the reverse mapping r !is determined by the equation

2t—1)w —t 1-— — t
z = (tw 7)1W+ = iw ;)lw 2)5, where s = %1 Consequently (pgl € &. To verify
1 —t;)z—t; .
(b) let QOtZ (S 5, QDtZ(Z) = m, t'l S RU o0, 1 = 1, 2. Hence,
(1—t1—t2)Z+3t1t2—t1—t2 (1—]€)Z—k‘

Pry © 1, (2) = (1 +t2 — Btito)z + 1 — 2t — 2t + Bt1ts  kz+1— 2k’
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k= bitts = 3hity and this completes the proof. O
1— 3ty

3. The unit disk as a model of the two dimensional shape space. The unit
disk B := {z € C | |z| < 1} also can be interpreted as two-dimensional shape space, i. e.
the points of the unit disk represent the equivalence classes of positive oriented similar
triangles. H. Nakamura and K. Oguiso in [7] define the map f: H — B° by

w? —wz

4) f(z>:7z+w2 , zZ€H,
where H := {z € C | Imz > 0} is the upper half plane and B° is the open unit disk.
The bijection f maps the similarity class of regular triangles with a shape w in the
origin 0. If Aabc is a triangle in R? with a shape ADabe = 2 then Ay, = i and
A _z 1 Since f (L) =w?f(z) and f <Q) = w*f(z) it follows that the

cab z 1—z z
anticlockwise rotation Rﬁw/ % of B around the origin through the angle 27 /3 corresponds
to the effect of “cycling” of the vertices a, b, ¢ of the triangle Aabc.

According to [7], the points of the open disk B° represent similarity classes of non-
degenerate triangles. We extend the map f on the real line R C C supplied with a point
at infinity co. Then the results in the previous section may be interpreted in B.

Now, we shall describe some similarity classes of special triangles in H := H UR U co.

Proposition 1. The points of the unit circle of B represent the similarity classes of
degenerate triangles in C.

Proof. Let w = f(z) for z € H. The degenerate triangles in C., have a shape z €
RUoo. Since f(o0) = —w and |w| = 1 & (w?—wz)(@?~0Z) = (z+w?)(Z+®?) < Imz =0
the proof is completed.

Proposition 2. Let ¢1, ¢, ¢3 be circles with radii /3 and centers at the points 20,
2w, —2 respectively. Then the points of the sections of the circles c;, i = 1, 2, 3 with
the open disk B° represent similarity classes of positive oriented right-angled triangles in
R2. Moreover, the points of the segments (—w?, w?), (w, —w), (=1, 1) of B° represent
similarity classes of positive oriented isosceles triangles in R? (see Fig. 2).

Fig. 2. The unit disk as a model of the 2-dimensional shape space
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Proof. Let Aabc be a triangle in R? 2 C with a shape z = Ay, € C. The triangle

Aabc is right-angled at a whenever Re z = 0. Solving the equation w = f(z) with respect
w? — wiw o _ w2 —ww T -TwW
tozwegetz=———— we€B° Hence,z+z=0< +—-=0<&
w+w w+w w+w
4—4Re(ww) + W’ =3 & |w—-20]?=3 & w € c; NB°.

The triangle Aabc is isosceles with apex at a whenever |z| = 1. We have that |z| =
1l & W —-w’wW)(@ —0*W) = (W+wW@+W) & w=uwwew=1twd <
w lies on the segment(—w?, w?) of B°. Finally, applying the rotation R(Q)W/ ® we obtain the
representations in B° for all similarity classes of positive oriented right-angled or isosceles

triangles in R2. O
Now, let us define the map 1y : B — B by the commutative diagram below
" H
f| |
B L B
Theorem 3. The map ¥ : B — B is a rotation.
— — 1-t)z—t —
Proof. Let z € H. We have that H > z 2, v(z) = % € H, where t €
Z _
2 _
RUco. If f(z) = Z € B then replacing in (4) z by ¢¢(z) we get f(p4(z)) = %ﬁt(z) =
PYt\Z w
2t —1) —t 20—1)—t 20—1)—t
u.z. Therefore ¢4(Z) = u.Z. From w2t=1) =t = 1 it follows
wt—1)+t wt—1)+t wt—1)+t
that 14 is a rotation of B. O
(2 — 3t)2 — 3¢2

So, if Y4(Z) = (1) 7 for any Z € B we get cos0(t) =
2V/3t(3t — 2)
(2 —3t)2 + 3t%°

Corollary 2. The transformations of the set {1y | t € R U oo} form the group of
rotations of the unit disk B.

m and sin H(t) =

The proof is trivial.

REFERENCES

[1] M. BERGER. Geometry I, II., Springer, Berlin, 1994.

[2] G. GEORGIEV, R. ENCHEVA. One-dimensional shape spaces. Math. and Education in Math.,
34 (2005), 108-112.

[3] Kryost ITO (ed.) Encyclopedic dictionary of mathematics. The MIT Press, Cambridge,
Massachusetts and London, England, 1993.

[4] D. KENDALL. Shape manifolds, procrustean metric, and complex projective spaces. Bull.
London Math. Soc. 16 (1984), 81-121.

[6] R. LAaNGEVIN, P. WarLczak. Holomorphic maps and pencils of circles. American
Mathematical Monthly, 115, No 8 (2008), 690-700.

[6] J. A. LESTER. Triangles I: Shapes. Aequationes Math., 52 (1996), 30-54.

129



[7] H. Nakamura, K. Oguiso. Elementary moduli space of triangles an iterative processes.
J. Math. Sci. Univ. Tokyo, 10 (2003), 209-224.

[8] H. SaTo. Orbits of triangles obtained by interior division of sides. Proc. Japan Acad., 74
(1998), 4-9.

Radostina Encheva Georgi Georgiev

Faculty of Mathematics and Informatics Faculty of Mathematics and Informatics
Shumen University Shumen University

115, Universiteska Str. 115, Universiteska Str.

9712 Shumen, Bulgaria 9712 Shumen, Bulgaria

e-mail: r.encheva@fmi.shu-bg.net e-mail: g.georgiev@shu-bg.net

B'bPXY I'PYIIATA OT EJIUIITUYHU JPOBHO-JIMHEITHN
ITPEOBPA3YBAHUA

Panoctuna En4deBa, 'eopru I'eoprues

Karo uznonssame koucTpyknust Ha Caro, medurnpame n3obparkeHre B IBYMEPHOTO
meiin npocrpancTBo. JABymMeprHoTo MBbOOMYCOBO ITIPOCTPAHCTBO U €IMHUIHUSIT JTUCK Ca,
MOJIEJIM HA TOBa HIEHN mpocTpaHcTBo. JokaszBame, ye pasriexaaHuTe U300parkKeHust
obpasyBar egHO-TIapaMeTpUYHa MOArpyna Ha MpobuycoBaTa rpymna B I'bPBUS MOJEN
U IpylaTa Ha POTAIMUTE BbB BTOPUS MOJIEJI.
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