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ON EVOLUTES OF NODARY AND UNDULARY
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Following the genuine geometrical construction invented by Delaunay we have found

the explicit parameterizations of the evolutes of the nodary and undulary curves

associated with the profile curves behind Delaunay nodoids and unduloids. The

parameterizations of the latter curves are found also in explicit form.

1. Introduction. The interesting subclass of the surfaces of revolution with constant

mean curvature have been introduced many years ago by the French geometer Delaunay,
who gave also their complete classification [2]. The list of these surfaces which nowadays

bears his name includes planes, cylinders, catenoids, spheres, nodoids and unduloids. It
is an amazing fact discovered again by Delaunay that the last two types of surfaces arise

via two purely geometrical constructions.

According to the second of them the profile curves of these surfaces can be identified
with roulettes, i.e., the traces of the foci of conics obtained when they roll along some line

without slipping. This construction which is well documented (see e.g. [3, 5] and [14]) has
been generalized recently in a way to produce the so called anisotropic Delaunay surfaces

[10].

In an Appendix to the abovementioned Delaunay paper Sturm presents a third –
namely, variational characterization of these surfaces as those surfaces of revolution

having a minimal lateral area at a fixed volume. That in turn revealed why these surfaces

make their appearance as soap bubbles and liquid drops [7, 13] or cells under compression
[17]. Modern expositions of the variational viewpoint on the subject can be found in [13]

and [14].
Using entirely different methods the constant mean curvature surfaces of revolution

have been treated by Kenmotsu [9] and Konopelchenko & Taimanov [11]. E.g., Kenmotsu

had found and solved a complex nonlinear differential equation which describes the
surfaces of revolution in R

3 with a given mean curvature. The respective generating

curve of the surface is presented in terms of the generalized Fresnel’s integrals built
on the specified mean curvature. Strange enough, one has to notice that the original
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Delaunay approach was based on finding first the corresponding evolute and then the

generating curve itself. As far as we are aware the evolutes of the profile curves were not

discussed in the literature and that is why one of the purposes of the present work is to
present them in explicit form. The other one is to provide new parameterizations of the

curves generating the Delaunay surfaces.
2. The Genuine Delaunay Construction. It was already mentioned that Delaunay

starts with finding the evolute C̃ of the sought profile curve C. In what follow we will

keep his notation as far as possible. If ρ is the radius of the curvature of C and s̃ is the
natural parameter on its evolute C̃ by its very definition one has

(1) ρ = c̊− s̃,

where c̊ is an arbitrary real parameter. Let n denote the part of the tangent T̃ of C̃

between M and its intersection with the symmetry axis X (see Fig. 1). The condition

Fig. 1

that the surface S obtained by revolving C about X has a constant mean curvature
1

2a
in which a is another real parameter can be written as

(2)
1

ρ
+

1

n

=
1

a
·

By inspecting Fig. 1 one easily finds also that

(3) n = z̃
ds̃

dz̃
+ c̊− s̃

and therefore

(4)
1

c̊− s̃
+

1

z̃ ds̃

dz̃
+ c̊− s̃

=
1

a
·

Integrating the last equation one gets

(5) z̃2 = α(̊c− s̃)(2a− c̊+ s̃)

where α is the integration constant. This equation can be solved for s̃ and after that the

result differentiated with respect to z̃ in order to obtain

(6)
dz̃

ds̃
= −α

√

a2 − z̃2/α

z̃
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along with

(7)
dx̃

ds̃
=

√

1 −
(

dz̃

ds̃

)2

=

√

(1 + α)z̃2 − a2α2

z̃
·

An inspection of (6) and (7) leads to the conclusion that in the above expressions the

constant α can take all positive values and that in this case z̃ will vary in the interval
[

aα√
1 + α

, a
√
α

]

. If α is negative it can take values between −1 and 0 while |z̃| can take

any value greater than − aα√
1 + α

· This means that in the last case the evolute will have

infinite branches. The two alternatives just described will be considered below separately.

3. Nodary. Assuming that 0 < α ≤ ∞ and introducing

(8) m2 =
a2α2

1 + α
, n2 = a2α, n2 > m2

equations (6) and (7) can be combined into the form

(9)
dx̃

dz̃
= −

√

(1 + α)z̃2 − a2α2

α
√

a2 − z̃2/α
= −

√

1 + α

α

√
z̃2 −m2

√
n2 − z̃2

·

The last expression suggests that it can be uniformized via

(10) z̃ =
m

dn(u, k)
, m =

aα√
1 + α

= aαk, k =
1√

1 + α
,

where dn(u, k) is one of the three Jacobian elliptic functions, u is its argument and the
parameter k is known as an elliptic modulus. Details about elliptic functions and integrals

can be found in [8]. Making use of (10) one can immediately find from (9) that

(11) x̃ = m(u− E(am(u, k), k)),

where am(u, k) is Jacobi’s amplitude function, E(ψ, k) denotes the so called incomplete

elliptic integral of the second kind and the integration constant is omitted. Taken together
(10) and (11) provide the explicit parameterization of the evolute C̃. Its involute, i.e.,

the profile curve C of the Delaunay surface of constant mean curvature
1

2a
can be found

relying on direct geometrical relations (or consulting some of the textbooks [1, 6, 13–16]

Fig. 2. The evolute C̃ of the nodary C generated with α = 2.333

and a = 0.2 by (10), (11) and (14).
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on classical differential geometry)

(12) x = x̃+ ρ
dx̃

ds̃
, z = z̃ + ρ

dz̃

ds̃
·

By (1), (5–7) and (10) one easily find

(13) ρ = a−
√

a2− z̃2

α
= a

(

1 − k
cn(u, k)

dn(u, k)

)

,
dx̃

ds̃
= sn(u, k),

dz̃

ds̃
= −cn(u, k)

which taken together give the parameterization of the nodary

x[u] = m(u−E(am(u, k), k)) + a(1 − k
cn(u, k)

dn(u, k)
)sn(u, k)

(14)

z[u] =
m

dn(u, k)
− a(1 − k

cn(u, k)

dn(u, k)
)cn(u, k).

Both, the nodary C and its evolute C̃ are depicted in Fig. 2 for a concrete values of the
parameters α and a.

4. Undulary. Following the plan announced above we will consider in this section

the case when −1 < α < 0. Because the treatment will be quite parallel to that of nodary

the details will be just outlined but in order to distinguish the cases we use in respective
formulas the bars which will reminiscent that we are dealing with negative α. In this

setting we will have

(15)
d˜̄x

ds̃
=

√

(1 + α)˜̄z2 − a2α2

˜̄z
,

d˜̄z

ds̃
=

√
−α

√
˜̄z2 − a2α
˜̄z

and respectively

(16)
d˜̄x

d˜̄z
=

1√
−α

√

(1 + α)˜̄z2 − a2α2

˜̄z2 − a2α
=

√

1 + α

−α

√

˜̄z2 − m̄2

˜̄z2 + n̄2
,

where

(17) m̄2 =
a2α2

1 + α
, n̄2 = −a2α, m̄2 + n̄2 = − a2α

1 + α
·

This time the uniformization can be accomplished by

(18) ˜̄z =
√

m̄2 + n̄2
dn(u, k̄)

cn(u, k̄)
=

√

−α
1 + α

dn(u, k̄)

cn(u, k̄)
, k̄2 =

n̄2

m̄2 + n̄2
= 1 + α.

Doing this, we obtain

(19) d˜̄x = −acn2(u, k̄)

sn2(u, k̄)
du

and consequently

(20) ˜̄x = a(E(am(u, k̄), k̄) +
cn(u, k̄)dn(u, k̄)

sn(u, k̄)
)

in which as before, the integration constant is omitted. Further on, it is easy to find also

that

(21) ρ̄ = a(1 − 1

k̄

1

sn(u, k̄)
),

d˜̄x

ds̃
= k̄

cn(u, k̄)

dn(u, k̄)
,

d˜̄z

ds̃
=

√−α
dn(u, k̄)

which immediately gives
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x̄[u] = ˜̄x+ ρ̄
d˜̄x

ds̃
= a(k̄ − 1

sn(u, k̄)
)
cn(u, k̄)

dn(u, k̄)

(22)

z̄[u] = ˜̄z + ρ̄
d˜̄z

ds̃
=
a
√
−α
k̄

(

dn(u, k̄)

sn(u, k̄)
+ a(k̄ − 1

sn(u, k̄)
)

1

dn(u, k̄)

)

.

Fig. 3. The evolute C̃ of the undulary C generated with α = 3.5

and a = −0.6 by (18), (20) and (22)

5. Concluding Remarks. The generating curves of the nodoids and the unduloids
called by Eells [3] nodary, respectively undulary and their evolutes, have been found

following the original Delaunay construction. These curves are periodic along the sym-

metry axis and have one local minimum and one local maximum in each period and do
not depend on the chosen point on the evolutes as the constant c̊ desappears from all

formulae. The parameterizations (up to integration) found by Delaunay himself [2] are

given below for a comparison with those derived here and elsewhere [4, 12], i.e.,

x̃ = − aα tanϕ
√

1 + α− sin2 ϕ
+

∫

ϕ

0

aαdϕ

cos2 ϕ
√

1 + α− sin2 ϕ

(23)

z̃ =
aα

√

1 + α− sin2 ϕ
, ϕ ∈ R

parametrize the evolutes, and

x[ϕ] = a sinϕ− a tanϕ

√

1 + α− sin2 ϕ+

∫

ϕ

0

aαdϕ

cos2 ϕ
√

1 + α− sin2 ϕ

(24)

z[ϕ] = −a cosϕ+ a

√

1 + α− sin2 ϕ

do the same for the nodary and undulary. The parameters α and a have the same meaning

as specified before.
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Finally, it can be easily realized that the integrals which appear in Delaunay formulas

exist only on restricted intervals on which the evolute can be found.
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ВЪРХУ ЕВОЛЮТИТЕ НА КРИВИТЕ ГЕНЕРИРАЩИ НОДОИДИТЕ

И УНДУЛОИДИТЕ НА DELAUNAY

Мариана Хаджилазова, Ивайло M. Младенов

Следвайки оригиналната геометрична конструкция на Delaunay е намерена явна

параметризация на еволютите на профилните криви, генериращи въведените от

него повърхнини известни като нодоиди и ундулоиди. В аналитичен вид са наме-

рени и параметризациите на генериращите криви на споменатите повърхнини.

137


