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PSEUDODIFFERENTIAL OPERATORS OF PRINCIPAL
TYPE"

Petar Popivanov

It is given a short elementary proof of the localized subelliptic estimates for non-
degenerate pseudodifferential operators of principal type.

1. Introduction. There is a long history of the subelliptic estimates stated for the
first time by Hoérmander in [2] and proved by Hormander, Egorov and Treves (see [6],
[7], [5])- The aim of this short note is to propose an elementary proof of the subelliptic
estimates in the case of non-degenerate pseudodifferential operators of principal type.
We remind of the reader that a classical pseudodifferential operator P € L7} with
principal symbol p? (z, &) is called operator of principal type if p¥ (z, &) = 0, & #
0 = vep? (z, €) # 0. Definitions. properties and detailed study of pseudodifferential
operators can be found in [6], [7]. The operator P(z, D) is nondegenerate and of principal
type if p2,(z, £) =0, £ # 0 = Vo, eRpY, (2, &) [ Ve SPY,(z, £). We shall say that the
pseudodifferential operator P(z,D) € L7(Q) is subelliptic in Q if for each compact
K C Q there exist constants C'(K), s and ¢ such that in the Sobolev spaces H; the
following inequality holds:

(1) l[ulls < Cs(K) ([Pulls—m+s + [[ulls—1),  VCG(K), 0<4d<1.

Due to Hérmander, Egorov and Treves there exists a fill characterization of the scalar
subelliptic operators (1) via the algebraic properties of their principal symbol p? (z, &).
The necessary and sufficient condition for the fulfilment of (1) is proved in several steps
and by simplifying microlocally the symbol p2, to the normal form &; + i& + ig(x, €),
q(z, t€) = tq(x, £), Vt > 1 near to the point p° = (zq, &), €° = (€9,...,€0) # 0,

? =69 = q(20,£°) = Vueq(wo, &) = 0. Certainly, in this case m =1, s =1— 4.

The details of the above mentioned reduction could be found in Chapter VIII of [6].

The crucial result in proving of (1) for nondegenerate pseudodifferential operators of

principal type can be formulated as follows:

Theorem 1 (Egorov, Th. 4.3 from Chapter VIII of [6]). Let Q = {(t,z) € R?, |t| <1,
|x| < 1}. Then the estimate

(2) Mlullo < C ||ug(t, z) + Dy + AHLB(t, :c)||0,

Yu € C5°(Q), VA sufficiently large, C' = const > 0 and with B(t,x) — polynomial of order
k having real coefficients is valid if an only if
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(i) &:B(t,z) <0

(ii) there exists a constant co > 0 and such that

> |orttoiB(tx)| = ¢ in Q.

i+j<k—1

1
Certainly, Dy = <0y in (2).
i

The necessary part of the proof of Theorem 1 is more or less simpler. Because of this
fact we shall concentrate on the proof of the sufficiency part of Theorem 1.

2. Proof of the sufficiency of Theorem 1. 1. We shall divide the proof into several
propositions.

Proposition 1. Let P = % + D, + M\T1B satisfy the condition (i). Then

(3) [Prull < ||Pull, Vue C5®(Q),
where P* = —0; + D, + A1 B is the Ly(Q) adjoint operator of P = 0y + D, + A\F*1B.
Proof. We start from the identity
[Pull = |1P*ulld + R ([Cru,ul,u), Yue C3%(Q)
and Cy = [P*, P] = —2\¥T19,B > 0. Therefore, (3) holds.
Put Ly = &, Ly = — (8z+i)\k+1B). Evidently, P = Ly + iLo. Consequently,
0B 0°B
the commutator [Li, L] = —i)\k“ﬁ, [L1,[L1, Lo]] = _i)\k+1¥7 (L2, [L1, Lo]] =
2

B
s 375—8 Then we shall use induction. Let L;,. stand for L; or Ly. Then the repeated
i

commutator (L, ..., Lix—1, L1, L2]] = £iX¥+195' 05" B, where s’ is the number of such
i’; for which i, = 1 and s” is the number of such 7, i = 2; s > 1, s’ +s" =T > 1.
Having in mind that ord @ = k we conclude that the vector fields L1, Lo form a nilpotent
Lie algebra of rank k.

Proposition 2. The estimate
(4) Mullo < [[Pullo,  Vu € C5°(Q)
and for each A — sufficiently large is valid under the conditions (i), (ii).

Proposition 2 coincides with Egorov’s Theorem 1.

Before proving (4) we shall make the following remark.

Remark 1. The estimate (4) can be localized in Q.

In fact, let V;, j = 1,...,s, be a finite open covering of the closed rectangle () and

S
@, € C§°(V;) form a partition of unity, i. e. Z go? = 1near @, 0 < ¢; < 1. Assume that
j=1
APllo < [[PYllo, Vo € C3°(V;), A > Ao > 1,1 < j <s. Thus, Yu € C§°(Q) we have that
Algjullo < [P(pju)llo = [uTje; + i Pull < [l Pull + |lullol T5¢;llo;

where T; = 0rp; + Dapj € C3°(V5).
The elementary inequality (a + b)? < 2(a® + %), a > 0, b > 0, enables us to conclude
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that

(5) 2 ZII%UIIO<2ZH%PUIIO+2SCQIIUIIO, ¢ = max || T; o,
J=1 J=1

i. e. A?||ul|3 < 2||Pul|2 + const ||u||2, Vu € C5°(Q) and for A sufficiently large.

2. Suppose that (to,z0) € Q. According to (ii) one can find an open neighbourhood
Vito,0) Of (to, zo) and integers i(to, z0), j(to, xo) such that |8§+18£B| > ¢y > 0in Vigg a)-
As Vi4y o) form an open covering of @) there exists a finite open covering {V,}3_; of Q.
Put ¢, € C§°(V;) for the functions forming the corresponding partition of unity in Q.
Having in mind that (4) is localizable in @ and ‘8Z(T)+18§;(T)B‘ > ¢y > 0 in V; we can
assume without loss of generality that }8i+18j B| > >0 everywhere in @ with some

integers 7, j,0<i+j <k—1 Put M = max Sup|az+1ajB
’L+]’L<]k2 1

Consider now the following Cauchy problem in L2 (Q)
(6) ath :Lij, ] = 1,2, hGRI
zjln=0 = v(t, z) € C5°(Q).
In the Appendix of the paper we shall show that (6) possesses a unique solution
zj(h,t,z) written in the form z; = e"iv, i. e. 9y ("iv) = Lje"Hiv.
Moreover, ||e"i|| =1, j = 1,2. We shall put everywhere hLi, hLo instead of Ly, Lo
and we will obtain the following formula for the repeated commutators:

(7) [ALiy, ... hLip 1, [hLy, hLo] = £iNH R 108 02" B(t, ),

s'+s” =T >1, ' <k. The famous Campbell-Hausdorff formula on nilpotent Lie groups
of rank & (see [1], [3], [4]) gives us that

(8) e[Lil ..... Lip—1,[L1,L2] hr+1 ]:[ezl:hL , r < k
+hL; 5 _ 1.2

and in the right-hand side of (8) are participating finitely many factors e*"%7, j ,
(may be huge amount of factors). Thus, (7) implies:

ot > const > 0.

(9) im’“*lh”la’“am(t z) _ HeihL L itj=T>1.

| =1 1 k11 k+13T+1 495 gi+1
Put now h = M)\ T = 7= ATHFT M, |h| < const, as A > 1, A" h 7920, B =
OB . _ |0i191B] k1 -
W71-6.0<Co_w<11<F<k:>F——|—1>1Aselthera a‘jB>0

in @ or a;'“agB < 0in @Q it is evident from geometrical reasons that there exists a
constant dy > 0 and such that

(10) ‘eiiAk+1hF+1aZ+lag{B _ 1‘ > do > 0.
Remark 2.Let A,, p=1,...,s, be bounded operators in Lo. Then
(11) 141 Ay =9l S C Y[ A0 —ll, ¥ € La(Q)-
p=1

The proof is obvious but we shall verify it only for p = 3 (induction could be used in
the general case). In fact, A1A2A3’¢ — ’L/} = A1A2 (Ag’lb — ’L/}) + AlAgw — ’L/} = A1A2 (A3’lb —
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) + A1 (Azyp — ) + Aryp — 1, ete.

Combining (8), (9), (10), (11) we get
(12) doflul| < el Lip—n[La,La][RTH 1) UH <
< Y ||(ethts —1) uHO, Yu € C§°(Q)

and the sum in the right-hand side of (12) is finite.

Proposition 3([3], [4]). One can find a constant C > 0 and such that
(13) [(e"® = 1) v, < ClRlILillo, Vo € CF¥(Q), j=1,2.

We shall prove in the Appendix that e"’i is unitarian operator in Lo, i. e. ||[e"Li| = 1.
Consider now 0 < I';(h) = || ("™ — 1) 1/1”5, I';(0) =0. Then
Lj(h) = (Lje" 9, "o — ) + ("9 — 4, L))
= [L5(h)] < 2] (" = 1) ¥llol| Lo
=24/ (M Ljllo = /T (h) < (Rl Ljeblo, ete.

According to the definition of h, (12), (13) and with some constant C' > 0, |Ju| <
Clh[( Laull + [|L2ul), Yu € C52(@Q), i. e.
(15) lull < const AT (| Luullo + || Laullo),  Vu € CF(Q).
The simple observation P + P* = 2iLy, P — P* = 20;, Proposition 1 and (15) complete
the proof of Proposition 2. Thus Egorov’s Theorem 1 is proved.

Appendix.

1. Consider in Ly(Q) the Cauchy problem

Ohv = Liv = Qv

Vlh=o =¥, ¥ =1(t,z) € C5°(Q).

Evidently, v(h,t,z) = ¥(t + h,z) = e1)(t,x) = for each h € R! fixed, |e1e)]lo =
%1, 1. e [le" ] = 1.

2. Consider now in Ls(Q)

(16)

Opv = Lov = Oyv + iNFT1 By

17
( ) U|h:0 = ”L/)(t,x) € COOO(Q)
p=h+z . .
The standard change . in (17) transforms (17) into
Ov

i . k-‘,—lB —
(18) 3 +iA (t,q)v=0

U|q:p = w(tap)a
e = N BOOE 4G ) s A(Lp) = (1, p) and therelore v(h, £,2) = ey 7) =
Wt 4+ h)e™ ™ S BONdr oy ohLag o — ||4p]|o as B is real valued polynomial.
141



1]
2]
3]
[4]
[5]
(6]
7]

Pet

REFERENCES

J. P. SERRE. Lie Algebras and Lie groups, Lectures given at Harvard Univ., New York —
Amsterdam, Benjamin, 1965.

L. HORMANDER. Pseudodifferential operators and non-elliptic boundary value problems.
Ann. of Math., 83 (1966), 129-2009.

L. HORMANDER. Hypoelliptic second order differential operators. Acta Math., 119, (1967),
147-171.

Yu. V. Ecorov. Nondegenerate pseudodifferential operators of principal type. Math.
Sbornik, 82, (1970), 323-342 (in Russian).

F. TREVES. A new method of proof of the subelliptic estimates. Comm. Pure Appl. Math.,
24, (1971), 71-115.

L. HORMANDER. The Analysis of Linear Partial Differential Operators, vol. I-IV. Springer
Verlag, 1983-1985.

Yu. V. Ecorov. Linear differential operators of principal type. Nauka, Moscow, 1984 (in
Russian).

ar Popivanov

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

111

3 Sofia, Bulgaria

e-mail: popivano@math.bas.bg

142

EJIEMEHTAPHO JOKA3ATEJICTBO HA JIOKAJINBNUPAHUTE
CYBEJIUIITUYHN OITEHKUW 3A HEVM3POJEHU
IICEBAOJN®EPEHIIMAJIHN OIIEPATOPU OT I'NIABEH TWUII

Ilerbp IlonuBanoB

IIpenmmoxkeHo e KpaTKO eJIeMEHTAPHO JTOKA3ATEJICTBO Ha JIOKAJTU3NPAHA CYOSTUITUIHA
OIleHKa 33 HEU3POJIEHU OIlepaTOPU OT IJIaBeH THII.



