AN ELEMENTARY PROOF OF THE LOCALIZED SUBELLIPTIC ESTIMATES FOR NON-DEGENERATE PSEUDODIFFERENTIAL OPERATORS OF PRINCIPAL TYPE ${ }^{*}$

Petar Popivanov

It is given a short elementary proof of the localized subelliptic estimates for nondegenerate pseudodifferential operators of principal type.

1. Introduction. There is a long history of the subelliptic estimates stated for the first time by Hörmander in [2] and proved by Hörmander, Egorov and Trèves (see [6], [7], [5]). The aim of this short note is to propose an elementary proof of the subelliptic estimates in the case of non-degenerate pseudodifferential operators of principal type. We remind of the reader that a classical pseudodifferential operator $P \in L_{c e}^{m} \Omega$ with principal symbol $p_{m}^{0}(x, \xi)$ is called operator of principal type if $p_{m}^{0}(x, \xi)=0, \xi \neq$ $0 \Rightarrow \nabla \xi p_{m}^{0}(x, \xi) \neq 0$. Definitions. properties and detailed study of pseudodifferential operators can be found in [6], [7]. The operator $P(x, D)$ is nondegenerate and of principal type if $p_{m}^{0}(x, \xi)=0, \xi \neq 0 \Rightarrow \nabla_{x, \xi} \Re p_{m}^{0}(x, \xi) \notin \nabla_{x, \xi} \Im p_{m}^{0}(x, \xi)$. We shall say that the pseudodifferential operator $P(x, D) \in L_{c e}^{m}(\Omega)$ is subelliptic in Ω if for each compact $K \subset \Omega$ there exist constants $C(K), s$ and δ such that in the Sobolev spaces H_{s} the following inequality holds:

$$
\begin{equation*}
\|u\|_{s} \leq C_{s}(K)\left(\|P u\|_{s-m+\delta}+\|u\|_{s-1}\right), \quad \forall C_{0}^{\infty}(K), \quad 0 \leq \delta<1 \tag{1}
\end{equation*}
$$

Due to Hörmander, Egorov and Trèves there exists a fill characterization of the scalar subelliptic operators (1) via the algebraic properties of their principal symbol $p_{m}^{0}(x, \xi)$. The necessary and sufficient condition for the fulfilment of (1) is proved in several steps and by simplifying microlocally the symbol p_{m}^{0} to the normal form $\xi_{1}+i \xi_{2}+i q(x, \xi)$, $q(x, t \xi)=t q(x, \xi), \forall t \geq 1$ near to the point $\rho^{0}=\left(x_{0}, \xi^{0}\right), \xi^{0}=\left(\xi_{1}^{0}, \ldots, \xi_{n}^{0}\right) \neq 0$, $\xi_{1}^{0}=\xi_{2}^{0}=q\left(x_{0}, \xi^{0}\right)=\nabla_{x, \xi} q\left(x_{0}, \xi^{0}\right)=0$. Certainly, in this case $m=1, s=1-\delta$.

The details of the above mentioned reduction could be found in Chapter VIII of [6]. The crucial result in proving of (1) for nondegenerate pseudodifferential operators of principal type can be formulated as follows:

Theorem 1 (Egorov, Th. 4.3 from Chapter VIII of [6]). Let $Q=\left\{(t, x) \in \mathbb{R}^{2},|t| \leq 1\right.$, $|x| \leq 1\}$. Then the estimate

$$
\begin{equation*}
\lambda\|u\|_{0} \leq C\left\|u_{t}^{\prime}(t, x)+D_{x}+\lambda^{k+1} B(t, x)\right\|_{0}, \tag{2}
\end{equation*}
$$

$\forall u \in C_{0}^{\infty}(Q), \forall \lambda$ sufficiently large, $C=$ const >0 and with $B(t, x)$ - polynomial of order k having real coefficients is valid if an only if

[^0](i) $\partial_{t} B(t, x) \leq 0$
(ii) there exists a constant $c_{0}>0$ and such that
$$
\sum_{i+j \leq k-1}\left|\partial_{t}^{i+1} \partial_{x}^{j} B(t, x)\right| \geq c_{0} \text { in } Q
$$

Certainly, $D_{x}=\frac{1}{i} \partial_{x}$ in (2).
The necessary part of the proof of Theorem 1 is more or less simpler. Because of this fact we shall concentrate on the proof of the sufficiency part of Theorem 1.
2. Proof of the sufficiency of Theorem 1. 1. We shall divide the proof into several propositions.

Proposition 1. Let $P=\frac{\partial}{\partial t}+D_{x}+\lambda^{k+1} B$ satisfy the condition (i). Then

$$
\begin{equation*}
\left\|P^{*} u\right\| \leq\|P u\|, \quad \forall u \in C_{0}^{\infty}(Q) \tag{3}
\end{equation*}
$$

where $P^{*}=-\partial_{t}+D_{x}+\lambda^{k+1} B$ is the $L_{2}(Q)$ adjoint operator of $P=\partial_{t}+D_{x}+\lambda^{k+1} B$.
Proof. We start from the identity

$$
\|P u\|_{0}^{2}=\left\|P^{*} u\right\|_{0}^{2}+\Re\left(\left[C_{1} u, u\right], u\right), \quad \forall u \in C_{0}^{\infty}(Q)
$$

and $C_{1}=\left[P^{*}, P\right]=-2 \lambda^{k+1} \partial_{t} B \geq 0$. Therefore, (3) holds.
Put $L_{1}=\partial_{t}, L_{2}=-\left(\partial_{x}+i \lambda^{k+1} B\right)$. Evidently, $P=L_{1}+i L_{2}$. Consequently, the commutator $\left[L_{1}, L_{2}\right]=-i \lambda^{k+1} \frac{\partial B}{\partial t},\left[L_{1},\left[L_{1}, L_{2}\right]\right]=-i \lambda^{k+1} \frac{\partial^{2} B}{\partial t^{2}},\left[L_{2},\left[L_{1}, L_{2}\right]\right]=$ $+i \lambda^{k+1} \frac{\partial^{2} B}{\partial t \partial x}$. Then we shall use induction. Let $L_{i_{\Gamma}}$ stand for L_{1} or L_{2}. Then the repeated commutator $\left[L_{i_{1}}, \ldots, L_{i_{\Gamma}-1},\left[L_{1}, L_{2}\right]\right]= \pm i \lambda^{k+1} \partial_{t}^{s^{\prime}} \partial_{x}^{s^{\prime \prime}} B$, where s^{\prime} is the number of such i_{j}^{\prime} for which $i_{j}^{\prime}=1$ and $s^{\prime \prime}$ is the number of such $i_{j}^{\prime \prime}, i_{j}^{\prime \prime}=2 ; s^{\prime} \geq 1, s^{\prime}+s^{\prime \prime}=\Gamma \geq 1$. Having in mind that ord $Q=k$ we conclude that the vector fields L_{1}, L_{2} form a nilpotent Lie algebra of rank k.

Proposition 2. The estimate

$$
\begin{equation*}
\lambda\|u\|_{0} \leq\|P u\|_{0}, \quad \forall u \in C_{0}^{\infty}(Q) \tag{4}
\end{equation*}
$$

and for each λ - sufficiently large is valid under the conditions (i), (ii).
Proposition 2 coincides with Egorov's Theorem 1.
Before proving (4) we shall make the following remark.
Remark 1. The estimate (4) can be localized in Q.
In fact, let $V_{j}, j=1, \ldots, s$, be a finite open covering of the closed rectangle Q and $\varphi_{j} \in C_{0}^{\infty}\left(V_{j}\right)$ form a partition of unity, i. e. $\sum_{j=1}^{s} \varphi_{j}^{2}=1$ near $Q, 0 \leq \varphi_{j} \leq 1$. Assume that $\lambda\|\psi\|_{0} \leq\|P \psi\|_{0}, \forall \psi \in C_{0}^{\infty}\left(V_{j}\right), \lambda \geq \lambda_{0} \gg 1,1 \leq j \leq s$. Thus, $\forall u \in C_{0}^{\infty}(Q)$ we have that $\lambda\left\|\varphi_{j} u\right\|_{0} \leq\left\|P\left(\varphi_{j} u\right)\right\|_{0}=\left\|u T_{j} \varphi_{j}+\varphi_{j} P u\right\| \leq\left\|\varphi_{j} P u\right\|+\|u\|_{0}\left\|T_{j} \varphi_{j}\right\|_{0}$,
where $T_{j}=\partial_{t} \varphi_{j}+D_{x} \varphi_{j} \in C_{0}^{\infty}\left(V_{j}\right)$.
The elementary inequality $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right), a \geq 0, b \geq 0$, enables us to conclude
that

$$
\begin{equation*}
\lambda^{2} \sum_{j=1}^{s}\left\|\varphi_{j} u\right\|_{0}^{2} \leq 2 \sum_{j=1}^{s}\left\|\varphi_{j} P u\right\|_{0}^{2}+2 s c^{2}\|u\|_{0}^{2}, \quad c=\max _{j}\left\|T_{j} \varphi_{j}\right\|_{0} \tag{5}
\end{equation*}
$$

i. e. $\lambda^{2}\|u\|_{0}^{2} \leq 2\|P u\|_{0}^{2}+$ const $\|u\|_{0}^{2}, \forall u \in C_{0}^{\infty}(Q)$ and for λ sufficiently large.
2. Suppose that $\left(t_{0}, x_{0}\right) \in Q$. According to (ii) one can find an open neighbourhood $V_{\left(t_{0}, x_{0}\right)}$ of $\left(t_{0}, x_{0}\right)$ and integers $i\left(t_{0}, x_{0}\right), j\left(t_{0}, x_{0}\right)$ such that $\left|\partial_{t}^{i+1} \partial_{x}^{j} B\right| \geq c_{0}^{\prime}>0$ in $V_{\left(t_{0}, x_{0}\right)}$. As $V_{\left(t_{0}, x_{0}\right)}$ form an open covering of Q there exists a finite open covering $\left\{V_{\tau}\right\}_{\tau=1}^{s}$ of Q. Put $\varphi_{\tau} \in C_{0}^{\infty}\left(V_{\tau}\right)$ for the functions forming the corresponding partition of unity in Q . Having in mind that (4) is localizable in Q and $\left|\partial_{t}^{i(\tau)+1} \partial_{x}^{j(\tau)} B\right| \geq c_{0}^{\prime}>0$ in V_{τ} we can assume without loss of generality that $\left|\partial_{t}^{i+1} \partial_{x}^{j} B\right| \geq c_{0}^{\prime}>0$ everywhere in Q with some integers $i, j, 0 \leq i+j \leq k-1$. Put $M=\max _{\substack{i, j \\ i+j \leq k-1}} \sup _{Q}\left|\partial_{t}^{i+1} \partial_{x}^{j} B\right|^{\frac{1}{i+j+1}} \geq$ const >0.

Consider now the following Cauchy problem in $L_{2}(Q)$

$$
\left\lvert\, \begin{align*}
& \partial_{h} z_{j}=L_{j} z_{j}, \quad j=1,2, \quad h \in \mathbb{R}^{1} \tag{6}\\
& \left.z_{j}\right|_{h=0}=v(t, x) \in C_{0}^{\infty}(Q) .
\end{align*}\right.
$$

In the Appendix of the paper we shall show that (6) possesses a unique solution $z_{j}(h, t, x)$ written in the form $z_{j}=e^{h L_{j}} v$, i. e. $\partial_{h}\left(e^{h L_{j}} v\right)=L_{j} e^{h L_{j}} v$.

Moreover, $\left\|e^{h L_{j}}\right\|=1, j=1,2$. We shall put everywhere $h L_{1}, h L_{2}$ instead of L_{1}, L_{2} and we will obtain the following formula for the repeated commutators:

$$
\begin{equation*}
\left[h L_{i_{1}}, \ldots, h L_{i_{\Gamma}-1},\left[h L_{1}, h L_{2}\right]\right]= \pm i \lambda^{k+1} h^{\Gamma+1} \partial_{t}^{s^{\prime}} \partial_{x}^{s^{\prime \prime}} B(t, x) \tag{7}
\end{equation*}
$$

$s^{\prime}+s^{\prime \prime}=\Gamma \geq 1, \Gamma \leq k$. The famous Campbell-Hausdorff formula on nilpotent Lie groups of rank k (see [1], [3], [4]) gives us that

$$
\begin{equation*}
e^{\left[L_{i_{1}}, \ldots, L_{i_{\Gamma}-1},\left[L_{1}, L_{2}\right]\right] h^{\Gamma+1}}=\prod e^{ \pm h L_{j}}, \quad \Gamma \leq k \tag{8}
\end{equation*}
$$

and in the right-hand side of (8) are participating finitely many factors $e^{ \pm h L_{j}}, j=1,2$ (may be huge amount of factors). Thus, (7) implies:

$$
\begin{equation*}
e^{ \pm i \lambda^{k+1} h^{\Gamma+1} \partial_{t}^{i+1} \partial_{x}^{j} B(t, x)}=\prod e^{ \pm h L_{j}}, \quad i+j=\Gamma \geq 1 \tag{9}
\end{equation*}
$$

Put now $h=\frac{1}{M} \lambda^{-\frac{k+1}{\Gamma+1}} \Rightarrow \frac{1}{h}=\lambda^{\frac{k+1}{\Gamma+1}} M,|h| \leq$ const, as $\lambda \geq 1, \lambda^{k+1} h^{\Gamma+1} \partial_{x}^{j} \partial_{t}^{i+1} B=$ $\frac{\partial_{t}^{i+1} \partial_{x}^{j} B}{M^{i+j+1}}$, i. e. $0<c_{0}^{\prime \prime} \leq \frac{\left|\partial_{t}^{i+1} \partial_{x}^{j} B\right|}{M^{i+j+1}} \leq 1 ; 1 \leq \Gamma \leq k \Rightarrow \frac{k+1}{\Gamma+1} \geq 1$. As either $\partial_{t}^{i+1} \partial_{x}^{j} B>0$ in Q or $\partial_{t}^{i+1} \partial_{x}^{j} B<0$ in Q it is evident from geometrical reasons that there exists a constant $d_{0}>0$ and such that

$$
\begin{equation*}
\left|e^{ \pm i \lambda^{k+1} h^{\Gamma+1} \partial_{t}^{i+1} \partial_{x}^{j} B}-1\right| \geq d_{0}>0 . \tag{10}
\end{equation*}
$$

Remark 2. Let $A_{p}, p=1, \ldots, s$, be bounded operators in L_{2}. Then

$$
\begin{equation*}
\left\|A_{1} \ldots A_{s} \psi-\psi\right\| \leq C \sum_{p=1}^{s}\left\|A_{p} \psi-\psi\right\|, \quad \forall \psi \in L_{2}(Q) \tag{11}
\end{equation*}
$$

The proof is obvious but we shall verify it only for $p=3$ (induction could be used in the general case). In fact, $A_{1} A_{2} A_{3} \psi-\psi=A_{1} A_{2}\left(A_{3} \psi-\psi\right)+A_{1} A_{2} \psi-\psi=A_{1} A_{2}\left(A_{3} \psi-\right.$ 140
$\psi)+A_{1}\left(A_{2} \psi-\psi\right)+A_{1} \psi-\psi$, etc.
Combining (8), (9), (10), (11) we get

$$
\begin{align*}
d_{0}\|u\| & \leq\left\|\left(e^{\left[L_{i_{1}}, \ldots, L_{i_{\Gamma}-1},\left[L_{1}, L_{2}\right]\right] h^{\Gamma+1}}-1\right) u\right\| \leq \tag{12}\\
& \leq C \sum\left\|\left(e^{ \pm h L_{j}}-1\right) u\right\|_{0}, \quad \forall u \in C_{0}^{\infty}(Q)
\end{align*}
$$

and the sum in the right-hand side of (12) is finite.

Proposition 3([3], [4]). One can find a constant $C>0$ and such that

$$
\begin{equation*}
\left\|\left(e^{h L_{j}}-1\right) \psi\right\|_{0} \leq C|h|\left\|L_{j} \psi\right\|_{0}, \quad \forall \psi \in C_{0}^{\infty}(Q), \quad j=1,2 . \tag{13}
\end{equation*}
$$

We shall prove in the Appendix that $e^{h L_{j}}$ is unitarian operator in L_{2}, i. e. $\left\|e^{h L_{j}}\right\|=1$. Consider now $0 \leq \Gamma_{j}(h)=\left\|\left(e^{h L_{j}}-1\right) \psi\right\|_{0}^{2}, \Gamma_{j}(0)=0$. Then

$$
\begin{aligned}
\Gamma_{j}^{\prime}(h)= & \left(L_{j} e^{h L_{j}} \psi, e^{h L_{j}} \psi-\psi\right)+\left(e^{h L_{j}} \psi-\psi, L_{j} e^{h L_{j}} \psi\right) \\
& \Rightarrow\left|\Gamma_{j}^{\prime}(h)\right| \leq 2\left\|\left(e^{h L_{j}}-1\right) \psi\right\|_{0}\left\|L_{j} \psi\right\|_{0} \\
= & 2 \sqrt{\Gamma_{j}(h)}\left\|L_{j} \psi\right\|_{0} \Rightarrow \sqrt{\Gamma_{j}(h)} \leq|h|\left\|L_{j} \psi\right\|_{0}, \text { etc. }
\end{aligned}
$$

According to the definition of $h,(12),(13)$ and with some constant $C>0,\|u\| \leq$ $C|h|\left(\left\|L_{1} u\right\|+\left\|L_{2} u\right\|\right), \forall u \in C_{0}^{\infty}(Q)$, i. e.

$$
\begin{equation*}
\|u\| \leq \text { const } \lambda^{-\frac{k+1}{T+1}}\left(\left\|L_{1} u\right\|_{0}+\left\|L_{2} u\right\|_{0}\right), \quad \forall u \in C_{0}^{\infty}(Q) \tag{15}
\end{equation*}
$$

The simple observation $P+P^{*}=2 i L_{2}, P-P^{*}=2 \partial_{t}$, Proposition 1 and (15) complete the proof of Proposition 2. Thus Egorov's Theorem 1 is proved.

Appendix.

1. Consider in $L_{2}(Q)$ the Cauchy problem

$$
\begin{align*}
& \partial_{h} v=L_{1} v=\partial_{t} v \tag{16}\\
& \left.v\right|_{h=0}=\psi, \quad \psi=\psi(t, x) \in C_{0}^{\infty}(Q) .
\end{align*}
$$

Evidently, $v(h, t, x)=\psi(t+h, x)=e^{h L_{1}} \psi(t, x) \Rightarrow$ for each $h \in \mathbb{R}^{1}$ fixed, $\left\|e^{h L_{1}} \psi\right\|_{0}=$ $\|\psi\|_{0}$, i. e. $\left\|e^{h L_{1}}\right\|=1$.
2. Consider now in $L_{2}(Q)$

$$
\begin{align*}
& \partial_{h} v=L_{2} v=\partial_{x} v+i \lambda^{k+1} B v \tag{17}\\
& \left.v\right|_{h=0}=\psi(t, x) \in C_{0}^{\infty}(Q)
\end{align*}
$$

The standard change $\left\lvert\, \begin{aligned} & p=h+x \\ & q=x\end{aligned}\right.$ in (17) transforms (17) into

$$
\left\lvert\, \begin{align*}
& \frac{\partial v}{\partial q}+i \lambda^{k+1} B(t, q) v=0 \tag{18}\\
& \left.v\right|_{q=p}=\psi(t, p)
\end{align*}\right.
$$

i. e. $v=e^{-i \lambda^{k+1} \int_{p}^{q} B(t, r) d r}$. $A(t, p) \Rightarrow A(t, p)=\psi(t, p)$ and therefore $v(h, t, x)=e^{h L_{2}} \psi(t, x)=$ $\psi(t, x+h) e^{-i \lambda^{k+1} \int_{h+x}^{x} B(t, r) d r} \Rightarrow\left\|e^{h L_{2}} \psi\right\|_{0}=\|\psi\|_{0}$ as B is real valued polynomial.

REFERENCES

[1] J. P. Serre. Lie Algebras and Lie groups, Lectures given at Harvard Univ., New York Amsterdam, Benjamin, 1965.
[2] L. Hörmander. Pseudodifferential operators and non-elliptic boundary value problems. Ann. of Math., 83 (1966), 129-209.
[3] L. Hörmander. Hypoelliptic second order differential operators. Acta Math., 119, (1967), 147-171.
[4] Yu. V. Egorov. Nondegenerate pseudodifferential operators of principal type. Math. Sbornik, 82, (1970), 323-342 (in Russian).
[5] F. Trèves. A new method of proof of the subelliptic estimates. Comm. Pure Appl. Math., 24, (1971), 71-115.
[6] L. Hörmander. The Analysis of Linear Partial Differential Operators, vol. I-IV. Springer Verlag, 1983-1985.
[7] Yu. V. Egorov. Linear differential operators of principal type. Nauka, Moscow, 1984 (in Russian).

Petar Popivanov
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
1113 Sofia, Bulgaria
e-mail: popivano@math.bas.bg

ЕЛЕМЕНТАРНО ДОКАЗАТЕЛСТВО НА ЛОКАЛИЗИРАНИТЕ
 СУБЕЛИПТИЧНИ ОЦЕНКИ ЗА НЕИЗРОДЕНИ ПСЕВДОДИФЕРЕНЦИАЛНИ ОПЕРАТОРИ ОТ ГЛАВЕН ТИП

Петър Попиванов

Предложено е кратко елементарно доказателство на локализирана субелиптична оценка за неизродени оператори от главен тип.

[^0]: ${ }^{*} 2000$ Mathematics Subject Classification: 35H20.
 Key words: Pseudodifferential operator, subelliptic estimates.

