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OVER ALGEBRAS WITH INVOLUTION"

Tsetska Rashkova

Given a ring with involution (A, *), we may consider two involutions f and b on the
2 X 2 matrix ring M2(A, *). In the paper we find necessary and sufficient conditions
for the index of nilpotency of the symmetric and skew-symmetric due to the two
involutions elements of (Ma(A, %), 1) and (M2(A, *),b) in the cases when A is a finite
dimensional Grassmann algebra (without 1) of dimension 3 and of dimension 7. For
A being the concrete four-dimensional algebra with almost polynomial growth of the
x-codimensions described by Mishchenko and Valenti we find necessary and sufficient
conditions for the nilpotency of index 2 of the symmetric and skew-symmetric
variables due to the two considered involutions.

1. Preliminaries. We consider the 2 x 2 matrix algebra Ms(Gy) over the finite
dimensional Grassmann algebra Gy, for k = 2 and k = 3. The notations are the following:

Let G denote the infinite dimensional Grassmann algebra, namely

G = G(V) = K(’Ul,’Ug,... | V;Vj +’Uj’Ui =0 Z,] = 1,2,>
The field K is of characteristic zero. The algebra G’ (without 1) has a basis v, vi, . . . v,
where 1 < 47 < i < --- < 1;. The elements v; are called generators of G’ while the
elements v;, v;, -+ - v, for 1 <43 < iy < --- < iy are called basic monomials of G’. For
G = K + G’ a generator is 1 as well. The algebras G and G’ are Pl-equivalent (they
satisfy the same polynomial identities). It is easy to be seen that G’ = J(G), where J(G)
is the Jacobson radical of the algebra.

The algebra G is in the mainstream of resent research in PI-theory. Its importance is
connected with the structure theory for the T-ideals of identities of associative algebras
developed by Kemer. In [3, Theorem 1.2] he proved that any T-prime T-ideal can be
obtained as the T-ideal of identities of one of the following algebras: M, (K), M,(G) and
M, .(G), the latter being the algebra of n x n supermatrices over G = Gy & G1 with
Go-blocks (with entries of even degree) of sizes u x u and (n — u) x (n — u) and with
G1-blocks (with entries of odd degree) of sizes u x (n — ) and (n — u) X u.

The Grassmann algebra is one of the fundamental structures in PI-theory since it also
generates a minimal variety of exponential growth [4].

Well known facts concerning the algebra G are the following:
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Proposition 1[4, Corollary, p. 437]. The T-ideal T(G) is generated by the identity
[Ila x2, x3] =0.
Some identities for M3 (G) were found in [8, 6].

Proposition 2 [2, Exercise 5.3]. For G, = G(Vi) over a k-dimensional vector space
Vi all identities follow from the identity [x1, x2,x3] = 0 and the standard identity

SQP(ml""va;D) = Z (_1)Ux0(1) Lo (2p) = 0,
oc€Sym(2p)
where p is the minimal integer such that 2p > k.

As the algebra (), is nilpotent of index n + 1, the same is true for the matrix algebra
My(G),). Thus its elements are nilpotent of index s <n + 1.

We are interested in those elements having index of nilpotency s < n + 1. It means
that s = 2 for the elements of M3(G5) and s is either 2 or 3 for the elements of Ms(GY).

Equipping the Grassmann algebra Gy for k& = 2,3 with involution * we define two
involutions on the matrix algebras M»(G),) and define the index s for the symmetric and
skew-symmetric due to the considered involutions elements of the corresponding matrix
algebras.

2. Nilpotency of the f- and b-symmetric and skew-symmetric elements
of (M2(G%,*),8) and (M2(GY,%*),b), respectively. In [I| two involutions * are
considered on the infinite dimensional Grassmann algebra G: the identical on the genera-
tors of G one which we shall denote * = id and the involution * = ¢12 acting on the
generators by ¢1a2(eax—1) = ear and ¢12(ear) = eap—1 for k = 1,2,.... When we work on
G2 over the vector space V3 the involution ¢12 means that ¢12(e1) = ez and ¢12(e2) = e;.
Then ¢12(e1e2) = d12(e2)pi2(e1) = erea.

For a; € (Ga,* = ¢12), i =1,...,4, we define 7]

(1) ar a2 ' _( al a3
as a4 ay a; )
Let a; = a;e1 + Piea +vierea for i = 1,...,4. Thus a matrix My € (Ma2(GY, 12),1) is
f-symmetric for
ar=p1, az=0; az=/[p, aq1=/p0 Ile
M. — ar(er +e2) +11e1e2  azer + azes + Yze1e2
s asel + ages + eeres  ager + ea2) + yaerea '
Nilpotency of index s = 2 of M, leads to two cases for the coefficients, namely:
(2) 1. as =as
2. Qg = —Q3, a1 = (4.
Thus we get:
Theorem 1. There are two types of f-symmetric matrices from (Ma2(Gh, ¢12),1),
which are nilpotent of index s = 2, namely
M., = ai(er +e2) +verea  aser + e2) +zerez
5 az(er +e2) +12e1e2  au(er + e2) + yaeren
and

Moo — ag(er +e2) +yerea  as(er —e2) + ye1e2
52 —ag(er — e2) +y2e1e2  aq(er +e2) +yaerer )7
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Corrolary 1. The subsets Wy = {Ms1}, Wa = {Msa} of (M2(Gh, ¢12),1) are vector
spaces.

Proof. For any two matrices Ay, By € W7 and As, Bo € Wy we have A1B; = 0 and
A9 By + By Ay = 0. Thus (aAZ + ﬁBz)2 =0 fori= 1,2 and Oz,ﬁ e K.

Now we consider the skew-symmetric case. A skew-symmetric matrix has the form

M.. — ( ai(er —ez) Qe1 — azez + y2e1€2 )
8s — _ _ _ .
Qz€1 — (Qip€z — Y2€1€3 ay(er — ez)

Nilpotency of index s = 2 gives the same conditions (2) on the coefficients of the
entries of M,. Thus we get:

Theorem 2. There are two types of §-skew-symmetric matrices from (M2(Gh, ¢12),1),
which are nilpotent of index s = 2, namely

Mo — ai(er — e2) as(er — e2) + Y2e1€2
ssl —
az(e; — ez) — yee1€2 as(er — e2)
and
Mooy — ay(er — e2) as(e1 + e2) + yaeqe0
582 — .
—aa(er + e2) — yeren ai(er — e2)

Corrolary 2. The subsets Wy = {Mss1}, Wy = {Mss2} of (Ma(GY, d12),1) are vector
spaces.

Now we consider the b-involution [7] defined by

b * *
a1 as ay a
(mu)-(33)
3 a4 a3 al
Analogously as above we get:
Theorem 3. There are two classes of b-symmetric matrices from (Mz2(Gh, ¢12),b),
which are nilpotent of index s = 2, namely
Moy — ar(er +e2) +11e1e2  ag(er + e2) + yaeren
st as(er +e2) +yze1ea  aq(er +e2) + y1eren
and
Moo — [ Qrent Biea + 1ieies Ye€1€2
s2 — .
Y3€1€2 prer + arex + yieie2

Corrolary 3. The subsets W5 = {Ms1}, We = {Ms2} of (M2(Gh, ¢12),b) are vector
spaces.

Proof. For any two matrices A and B from W5 (or from Ws) we have AB+ BA = 0.

Theorem 4. There are two classes of b-skew-symmetric matrices from (Mz2(Gh, ¢12),b),
which are nilpotent of index s = 2, namely

o ( ai(er — ez2) + 1erez as(e; — ea) )
a3(€1 - 62) a1(€1 - 62) — Y1€1€2
and
Moo — ( ajer + Biez + yieien 0 >
552 0 —Bie1 —ajex —yie1ex )
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Corrolary 4. The subsets Wy = { M1} and Wg = {Mss2} of (M2(Gh, ¢12),b) are
vector spaces.

Remark 1. Analogues of Theorems 1 — 4 can be formulated in the case of x = id.

3. Nilpotency of the §- and b-symmetric and skew-symmetric elements of
(M2(G%, %), 8) and (M2(GY, *),b). Now the involution on G3 could be only * = id.
Thus the f-involution, defined by (1), leads to the following conditions:

a2

Let a matrix from Ms(GY%,id) have the form ( Zl ), where
3 Q4

a1 = o€y + ageg + azeres + ages + asejes + ageges + arerezes,
as = Bre1 + Paes + Baeres + Baes + Bseres + Beezes + Prereaes,
a3 = 7v1e1 + Y22 + y3e1e2 + ya€3 + ys€1€3 + Y6€2€3 + Yre1ezes,
ag = 011 + daeg + dze169 + dge3 + d5e163 + dgeaes + dreieses.
Then
a1* = q1e1 + qoeg — (g3e1eg + qgesz — (i5e1e3 — (geae3 — (i7e1e2es,
asx = fre1 + Paea — Bzerea + fBaes — Pseres — Beezes — Brereses,
ag* = y1e1 + y2€2 — Y3€1€2 + Y4€3 — Y5€1€3 — Y6€2€3 — Y7€1€2€3,
Aq* = (5161 + (5262 - (536162 + (5463 — (556163 - (566263 — (57616263.
For a symmetric matrix M, from (M2(G%,id),{) we have
as =a5 =ag = a7 =0,
m=p0, v2=0, B3=-03 =0, v»=-05 v%=-0, 17=-0,
53:55:56:57:0, i.e.
a1 = ajey + ages + ages,
az = fre1 + P26z + Bzerea + Baes + Bseres + Peezes + Prereses,
a3 = Bre1 + Baes — PBaeres + Paes — Bseres — Boeses — Prereaes,

aqg = 01e1 + daea + d4€3.
Due to the remarks at the end of Section 1 we have to consider two cases:

Nilpotency of index s = 2: For M2 = (a;;) we have

aj; = aze =0,
a2 = (1 f2 — aaffy + P12 — PBadi)eres
+ (a1Bs — ayBr + B1dy — Pad1)eres
+ (24 — aaf2 + [204 — Pad2)eses
+ (0186 — 25 + a B3 + B304 — B502 + P601)e1e2es,
as1 = —ai2, i.e.
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Theorem 5. A symmetric matriz My = ( Zl @2 ) from (M2(G%,1d), 1), where
3 a4
a1 = «qie; + ages + ages,
(4) ag = fre; + Baeg + Bzeren + faes + Pseies + Boeges + Brereses,
a3 = [ier + Paes — Bzerea + Byes — PBreresz — Beeaes — PBrereses,
ag = d1e1+ b2ea + dqe3

is nilpotent of index s = 2 iff
(a1 = 01)B2 — (a2 = 02)B1 =
(a1 —61)Bs — (g —04) 1 =
(a2 - 52)54 - (a4 - 54)52 =
a106 — a2 + asfBs + B304 — 502 + B01 =

o o oo

By analogous considerations we get:

Theorem 6. A skew-symmetric matriz My = < Zl @2 ) from (M2(G%,id), ), where
3 a4
a1 = ogejez +aseies + agezes + arejeses,
(5) ay = [ie1+ Paes + Baeres + Paes + Osei1es + Peeses + Breieses,
a3 = —Bie; — Paes + Pzerea — Baes + Bseres + Beezes + Prerezes,
ay = Odzei1es + dseres + dgeaes + dreieqes

is nilpotent of index s = 2 iff
(a3 +03)B4 — (a5 + 05) B2 + (a6 + d6) 1 = 0.

Nilpotency of index s = 3:

Theorem 7. A #-symmetric matriz with entries (4) is nilpotent of index s = 3 iff
at least one of the elements (a1 — 01)P2 — (a2 — 02)01, (a1 — 01)Bs — (ag — 04)B1 and
(g — 02) 04 — (g — 04) P2 of the field K is different from 0 and

(182 — azf1 + P16z — B261)B1 — (c1fs — aafi + B1da — Bad1) 2
+ (2fs — cufla + B204 — Bad2)B1 =
(182 — a2f1 + 162 — $201)04 — (01 s — auf1 + B164 — B461)02
+ (2B — auflz + 204 — Bad2)01 =

— (a1B4 — B + B164 — Pad1)az

+ (2fs — cuflo + B204 — Pada)oyy =

(182 — agfi + P16z — F261) s

Theorem 8. A f#-skew-symmetric matriz with entries (5) is nilpotent of index 3 iff
asfs — asfe + agfb + B10s — P205 + Bads # 0.

Remark 2. The case of the b-involution is treated analogously.
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4. Nilpotency of index 2 of the - and b-symmetric and skew-symmetric
variables of a matrix algebra over a special finite dimensional algebra M.
Mishchenko and Valenti [5] construct a finite dimensional K-algebra M with involution
* and study its *-polynomial identities. They show that the %-variety generated by M,
denoted by var(M, %), has almost polynomial growth. It means that the sequence of *-
codimensions of M (i.e. the dimension of the space of multilinear polynomialsin 1,2,.. . *-
variables in the corresponding relatively free algebra with involution) cannot be bounded
by any polynomial function but any proper s-subvariety of var(M,«) has polynomial
growth.

We recall the construction of M, given in [5]:

Let e;; denote the usual matrix units and define the subalgebra
A=K(e11 +e33) ® Kera® Keis @ Keao ® Keas

of the 3 x 3 upper triangular matrix algebra over K. The algebra A has an involution x*
obtained by reflecting the matrices along the second diagonal, i.e.

u r t * u s t
0 v s = 0O v r
0 0 u 0 0 u

Notice that I = Kej3 is a two-sided *-invariant ideal of A. Then M = A/I is a four-
dimensional algebra with induced involution that we shall denote *. If

ei1 +e3+I=a, exn+I=b,
eix+I=c, ey+I=c",

then M = Spang{a,b, ¢, c*} with multiplication table

a-a=a, a-b=0, a-c=c¢, a-c*=0,
(6) b-a=0, b-b=b, b-c=0, b-c"=c",
c-a=0, c-b=c¢, c¢c-c=0, c-c*=0,
cra=c", ¢"-b=0, ¢"-c=0, ¢ -c"=0.

Now we consider the 2 x 2 matrix algebra over M with the #- and the b-involution,
defined in (1) and (3), respectively. Let

_ a1a+ 1b+ yie+ 01¢F  aga + Pab+ yac + doct
asa + O3b + y3c+ 03¢®  aga + Bab + yac + duc*
be a matrix with entries from M.

A. We start with the x = f-involution. Due to (1) and (6) we have
At — [ et Bidb+dict e’ aza+ f3b+ 03¢+ 3¢t
2a + fB2b + b2 +y2¢"  asa + Bab + dac+ yac* )
The symmetry of the matrix A leads to the conditions

ag =03, B2=03, =0, Y=90, v3=70, 71=04

The index of nilpotency s = 2 for the matrix

A — ( ara+ Bib+yi(c+c*)  asa+ Bab+ yac + dac* )

@ 2a + [2b + dac + y2c”  asa + Bab 4 ya(c+c¥)
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glves
(af + ad)a+ (B + B3)b + (a1 + azds + By + Baye)(c + ) = 0,
az(a1 + ag)a+ Bo(B1 + Ba)b + (crv2 + ays + Bay1 + Bary2)c
+ (21 + agds + G102 + Baya)c™ =0,
az (a1 + ag)a + B2(B1 + Ba)b + (a2y1 + aada + B102 + Bava)c
+(o1v2 + agvs + Bay1 + Baye)c” =0,
(a3 + a)a+ (B3 + )b+ (0272 + auya + B2da + fava) (¢ +¢*) =0, ie.

Theorem 9. A #-symmetric matriz (7) is nilpotent of index s = 2 iff
aft+a3=0, fF+p5 = 0,

a1y +agds + By + Boye =

as(ar +oq) =0, [o(Bi+Ps) =

a1y + aeya + Ben1 + Paye =

azy1 + @ad2 + 162 + Pava

aj +ai=0, f5+0%

oy + agys + Bada + Bays =

)

)

o oo o o o

The skew-symmetry case gives:

Theorem 10. A §-skew-symmetric matrix
A — ~y1(c — c¥) aoa + B2b + yac + doc*
o —a2a — b — d2¢ — y2c” Ya(c — )
is nilpotent of index s = 2 iff ag = B3 = 0.
B. Now we consider the b-involution.

Theorem 11. A b-symmetric matrix
B, = ( ara+ Pib+ yec+ 6t asa+ Bab+ y2(c+ ¢¥) )

aga+ O3+ vys(c+c*) ara+ f1b+ dic+ yic*

is nilpotent of index s = 2 iff

of + azaz =0, [+ Pafs
a1+ agys + B + B2
101 + azy2 + S0 + Bays =
ajo =0, B1f2
a1y2 + @201 + B1ye + o
araz =0, [iffs =
a1y +azy + B1ys + B30 =

1l
oo oo o oo

Theorem 12. A b-skew-symmetric matriz
B _ aia + B1b + vyic + d1c* Ya(c — ¢*)
* Y3(c —¢”) —aia — b — d1c — yic*
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is nilpotent of index s = 2 iff oy = 1 = 0.
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HMJIIIOTEHTHOCT B MATPYHUN AJITEBPU C MTHBOJIFOIIN £
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HAQ AJITEBPU C NTHBOJIFOIIN A

Ienka PainkoBa

3a upbcren ¢ uHBOMOIM (A, %) Ce pasryeXIar JBe MHBOIIOIMA § U b B MATpUYHUS
OPBCTEH Ha KBaJPATHUTE MaTpunu or Bropu pes Ma(A, ). B cratusita ca HamMepeHn
HEOOXOIMMU U JIOCTATHIHM YCJOBHUS 3a KJlaca HA HUJIIOTEHTHOCT HA CUMETPUIHHUTE
U aHTU-CUMETPUYHHUTE OTHOCHO BCSIKA OT JBeTe nHBOJoIuY eemeHTH B (M2 (A, *), 1)
u (M2(A, *),b) B ciayuasi, xorato A e KpaiiHomepHa I'pacmanoBa anrebpa (6e3 1) or
pasmepHoct 3 u ot pa3meproct 7. Koraro A e KoHKpeTHaTa YeTupuMepHa ajrebpa c
VHBOJIIOIHSI C TIOYTH IOJIMTHOMEH P'bCT Ha *-KOPa3MEPHOCTUTE, OMUcaHa 0T Muinenko u
BanenTn, ca HamepeHn HEOOXO UMY U JOCTATHIHU YCJIOBUS 38 HUJIITOTEHTHOCT OT KJIAC
2 Ha CUMETPUYHHUTE U AHTH-CAMETPUYHUTE €JIEMEHTH OTHOCHO JIBETE Pa3IyIeXKIaHu
VHBOJIFOIUH.



