МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2009 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2009 Proceedings of the Thirty Eighth Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 1–5, 2009

A COMPATIBLE METRIC FOR COMPUTING THE DIMENSION DIAMETERS OF SUBSETS OF ESSENTIAL SYSTEMS

Vladimir Todorov, Atanas Hamamdjiev, Simeon Stefanov

Let X be a normal space. In this note we propose a construction of a pseudometric r in X which allows an easy calculation of the *n*-dimensional diameters of some subsets of X. Some consequences of this result are discussed.

1. Basic concepts and definitions. **1.1.** Let X be a normal topological space and consider a system

$$\mathcal{E} = \{ (A_1, B_1); (A_2, B_2); \dots; (A_n, B_n) \}$$

consisting of n disjoint pairs of closed subsets of X. X is a normal space an hence for every i = 1, 2, ..., n one can construct a continuous function $f_i : X \to [0, 1]$ such that $f_i(A_i) = 0$ and $f_i(B_i) = 1$. The system \mathcal{E} generates a pseudometric p by natural way:

$$p(x,y) = \max_{1 \le i \le n} |f_i(x) - f_i(y)|$$

Obviously the topology in X is compatible with the pseudometric p in a sense that every "open ball" respective to p is an open subset of X. Note furthermore, that if $(X, \tilde{\varrho})$ is metrizable with a metric $\tilde{\varrho}$ in it then

$$\varrho^*(x,y) = \widetilde{\varrho}(x,y) + \max_{1 \le i \le n} |f_i(x) - f_i(y)|$$

is an equivalent metric in X.

Indeed, let us denote by $O_{\varepsilon}^{\varrho^*}(x)$ and by $O_{\varepsilon}^{\widetilde{\varrho}}(x)$ the open ε -balls respective the metrics ϱ^* and $\widetilde{\varrho}$ respectively. Clearly, $O_{\varepsilon}^{\widetilde{\varrho}}(x) \supset O_{\varepsilon}^{\widetilde{\varrho}}(x)$ for every x because $\varrho^* \geq \widetilde{\varrho}$. Conversely let $\varepsilon > 0$ be a given positive number and consider the open ball $O_{\varepsilon}^{\widetilde{\varrho}}(x)$. The function f_i is continuous at x and hence for every i there exists $\delta_i > 0$ such that $|f(y) - f(x)| < \frac{\varepsilon}{2}$ whenever $\widetilde{\varrho}(x,y) < \delta_i$. Now put $\delta = \min\left\{\frac{\varepsilon}{2}; \min_{1\leq i\leq n} \delta_i\right\} > 0$. It is easy to see that if $\widetilde{\varrho}(x,y) < \delta$ then one has $\varrho^*(x,y) < \varepsilon$. In the sequel in case when X is metrizable we shall suppose that it is equipped with the metric ϱ^* and that, in addition $\varrho^*(x,y) \leq 1$ –

shall suppose that it is equipped with the metric ρ^* and that, in addition $\rho(x, y) \leq 1$ – otherwise one may replace ρ^* with the equivalent metric $\rho(x, y) = \min\{1, \rho^*(x, y)\}$. **1.2.** Further, we recall some general facts in dimension theory. For an arbitrary subset

Y of X by diameter $d^p(Y)$ we mean as usual the number $d^p(Y) = \sup\{p(x,y) | x \in Y, y \in Y\}$. Now, let \mathcal{U} be an open covering of a pseudometric space X. By mesh^p \mathcal{U} we mean the number $\sup\{d^p(U) | U \in \mathcal{U}\}$. If $Y \subset X$ then the *n*-dimensional diameter $d_n^p(Y)$ of the subset Y is the number $\inf\{\operatorname{mesh}^p(\mathcal{U}_Y)\}$, where \mathcal{U} runs the set of all open coverings of X with $\operatorname{ord}(\mathcal{U}_Y) \leq n+1$, where $\mathcal{U}_Y = \{U \cap Y | U \in \mathcal{U}\}$.

Note that some authors refer to d_n as d_{n+1} ([2], [1]). In these papers d_n is called an *n*-dimensional degree. Here we follow the terminology which is adopted in [3], so we shall call d_n an *n*-dimensional diameter.

1.3. Definition [4]. By a metric dimension $\mu^p - \dim(Y)$ of a subspace Y of X we mean the least of the integers n such that for every $\varepsilon > 0$ there is an open locally finite covering \mathcal{U} of Y for which $\operatorname{ord}(\mathcal{U}) \leq n+1$ and $\operatorname{mesh}(\mathcal{U}) < \varepsilon$.

For a metric space (X, ϱ) , the inequality $d_n(X) > 0$ means that the metric dimension $\mu - \dim X$ of X is not less than n + 1 [6]. Clearly, for compact metric spaces, $d_n(X) = 0$ if and only if dim $X \leq n$.

1.4. Definition [3]. Let *n* be an integer and let ε be a positive number. The space *X* is referred to as (n, ε) -connected between the closed sets *P* and *Q* if for an arbitrary partition *C* between *P* and *Q* in *X* we have $d_{n-2}^p(C) > \varepsilon$.

Consider again the system $\mathcal{E} = \{(A_1, B_1); (A_2, B_2); \ldots; (A_n, B_n)\}$ consisting of n disjoint pairs of closed subsets of X.

1.5. Definition. The system \mathcal{E} is essential (or n-defining [6]), if for any closed sets P_i , $i = 1, \ldots, n$, separating A_i and B_i , the intersection $\bigcap_{i=1}^n P_i$ is nonempty.

Obviously the essential system is an analogue of the system of opposite faces of the *n*-dimensional cube I^n ; I = [0, 1]. Because of that we shall call A_i and B_i faces of \mathcal{E} .

1.6. Definition. The subset $M \subset X$ does not cut X between the sets $P \subset X$ and $Q \subset X$ if one can find a connected closed set $K \subset X$ for which $K \subset X \setminus M$ and $K \cap P \neq \emptyset \neq K \cap Q$.

2. *n*-defining systems. Everywhere below we consider a pseudometric which is generated by an *n*-defining system.

In the sequel we use the following Lemma [5].

2.1. Lemma. Let \mathcal{E} be an essential system in the normal space X and \mathcal{U} be a locally finite open covering of X with $\operatorname{ord} \mathcal{U} \leq n$. Then some element of \mathcal{U} intersects two opposite faces of \mathcal{E} .

Lemma 2.2. Suppose that L cuts the normal space X between the disjoint closed nonempty sets P and Q. Then every open neighborhood O of L contains a (closed in X) partition C between P and Q.

Proof. First, suppose that O contains P or Q (or both of them). Let, for example, $O \supset P$. Then $O^* = O \setminus Q$ is an open set and $O^* \supset P$ because $P \cap Q = \emptyset$. Keeping in mind that X is a normal space, we obtain an open set $U \subset O^*$, whose closure \overline{U} is contained in O^* and $P \subset U$. Evidently, the boundary $C = \partial U$ of U is a partition between P and Q, and $C \subset O$.

Therefore, the essential part of the proof appears in the case when $P^* = P \setminus O$ and $Q^* = Q \setminus O$ are nonempty (and obviously closed) subsets of $Y = X \setminus O$. Note that Y is a closed subset of X, and $Y \cap L = \emptyset$. By the condition of the Lemma, it follows that Y is not connected between P^* and Q^* . That is to say, there exist two disjoint and open in Y sets U^* and V^* for which $U^* \supset P^*$, $V^* \supset Q^*$ and $Y = U^* \cup V^*$.

The last equality implies that U^* and V^* are also closed in Y, and hence, in X. Further, let us put $A = P \cup U^*$ and $B = Q \cup V^*$. Apparently, A and B are closed subsets 152 of X and $A \supset P$, $B \supset Q$.

To finish the proof, we shall show that $A \cap B = \emptyset$:

 $A \cap B = (P \cup U^*) \cap (Q \cup V^*) = (P \cap Q) \cup (P \cap V^*) \cup (U^* \cap Q) \cup (U^* \cap V^*) = \emptyset.$

To prove this, note that clearly $P\cap Q=\emptyset,\,U^*\cap V^*=\emptyset$ and for the remaining parts of the union, we have

$$P = (P \setminus O) \cup (P \cap O) = P^* \cup (P \cap O) \subset U^* \cup O$$

since $P^* \subset U^*$ and $P \cap O \subset O$. Hence,

$$P \cap V^* \subset (U^* \cup O) \cap V^* = (U^* \cap V^*) \cup (O \cap V^*) = \emptyset.$$

Proceeding in the same way, we obtain that $U^* \cap Q = \emptyset$. Thus, we have constructed closed sets $A \supset P$ and $B \supset Q$ with $A \cap B = \emptyset$.

By condition X was normal, so we may choose disjoint open in X neighborhoods $U \supset A$ of A and $V \supset B$ of B. To finish the proof, let us put $C = X \setminus (U \cup V)$. Now, from $U \supset A \supset U^*$ and $V \supset B \supset V^*$ it follows that

 $C = X \setminus (U \cup V) \subset X \setminus (U^* \cup V^*) = X \setminus Y = X \setminus (X \setminus O) = O.$

As an immediate consequence of the above lemmas one can obtain the following result for normal spaces:

2.3. Theorem. Suppose that X is a normal space and let dim $X \ge n$. Then for every normally placed subset $M \subset X$ with $d_{n-2}^p(M) < 1$ we have $d_1^p(X \setminus M) > 0$. That means that in some sense M "does not cut" X between every pair (A, B) of opposite faces of \mathcal{E} .

Proof. Note first that if A is a face of the system \mathcal{E} then $d_{n-2}^p A = 1$. Now, let us suppose that M cuts X between A and B, and consider an open covering $\mathcal{U} = \{U_1, \ldots, U_p\}$ of M with $\operatorname{ord}(\mathcal{U}) \leq n-1$ and $\operatorname{mesh}(\mathcal{U}) < 1$. Next, let $O = \cup U_i$ be the body $|\mathcal{U}|$ of \mathcal{U} . Then $A \setminus O \neq \emptyset \neq B \setminus O$ because $d_{n-2}(A) = d_{n-2}(B) = 1$ and by construction $d_{n-2}(O) < 1$. Next, we apply Lemma 2.2 to obtain that O contains a partition C between A and B. It is easy to see that if C is a partition between two faces of \mathcal{E} then $d_{n-1}^p C = 1$, so we have obtained a contradiction.

The above theorem shows that the complement $X \setminus M$ of a low dimensional normally placed subset M of a normal space X with dim $X \ge n$ is "connected" in the sense that the dimensional diameter of $X \setminus M$ is greater than zero. Note that X can be even totally disconnected (even one can say that $\mu^p - \dim(X \setminus M) \ge 1$).

3. The space X is compact. Let X be a compact T_2 space with *n*-defining system \mathcal{E} in it. Then the following theorem holds:

Theorem 3.1. Let X be a compact space with n-defining system \mathcal{E} and let as usual p be the pseudometric, generated by \mathcal{E} . Next suppose that $\{F_i\}_{i=1}^{\infty}$ is a countable system of closed subsets in X such that the inequality

$$d_{n-2}^p\left(\bigcup_{i\neq j}(F_i\cap F_j)\right)<1$$

holds. Then $X \neq \sum_{i=1}^{\infty} F_i$.

Proof. Suppose the contrary and denote by M the sum $M = \bigcup_{i \neq j} (F_i \cap F_j)$. Note that M is a F_{σ} subset of X and hence it is normally placed in X. Now we can apply Theorem 2.3 to obtain an open set O containing M an such that $d_{n-2}^p(O) < 1$. Then O 153

does not contain a partition between every pair of opposite faces of \mathcal{E} . In other words, $Y = X \setminus O$ does not separate for example the faces A_1 and B_1 . Therefore the space Y is a compactum which is connected between A_1 and B_2 and $Y = \bigcup_{i=1}^{\infty} Y_i$ where $Y_i = F_i \cap Y$. Obviously $Y_i \cap Y_j = \emptyset$ if $i \neq j$ which contradicts the well known Sierpinski theorem [7].

Various results from [9], [8] and [6] can be directly obtained as corollories of the above

theorem.

REFERENCES

- P. S. URYSOHN. Memoire sur les multiplicites Cantoriennes (I). Fundam. Math., 7 (1925), 30–139.
- [2] Y. STERNFELD. Extesion of mappings of Bing spaces into ANRs. Topology and Appl., 80 (1996), 189–194.
- [3] P. S. ALEXANDROFF. Die Kontinua (V^p) eine Verscharfung der Cantorshen Mannigfaltigkeiten. Monatsh. Math., Bd. 61, H. 1 (1957), 67–76.
- [4] P. ALEXANDROFF, B. PASINKOV. An introduction to the Dimension Theory. Moscow, Nauka, 1973.
- [5] V. T. TODOROV. A lower bound for the dimension diameters of certain sets with respect to essential systems. *Math. and Education in Math.*, 34 (2005), 145–149.
- [6] K. NAGAMI. Dimension Theory. Academic Press, New York and London, 1970.
- [7] W. SIERPINSKI. Sur les ensembles connexes et non connexes, Fundam. Math., 2 (1921), 81–95.
- [8] N. G. HADJIIVANOV. The *n*-dimensional cube can not be represented as a sum of countable many proper closed sets which pair-wise intersections are no more than (n-2)-dimensional. *Compt. Rend. Acad. Sci. of USSR*, **195**, No 1 (1970), 43–45 (in Russian).
- [9] J. B. WILKINSON. A lower bound for the dimension of certain G_{δ} sets in completely normal spaces. *Proc. Amer. Math. Soc.*, **20** (1969), 175–178.

V. T. Todorov, A. L. Hamamjiev, S. T. Stefanov Department of Mathematics
UACEG
1, Hr. Smirnenski blv.
1421 Sofia, Bulgaria
e-mail: vtt_fte@uacg.bg; seon@in.com

ПОЛЕЗНА МЕТРИКА ЗА ПРЕСМЯТАНЕТО НА РАЗМЕРНОСТНИ

диаметри на подмножества на съществени системи

Владимир Тодоров, Атанас Хамамджиев, Симеон Стефанов

Нека X е нормално пространство. В тези бележки предлагаме конструкция на псевдометрика r в X, която позволява лесно пресмятане на размерностните диаметри на някои подмножества на X. Дискутират се също така някои следствия от предложената техника.