A COMPATIBLE METRIC FOR COMPUTING THE DIMENSION DIAMETERS OF SUBSETS OF ESSENTIAL SYSTEMS

Vladimir Todorov, Atanas Hamamdjiev, Simeon Stefanov

Let X be a normal space. In this note we propose a construction of a pseudometric r in X which allows an easy calculation of the n-dimensional diameters of some subsets of X. Some consequences of this result are discussed.

1. Basic concepts and definitions. 1.1. Let X be a normal topological space and consider a system

$$
\mathcal{E}=\left\{\left(A_{1}, B_{1}\right) ;\left(A_{2}, B_{2}\right) ; \ldots ;\left(A_{n}, B_{n}\right)\right\}
$$

consisting of n disjoint pairs of closed subsets of $X . X$ is a normal space an hence for every $i=1,2, \ldots, n$ one can construct a continuous function $f_{i}: X \rightarrow[0,1]$ such that $f_{i}\left(A_{i}\right)=0$ and $f_{i}\left(B_{i}\right)=1$. The system \mathcal{E} generates a pseudometric p by natural way:

$$
p(x, y)=\max _{1 \leq i \leq n}\left|f_{i}(x)-f_{i}(y)\right|
$$

Obviously the topology in X is compatible with the pseudometric p in a sense that every "open ball" respective to p is an open subset of X. Note furthermore, that if $(X, \widetilde{\varrho})$ is metrizable with a metric $\widetilde{\varrho}$ in it then

$$
\varrho^{*}(x, y)=\widetilde{\varrho}(x, y)+\max _{1 \leq i \leq n}\left|f_{i}(x)-f_{i}(y)\right|
$$

is an equivalent metric in X.
Indeed, let us denote by $O_{\varrho^{*}}^{\varrho^{*}}(x)$ and by $O_{\bar{\varepsilon}}^{\widetilde{\varrho}}(x)$ the open ε-balls respective the metrics ϱ^{*} and $\widetilde{\varrho}$ respectively. Clearly, $O_{\varepsilon}^{\widetilde{\varrho}}(x) \supset O_{\varepsilon}^{\varrho^{*}}(x)$ for every x because $\varrho^{*} \geq \widetilde{\varrho}$. Conversely let $\varepsilon>0$ be a given positive number and consider the open ball $O_{\varepsilon}^{\widetilde{ }}(x)$. The function f_{i} is continuous at x and hence for every i there exists $\delta_{i}>0$ such that $|f(y)-f(x)|<\frac{\varepsilon}{2}$ whenever $\widetilde{\varrho}(x, y)<\delta_{i}$. Now put $\delta=\min \left\{\frac{\varepsilon}{2} ; \min _{1 \leq i \leq n} \delta_{i}\right\}>0$. It is easy to see that if $\widetilde{\varrho}(x, y)<\delta$ then one has $\varrho^{*}(x, y)<\varepsilon$. In the sequel in case when X is metrizable we shall suppose that it is equipped with the metric ϱ^{*} and that, in addition $\varrho^{*}(x, y) \leq 1-$ otherwise one may replace ϱ^{*} with the equivalent metric $\varrho(x, y)=\min \left\{1, \varrho^{*}(x, y)\right\}$.
1.2. Further, we recall some general facts in dimension theory. For an arbitrary subset Y of X by diameter $d^{p}(Y)$ we mean as usual the number $d^{p}(Y)=\sup \{p(x, y) \mid x \in Y, y \in$ $Y\}$. Now, let \mathcal{U} be an open covering of a pseudometric space X. By $\operatorname{mesh}^{\mathcal{p}} \mathcal{U}$ we mean the number $\sup \left\{d^{p}(U) \mid U \in \mathcal{U}\right\}$.

If $Y \subset X$ then the n-dimensional diameter $d_{n}^{p}(Y)$ of the subset Y is the number $\inf \left\{\operatorname{mesh}^{p}\left(\mathcal{U}_{Y}\right)\right\}$, where \mathcal{U} runs the set of all open coverings of X with $\operatorname{ord}\left(\mathcal{U}_{Y}\right) \leq n+1$, where $\mathcal{U}_{Y}=\{U \cap Y \mid U \in \mathcal{U}\}$.

Note that some authors refer to d_{n} as $d_{n+1}([2],[1])$. In these papers d_{n} is called an n-dimensional degree. Here we follow the terminology which is adopted in [3], so we shall call d_{n} an n-dimensional diameter.
1.3. Definition [4]. By a metric dimension $\mu^{p}-\operatorname{dim}(Y)$ of a subspace Y of X we mean the least of the integers n such that for every $\varepsilon>0$ there is an open locally finite covering \mathcal{U} of Y for which $\operatorname{ord}(\mathcal{U}) \leq n+1$ and $\operatorname{mesh}(\mathcal{U})<\varepsilon$.

For a metric space (X, ϱ), the inequality $d_{n}(X)>0$ means that the metric dimension $\mu-\operatorname{dim} X$ of X is not less than $n+1[6]$. Clearly, for compact metric spaces, $d_{n}(X)=0$ if and only if $\operatorname{dim} X \leq n$.
1.4. Definition [3]. Let n be an integer and let ε be a positive number. The space X is referred to as (n, ε)-connected between the closed sets P and Q if for an arbitrary partition C between P and Q in X we have $d_{n-2}^{p}(C)>\varepsilon$.

Consider again the system $\mathcal{E}=\left\{\left(A_{1}, B_{1}\right) ;\left(A_{2}, B_{2}\right) ; \ldots ;\left(A_{n}, B_{n}\right)\right\}$ consisting of n disjoint pairs of closed subsets of X.
1.5. Definition. The system \mathcal{E} is essential (or n-defining [6]), if for any closed sets $P_{i}, i=1, \ldots, n$, separating A_{i} and B_{i}, the intersection $\bigcap_{i=1}^{n} P_{i}$ is nonempty.

Obviously the essential system is an analogue of the system of opposite faces of the n-dimensional cube $I^{n} ; I=[0,1]$. Because of that we shall call A_{i} and B_{i} faces of \mathcal{E}.
1.6. Definition. The subset $M \subset X$ does not cut X between the sets $P \subset X$ and $Q \subset X$ if one can find a connected closed set $K \subset X$ for which $K \subset X \backslash M$ and $K \cap P \neq \emptyset \neq K \cap Q$.
2. \boldsymbol{n}-defining systems. Everywhere below we consider a pseudometric which is generated by an n-defining system.

In the sequel we use the following Lemma [5].
2.1. Lemma. Let \mathcal{E} be an essential system in the normal space X and \mathcal{U} be a locally finite open covering of X with ord $\mathcal{U} \leq n$. Then some element of \mathcal{U} intersects two opposite faces of \mathcal{E}.

Lemma 2.2. Suppose that L cuts the normal space X between the disjoint closed nonempty sets P and Q. Then every open neighborhood O of L contains a (closed in X) partition C between P and Q.

Proof. First, suppose that O contains P or Q (or both of them). Let, for example, $O \supset P$. Then $O^{*}=O \backslash Q$ is an open set and $O^{*} \supset P$ because $P \cap Q=\emptyset$. Keeping in mind that X is a normal space, we obtain an open set $U \subset O^{*}$, whose closure \bar{U} is contained in O^{*} and $P \subset U$. Evidently, the boundary $C=\partial U$ of U is a partition between P and Q, and $C \subset O$.

Therefore, the essential part of the proof appears in the case when $P^{*}=P \backslash O$ and $Q^{*}=Q \backslash O$ are nonempty (and obviously closed) subsets of $Y=X \backslash O$. Note that Y is a closed subset of X, and $Y \cap L=\emptyset$. By the condition of the Lemma, it follows that Y is not connected between P^{*} and Q^{*}. That is to say, there exist two disjoint and open in Y sets U^{*} and V^{*} for which $U^{*} \supset P^{*}, V^{*} \supset Q^{*}$ and $Y=U^{*} \cup V^{*}$.

The last equality implies that U^{*} and V^{*} are also closed in Y, and hence, in X. Further, let us put $A=P \cup U^{*}$ and $B=Q \cup V^{*}$. Apparently, A and B are closed subsets
of X and $A \supset P, B \supset Q$.
To finish the proof, we shall show that $A \cap B=\emptyset$:

$$
A \cap B=\left(P \cup U^{*}\right) \cap\left(Q \cup V^{*}\right)=(P \cap Q) \cup\left(P \cap V^{*}\right) \cup\left(U^{*} \cap Q\right) \cup\left(U^{*} \cap V^{*}\right)=\emptyset
$$

To prove this, note that clearly $P \cap Q=\emptyset, U^{*} \cap V^{*}=\emptyset$ and for the remaining parts of the union, we have

$$
P=(P \backslash O) \cup(P \cap O)=P^{*} \cup(P \cap O) \subset U^{*} \cup O
$$

since $P^{*} \subset U^{*}$ and $P \cap O \subset O$. Hence,

$$
P \cap V^{*} \subset\left(U^{*} \cup O\right) \cap V^{*}=\left(U^{*} \cap V^{*}\right) \cup\left(O \cap V^{*}\right)=\emptyset
$$

Proceeding in the same way, we obtain that $U^{*} \cap Q=\emptyset$. Thus, we have constructed closed sets $A \supset P$ and $B \supset Q$ with $A \cap B=\emptyset$.

By condition X was normal, so we may choose disjoint open in X neighborhoods $U \supset A$ of A and $V \supset B$ of B. To finish the proof, let us put $C=X \backslash(U \cup V)$. Now, from $U \supset A \supset U^{*}$ and $V \supset B \supset V^{*}$ it follows that

$$
C=X \backslash(U \cup V) \subset X \backslash\left(U^{*} \cup V^{*}\right)=X \backslash Y=X \backslash(X \backslash O)=O
$$

As an immediate consequence of the above lemmas one can obtain the following result for normal spaces:
2.3. Theorem. Suppose that X is a normal space and let $\operatorname{dim} X \geq n$. Then for every normally placed subset $M \subset X$ with $d_{n-2}^{p}(M)<1$ we have $d_{1}^{p}(X \backslash M)>0$. That means that in some sense M "does not cut" X between every pair (A, B) of opposite faces of \mathcal{E}.

Proof. Note first that if A is a face of the system \mathcal{E} then $d_{n-2}^{p} A=1$. Now, let us suppose that M cuts X between A and B, and consider an open covering $\mathcal{U}=$ $\left\{U_{1}, \ldots, U_{p}\right\}$ of M with $\operatorname{ord}(\mathcal{U}) \leq n-1$ and $\operatorname{mesh}(\mathcal{U})<1$. Next, let $O=\cup U_{i}$ be the body $|\mathcal{U}|$ of \mathcal{U}. Then $A \backslash O \neq \emptyset \neq B \backslash O$ because $d_{n-2}(A)=d_{n-2}(B)=1$ and by construction $d_{n-2}(O)<1$. Next, we apply Lemma 2.2 to obtain that O contains a partition C between A and B. It is easy to see that if C is a partition between two faces of \mathcal{E} then $d_{n-1}^{p} C=1$, so we have obtained a contradiction.

The above theorem shows that the complement $X \backslash M$ of a low dimensional normally placed subset M of a normal space X with $\operatorname{dim} X \geq n$ is "connected" in the sense that the dimensional diameter of $X \backslash M$ is greater than zero. Note that X can be even totally disconnected (even one can say that $\mu^{p}-\operatorname{dim}(X \backslash M) \geq 1$).
3. The space X is compact. Let X be a compact T_{2} space with n-defining system \mathcal{E} in it. Then the following theorem holds:

Theorem 3.1. Let X be a compact space with n-defining system \mathcal{E} and let as usual p be the pseudometric, generated by \mathcal{E}. Next suppose that $\left\{F_{i}\right\}_{i=1}^{\infty}$ is a countable system of closed subsets in X such that the inequality

$$
d_{n-2}^{p}\left(\bigcup_{i \neq j}\left(F_{i} \cap F_{j}\right)\right)<1
$$

holds. Then $X \neq \sum_{i=1}^{\infty} F_{i}$.
Proof. Suppose the contrary and denote by M the sum $M=\bigcup_{i \neq j}\left(F_{i} \cap F_{j}\right)$. Note that M is a F_{σ} subset of X and hence it is normally placed in X. Now we can apply Theorem 2.3 to obtain an open set O containing M an such that $d_{n-2}^{p}(O)<1$. Then O
does not contain a partition between every pair of opposite faces of \mathcal{E}. In other words, $Y=X \backslash O$ does not separate for example the faces A_{1} and B_{1}. Therefore the space Y is a compactum which is connected between A_{1} and B_{2} and $Y=\bigcup_{i=1}^{\infty} Y_{i}$ where $Y_{i}=F_{i} \cap Y$. Obviously $Y_{i} \cap Y_{j}=\emptyset$ if $i \neq j$ which contradicts the well known Sierpinski theorem [7].

Various results from [9], [8] and [6] can be directly obtained as corollories of the above theorem.

REFERENCES

[1] P. S. Urysohn. Memoire sur les multiplicites Cantoriennes (I). Fundam. Math., 7 (1925), 30-139.
[2] Y. Sternfeld. Extesion of mappings of Bing spaces into ANRs. Topology and Appl., 80 (1996), 189-194.
[3] P. S. Alexandroff. Die Kontinua $\left(V^{p}\right)$ - eine Verscharfung der Cantorshen Mannigfaltigkeiten. Monatsh. Math., Bd. 61, H. 1 (1957), 67-76.
[4] P. Alexandroff, B. Pasinkov. An introduction to the Dimension Theory. Moscow, Nauka, 1973.
[5] V. T. Todorov. A lower bound for the dimension diameters of certain sets with respect to essential systems. Math. and Education in Math., 34 (2005), 145-149.
[6] K. Nagami. Dimension Theory. Academic Press, New York and London, 1970.
[7] W. Sierpinski. Sur les ensenbles connexes et non connexes, Fundam. Math., 2 (1921), 81-95.
[8] N. G. Hadjiivanov. The n-dimensional cube can not be represented as a sum of countable many proper closed sets which pair-wise intersections are no more than $(n-2)$-dimensional. Compt. Rend. Acad. Sci. of USSR, 195, No 1 (1970), 43-45 (in Russian).
[9] J. B. Wilkinson. A lower bound for the dimension of certain G_{δ} sets in completely normal spaces. Proc. Amer. Math. Soc., 20 (1969), 175-178.
V. T. Todorov, A. L. Hamamjiev, S. T. Stefanov

Department of Mathematics
UACEG
1, Hr. Smirnenski blv.
1421 Sofia, Bulgaria
e-mail: vtt_fte@uacg.bg; seon@in.com

ПОЛЕЗНА МЕТРИКА ЗА ПРЕСМЯТАНЕТО НА РАЗМЕРНОСТНИ ДИАМЕТРИ НА ПОДМНОЖЕСТВА НА СЪЩЕСТВЕНИ СИСТЕМИ

Владимир Тодоров, Атанас Хамамджиев, Симеон Стефанов

Нека X е нормално пространство. В тези бележки предлагаме конструкция на псевдометрика r в X, която позволява лесно пресмятане на размерностните диаметри на някои подмножества на X. Дискутират се също така някои следствия от предложената техника.

