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DIMENSION DIAMETERS OF SUBSETS OF ESSENTIAL
SYSTEMS
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Let X be a normal space. In this note we propose a construction of a pseudometric r
in X which allows an easy calculation of the n-dimensional diameters of some subsets
of X. Some consequences of this result are discussed.

1. Basic concepts and definitions. 1.1. Let X be a normal topological space and
consider a system

& ={(A1, B1); (A2, B2);...; (An, Bn)}

consisting of n disjoint pairs of closed subsets of X. X is a normal space an hence for
every ¢ = 1,2,...,n one can construct a continuous function f; : X — [0, 1] such that
fi(A;) =0 and f;(B;) = 1. The system £ generates a pseudometric p by natural way:

pz,y) = pax, |fi(z) — fi(y)]-

Obviously the topology in X is compatible with the pseudometric p in a sense that
every “open ball” respective to p is an open subset of X. Note furthermore, that if (X, 9)
is metrizable with a metric ¢ in it then

0" (z,y) = o(z,y) + Jnax |fi(z) — fi(y)]

is an equivalent metric in X.

Indeed, let us denote by 02" () and by O2(x) the open e-balls respective the metrics
o* and g respectively. Clearly, O2(z) D 02 (z) for every x because ¢* > g. Conversely
let € > 0 be a given positive number and consider the open ball Og (). The function f;

€
is continuous at = and hence for every 4 there exists d; > 0 such that |f(y) — f(z)] < =

~ . £ . . .
whenever o(z,y) < §;. Now put § = mm{g; min 5i} > 0. It is easy to see that if
<i<n

o(z,y) < J then one has o*(z,y) < €. In the sequel in case when X is metrizable we
shall suppose that it is equipped with the metric p* and that, in addition o*(z,y) <1 -
otherwise one may replace ¢o* with the equivalent metric o(z,y) = min{1, o*(z,y)}.

1.2. Further, we recall some general facts in dimension theory. For an arbitrary subset
Y of X by diameter d(Y') we mean as usual the number dP(Y') = sup{p(z,y)|z €Y, y €
Y'}. Now, let U be an open covering of a pseudometric space X. By mesh”// we mean
the number sup{d?(U)|U € U}.
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If Y C X then the n-dimensional diameter d2(Y") of the subset Y is the number
inf{mesh” (U, )}, where U runs the set of all open coverings of X with ord(Uf,.) < n + 1,
where U, ={UNY|U € U}.

Note that some authors refer to d,, as d,+1 ([2], [1]). In these papers d,, is called an
n-dimensional degree. Here we follow the terminology which is adopted in [3], so we shall
call d,, an n-dimensional diameter.

1.3. Definition [4]. By a metric dimension p? — dim(Y") of a subspace ¥ of X we
mean the least of the integers n such that for every ¢ > 0 there is an open locally finite
covering U of Y for which ord(Yf) < n + 1 and mesh(U) < €.

For a metric space (X, g), the inequality d,,(X) > 0 means that the metric dimension
@ —dim X of X is not less than n+ 1 [6]. Clearly, for compact metric spaces, d,,(X) =0
if and only if dim X < n.

1.4. Definition [3]. Let n be an integer and let € be a positive number. The space
X is referred to as (n,e)—connected between the closed sets P and @ if for an arbitrary
partition C' between P and @ in X we have d,_,(C) > e.

Consider again the system & = {(A41,B1); (A2, B2);...;(An, By)} consisting of n
disjoint pairs of closed subsets of X.

1.5. Definition. The system € is essential (or n—defining [6]), if for any closed sets
P, i=1,...,n, separating A; and B;, the intersection () P; is nonempty.

i=1

Obviously the essential system is an analogue of the system of opposite faces of the
n-dimensional cube I"; I = [0, 1]. Because of that we shall call A; and B; faces of £.

1.6. Definition. The subset M C X does not cut X between the sets P C X and
Q C X if one can find a connected closed set K C X for which K ¢ X \ M and
KNP#0#KnNQ.

2. n-defining systems. Everywhere below we consider a pseudometric which is
generated by an n-defining system.

In the sequel we use the following Lemma [5].

2.1. Lemma. Let £ be an essential system in the normal space X and U be a locally
finite open covering of X with ord & < n. Then some element of U intersects two opposite
faces of £.

Lemma 2.2. Suppose that L cuts the normal space X between the disjoint closed
nonempty sets P and @. Then every open neighborhood O of L contains a (closed in X)
partition C' between P and Q.

Proof. First, suppose that O contains P or ) (or both of them). Let, for example,
O D P. Then O* = O\ Q is an open set and O* D P because PNQ = (). Keeping in mind
that X is a normal space, we obtain an open set U C O*, whose closure U is contained
in O* and P C U. Evidently, the boundary C = QU of U is a partition between P and
@, and C' C O.

Therefore, the essential part of the proof appears in the case when P* = P\ O and
Q* = Q\ O are nonempty (and obviously closed) subsets of Y = X \ O. Note that Y is
a closed subset of X, and Y N L = (). By the condition of the Lemma, it follows that ¥’
is not connected between P* and Q*. That is to say, there exist two disjoint and open in
Y sets U* and V* for which U* D P*, V* D @Q* and Y =U*U V™.

The last equality implies that U* and V* are also closed in Y, and hence, in X.
Further, let us put A = PUU* and B = QU V™. Apparently, A and B are closed subsets
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of Xand AD P, BD>Q.
To finish the proof, we shall show that AN B = (:

ANB=(PUUHNQUV)=PNQIUPNVHUU* NQ)UU*NV*) =0.
To prove this, note that clearly PNQ =0, U* N V* = () and for the remaining parts of
the union, we have

P=(P\O)U(PNO)=P*U(PNO)CU"UO
since P* C U* and PN O C O. Hence,
PNV CcUruo)NnvV =U"NnV)uOnv*) =4.
Proceeding in the same way, we obtain that U* N Q = (). Thus, we have constructed
closed sets A D P and B D Q with AN B = 0.
By condition X was normal, so we may choose disjoint open in X neighborhoods

U D Aof Aand V O B of B. To finish the proof, let us put C = X \ (UUV). Now, from
UDADU*and V O B D V* it follows that
C=X\UuV)cX\(U"UV ) =X\Y=X\(X\0)=0.

As an immediate consequence of the above lemmas one can obtain the following result
for normal spaces:

2.3. Theorem. Suppose that X is a normal space and let dim X > n. Then for every
normally placed subset M C X with d¥_, (M) < 1 we have d} (X \ M) > 0. That means
that in some sense M “does not cut” X between every pair (A, B) of opposite faces of £.

Proof. Note first that if A is a face of the system & then d¥_,A = 1. Now, let
us suppose that M cuts X between A and B, and consider an open covering U =
{U1,...,Up} of M with ord(/) < n — 1 and mesh(if) < 1. Next, let O = UU; be
the body |U| of U. Then A\ O # ) # B\ O because d,_2(4) = d,—2(B) = 1 and
by counstruction d,,—2(0) < 1. Next, we apply Lemma 2.2 to obtain that O contains a
partition C between A and B. It is easy to see that if C' is a partition between two faces
of € then d¥ _,C =1, so we have obtained a contradiction.

The above theorem shows that the complement X \ M of a low dimensional normally
placed subset M of a normal space X with dim X > n is “connected” in the sense that
the dimensional diameter of X \ M is greater than zero. Note that X can be even totally
disconnected (even one can say that p? — dim(X \ M) > 1).

3. The space X is compact. Let X be a compact T5 space with n-defining system
€ in it. Then the following theorem holds:

Theorem 3.1. Let X be a compact space with n-defining system £ and let as usual
p be the pseudometric, generated by £. Next suppose that {F;}32; is a countable system
of closed subsets in X such that the inequality

df172 U(F’LHFJ) <1
i#]

o)
holds. Then X # > F;.
=1

Proof. Suppos; the contrary and denote by M the sum M = |J(F; N Fj). Note
i#]

that M is a F, subset of X and hence it is normally placed in X. Now we can apply

Theorem 2.3 to obtain an open set O containing M an such that d¥_,(0) < 1. Then O
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does not contain a partition between every pair of opposite faces of £. In other words,
Y = X \ O does not separate for example the faces A; and B;. Therefore the space Y is

oo
a compactum which is connected between A; and B and Y = | Y; where ¥; = F;NY.

i=1
Obviously Y; NY; = 0 if ¢ # j which contradicts the well known Sierpinski theorem [7].
Various results from [9], [8] and [6] can be directly obtained as corollories of the above
theorem.
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ITOJIEBHA METPUKA 3A ITPECMATAHETO HA PASMEPHOCTHUA
JANAMETPU HA TIOAMHO>KECTBA HA CBIIECTBEHN CUCTEMU

Baagumup TonopoB, Aranac XamammakueB, Cumeon CredanoB

Heka X e mopmamHo mpocTpaHcTBO. B Tesu Gesexkku mpejyiaraMe KOHCTPYKIIAST HA
[ICEBIOMETPHUKA I B X, KOSATO ITO3BOJISABA JIECHO NMPECMSATAHE Ha PA3MEPHOCTHUTE U~
METpH Ha HSIKOM MHOJIMHOXKecTBa Ha X . /IucKyTupar ce CbhbIO Taka HAKOU CJIEJICTBUS
OT IpeJJIo’KeHaTa TEXHUKA.
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