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A COMPATIBLE METRIC FOR COMPUTING THE

DIMENSION DIAMETERS OF SUBSETS OF ESSENTIAL

SYSTEMS
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Let X be a normal space. In this note we propose a construction of a pseudometric r

in X which allows an easy calculation of the n-dimensional diameters of some subsets
of X. Some consequences of this result are discussed.

1. Basic concepts and definitions. 1.1. Let X be a normal topological space and
consider a system

E = {(A1, B1); (A2, B2); . . . ; (An, Bn)}

consisting of n disjoint pairs of closed subsets of X . X is a normal space an hence for
every i = 1, 2, . . . , n one can construct a continuous function fi : X → [0, 1] such that
fi(Ai) = 0 and fi(Bi) = 1. The system E generates a pseudometric p by natural way:

p(x, y) = max
1≤i≤n

|fi(x) − fi(y)|.

Obviously the topology in X is compatible with the pseudometric p in a sense that
every “open ball” respective to p is an open subset of X . Note furthermore, that if (X, %̃)
is metrizable with a metric %̃ in it then

%∗(x, y) = %̃(x, y) + max
1≤i≤n

|fi(x) − fi(y)|

is an equivalent metric in X .
Indeed, let us denote by O%∗

ε (x) and by O
�

%
ε (x) the open ε-balls respective the metrics

%∗ and %̃ respectively. Clearly, O
�

%
ε (x) ⊃ O%

∗

ε (x) for every x because %∗ ≥ %̃. Conversely
let ε > 0 be a given positive number and consider the open ball O

�

%
ε (x). The function fi

is continuous at x and hence for every i there exists δi > 0 such that |f(y) − f(x)| <
ε

2

whenever %̃(x, y) < δi. Now put δ = min

{
ε

2
; min

1≤i≤n
δi

}
> 0. It is easy to see that if

%̃(x, y) < δ then one has %∗(x, y) < ε. In the sequel in case when X is metrizable we
shall suppose that it is equipped with the metric %∗ and that, in addition %∗(x, y) ≤ 1 –
otherwise one may replace %∗ with the equivalent metric %(x, y) = min{1, %∗(x, y)}.

1.2. Further, we recall some general facts in dimension theory. For an arbitrary subset
Y of X by diameter dp(Y ) we mean as usual the number dp(Y ) = sup{p(x, y)|x ∈ Y, y ∈
Y }. Now, let U be an open covering of a pseudometric space X . By meshpU we mean
the number sup{dp(U)|U ∈ U}.
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If Y ⊂ X then the n-dimensional diameter dp
n(Y ) of the subset Y is the number

inf{meshp(U
Y
)}, where U runs the set of all open coverings of X with ord(U

Y
) ≤ n + 1,

where U
Y

= {U ∩ Y |U ∈ U}.
Note that some authors refer to dn as dn+1 ([2], [1]). In these papers dn is called an

n-dimensional degree. Here we follow the terminology which is adopted in [3], so we shall
call dn an n-dimensional diameter.

1.3. Definition [4]. By a metric dimension µp − dim(Y ) of a subspace Y of X we
mean the least of the integers n such that for every ε > 0 there is an open locally finite
covering U of Y for which ord(U) ≤ n + 1 and mesh(U) < ε.

For a metric space (X, %), the inequality dn(X) > 0 means that the metric dimension
µ− dim X of X is not less than n + 1 [6]. Clearly, for compact metric spaces, dn(X) = 0
if and only if dim X ≤ n.

1.4. Definition [3]. Let n be an integer and let ε be a positive number. The space
X is referred to as (n, ε)−connected between the closed sets P and Q if for an arbitrary
partition C between P and Q in X we have d

p
n−2(C) > ε.

Consider again the system E = {(A1, B1); (A2, B2); . . . ; (An, Bn)} consisting of n

disjoint pairs of closed subsets of X .
1.5. Definition. The system E is essential (or n−defining [6]), if for any closed sets

Pi, i = 1, . . . , n, separating Ai and Bi, the intersection
n⋂

i=1

Pi is nonempty.

Obviously the essential system is an analogue of the system of opposite faces of the
n-dimensional cube In; I = [0, 1]. Because of that we shall call Ai and Bi faces of E .

1.6. Definition. The subset M ⊂ X does not cut X between the sets P ⊂ X and
Q ⊂ X if one can find a connected closed set K ⊂ X for which K ⊂ X \ M and
K ∩ P 6= ∅ 6= K ∩ Q.

2. n-defining systems. Everywhere below we consider a pseudometric which is
generated by an n-defining system.

In the sequel we use the following Lemma [5].
2.1. Lemma. Let E be an essential system in the normal space X and U be a locally

finite open covering of X with ord U ≤ n. Then some element of U intersects two opposite
faces of E .

Lemma 2.2. Suppose that L cuts the normal space X between the disjoint closed
nonempty sets P and Q. Then every open neighborhood O of L contains a (closed in X)
partition C between P and Q.

Proof. First, suppose that O contains P or Q (or both of them). Let, for example,
O ⊃ P . Then O∗ = O\Q is an open set and O∗ ⊃ P because P ∩Q = ∅. Keeping in mind
that X is a normal space, we obtain an open set U ⊂ O∗, whose closure U is contained
in O∗ and P ⊂ U . Evidently, the boundary C = ∂U of U is a partition between P and
Q, and C ⊂ O.

Therefore, the essential part of the proof appears in the case when P ∗ = P \ O and
Q∗ = Q \ O are nonempty (and obviously closed) subsets of Y = X \ O. Note that Y is
a closed subset of X , and Y ∩ L = ∅. By the condition of the Lemma, it follows that Y

is not connected between P ∗ and Q∗. That is to say, there exist two disjoint and open in
Y sets U∗ and V ∗ for which U∗ ⊃ P ∗, V ∗ ⊃ Q∗ and Y = U∗ ∪ V ∗.

The last equality implies that U∗ and V ∗ are also closed in Y , and hence, in X .
Further, let us put A = P ∪U∗ and B = Q∪V ∗. Apparently, A and B are closed subsets
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of X and A ⊃ P , B ⊃ Q.
To finish the proof, we shall show that A ∩ B = ∅:

A ∩ B = (P ∪ U∗) ∩ (Q ∪ V ∗) = (P ∩ Q) ∪ (P ∩ V ∗) ∪ (U∗ ∩ Q) ∪ (U∗ ∩ V ∗) = ∅.

To prove this, note that clearly P ∩ Q = ∅, U ∗ ∩ V ∗ = ∅ and for the remaining parts of
the union, we have

P = (P \ O) ∪ (P ∩ O) = P ∗ ∪ (P ∩ O) ⊂ U∗ ∪ O

since P ∗ ⊂ U∗ and P ∩ O ⊂ O. Hence,

P ∩ V ∗ ⊂ (U∗ ∪ O) ∩ V ∗ = (U∗ ∩ V ∗) ∪ (O ∩ V ∗) = ∅.

Proceeding in the same way, we obtain that U ∗ ∩ Q = ∅. Thus, we have constructed
closed sets A ⊃ P and B ⊃ Q with A ∩ B = ∅.

By condition X was normal, so we may choose disjoint open in X neighborhoods
U ⊃ A of A and V ⊃ B of B. To finish the proof, let us put C = X \ (U ∪V ). Now, from
U ⊃ A ⊃ U∗ and V ⊃ B ⊃ V ∗ it follows that

C = X \ (U ∪ V ) ⊂ X \ (U∗ ∪ V ∗) = X \ Y = X \ (X \ O) = O.

As an immediate consequence of the above lemmas one can obtain the following result
for normal spaces:

2.3. Theorem. Suppose that X is a normal space and let dim X ≥ n. Then for every
normally placed subset M ⊂ X with d

p
n−2(M) < 1 we have d

p
1(X \M) > 0. That means

that in some sense M “does not cut” X between every pair (A, B) of opposite faces of E .
Proof. Note first that if A is a face of the system E then d

p
n−2A = 1. Now, let

us suppose that M cuts X between A and B, and consider an open covering U =
{U1, . . . , Up} of M with ord(U) ≤ n − 1 and mesh(U) < 1. Next, let O = ∪Ui be
the body |U| of U . Then A \ O 6= ∅ 6= B \ O because dn−2(A) = dn−2(B) = 1 and
by construction dn−2(O) < 1. Next, we apply Lemma 2.2 to obtain that O contains a
partition C between A and B. It is easy to see that if C is a partition between two faces
of E then d

p
n−1C = 1, so we have obtained a contradiction.

The above theorem shows that the complement X \M of a low dimensional normally
placed subset M of a normal space X with dim X ≥ n is “connected” in the sense that
the dimensional diameter of X \M is greater than zero. Note that X can be even totally
disconnected (even one can say that µp − dim(X \ M) ≥ 1).

3. The space X is compact. Let X be a compact T2 space with n-defining system
E in it. Then the following theorem holds:

Theorem 3.1. Let X be a compact space with n-defining system E and let as usual
p be the pseudometric, generated by E . Next suppose that {Fi}∞i=1 is a countable system
of closed subsets in X such that the inequality

d
p
n−2




⋃

i6=j

(Fi ∩ Fj)



 < 1

holds. Then X 6=
∞∑

i=1

Fi.

Proof. Suppose the contrary and denote by M the sum M =
⋃
i6=j

(Fi ∩ Fj). Note

that M is a Fσ subset of X and hence it is normally placed in X . Now we can apply
Theorem 2.3 to obtain an open set O containing M an such that d

p
n−2(O) < 1. Then O
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does not contain a partition between every pair of opposite faces of E . In other words,
Y = X \O does not separate for example the faces A1 and B1. Therefore the space Y is

a compactum which is connected between A1 and B2 and Y =
∞⋃

i=1

Yi where Yi = Fi ∩ Y .

Obviously Yi ∩ Yj = ∅ if i 6= j which contradicts the well known Sierpinski theorem [7].
Various results from [9], [8] and [6] can be directly obtained as corollories of the above

theorem.
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ПОЛЕЗНА МЕТРИКА ЗА ПРЕСМЯТАНЕТО НА РАЗМЕРНОСТНИ

ДИАМЕТРИ НА ПОДМНОЖЕСТВА НА СЪЩЕСТВЕНИ СИСТЕМИ

Владимир Тодоров, Атанас Хамамджиев, Симеон Стефанов

Нека X е нормално пространство. В тези бележки предлагаме конструкция на
псевдометрика r в X, която позволява лесно пресмятане на размерностните диа-
метри на някои подмножества на X. Дискутират се също така някои следствия
от предложената техника.
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