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We survey and analyze the Riemannian manifolds with idempotent Jacobi operators
in addition to the research in [1], [2], [3], [9] and [10], and we also supply the necessary
algebraic motivation for such a survey. Similar problems in the Pseudo-Riemannian
case remain open and we believe in the existence of lots of fecund results there in
contrast to the sterility in the Riemannian case.

First, we shall present some elementary algebraic observations. Let A be a ring. Then
the following is a well-known definition:

Definition 1.An element a ∈ A is called an idempotent if a2 = a.

It is obvious then an = a, n ∈ Z, n ≥ 2 as well. 0A and IdA are trivial idempotents.
But in general there exist idempotent elements which are not trivial and in this case
A is a ring with zero divisors. Indeed, if a 6= 0A, IdA, it follows that IdA −a 6= 0A and
a(IdA −a) = a − a2 = a − a = 0A. Now let A be a ring, X be an arbitrary set and
R = F(X,A) be the set of all maps from X to A. We define (f + g)(x) = f(x) + g(x) and
fg(x) = f(x) · g(x). Then (R, +, ·) is a ring. If X = ∅ or A is trivial, R is also trivial (in
both cases there exists only one map X −→ A). The following facts follow immediately:

Proposition 1.Let X 6= ∅. Then R is commutative iff A is commutative.

Proposition 2.Let A be a non-trivial ring and X contains at least two elements.

Then R contains non-trivial idempotents.

Proof. Indeed, let S ⊂ X , S 6= X , S 6= ∅ and χ : S −→ A such that

χ : =

{

χ(x) = 1A, if x ∈ S
χ(x) = 0A, if x /∈ S.

Then χ 6= 1A, 0A and χ2 = χ. �

Now let (M, g) be an n-dimensional Riemannian manifold with a metric tensor g.
Let also F(M) be the associative algebra of all smooth functions on M and X (M) be
the F(M)-module of all smooth vector fields over M . In particular, F(M) is a ring
and we can consider the case A = X = F(M) and R = X (M) since if X ∈ X (M) is a
smooth vector field, there is a map X : F(M) −→ FM (f(p) 7→ Xf(p), p ∈ M) such that
X(αf+βg)(p) = αXf(p)+βXf(p), α, β ∈ R; f, g ∈ F(M) and X(fg)(p) = Xf(g)·g(p)+
f(p) ·Xg(p). Now in this algebraic setting by Prop.2 we can deduce that X (M) contains
non-trivial idempotents since the ring of all differentiable functions is a non-trivial ring.
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Let ∇ be the Levi-Chivita connection and let R(X, Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ] be
the associated skew-symmetric curvature operator. The Jacobi operator is a self-adjoint
endomorphism defined by:

(1) J (X) : U −→ R(U, X)X,

where U ∈ X⊥ [5], [7], [8], [14]. We assume that (1) is such a non-trivial idempotent, i.e.

(2) J (X) ◦ J (X) = J (X).

Definition 2.An algebraic curvature tensor R is called Osserman if the eigenvalues

of the Jacobi operator do not depend on the choice of the unit tangent vector X ∈ Mp.

A Riemannian manifold (M, g) is called a pointwise Osserman if its curvature tensor is

Osserman at any point p ∈ M . If in addition, the eigenvalues of J (X) are constant on

M , the manifold is called a globally Osserman manifold [5], [7], [11], [14].

Let (M, g) be locally isotropic, i.e. for each point p ∈ M and X, Y ∈ Mp with
g(X, X) = g(Y, Y ), there is a local isometry of (M, g) of a neighborhood of p which
fixes p and exchanges X and Y . Then it is a two-point homogenous space, i. e. the group
of local isometries acts transitively on the unit sphere bundle of (M, g) and hence (M, g)
is Osserman. The lack of other examples led Osserman to conjecture that the converse
might also be true [14] which was proved by Chi when n 6= 4m, m ≥ 1 [5] and by
Nikolayevsky when n 6= 16 [11], [12], [13]. Following these results one can formulate

Theorem 1.Let V be a n-dimensional vector space endowed with an algebraic curvature

tensor R0 : V × V × V −→ V by R0(X, Y )Z = g(Y, Z)X − g(X, Z)Y [7, p. 6]. Then:

†) If n is odd, we have a curvature tensor R = κR0, where κ is a constant;

‡) If n is even and n 6= 16 there exists an almost complex structure J on V such that

J2 = − IdV and g(X, Y ) = g(JX, JY ) or equivalently g(JX, Y ) + g(X, JY ) = 0

for any X, Y ∈ V . In this case we have that R = λR0 +
1

3
(λ − µ)RJ , λ, µ ∈ R,

where RJ (X, Y, Z) := g(Y, JZ)JX − g(X, JZ)JY − 2g(X, JY )JZ.

From this result immediately follows

Theorem 2.Riemannian manifolds (M, g) of signature (0, n), n 6= 16, are global

Osserman manifolds iff (M, g) are two-point homogenous spaces with a curvature tensor

of one of the forms (†) or (‡).

Let (M, g) be a n-dimensional Riemannian manifold with a curvature tensor of the
form (†). Then (M, g) is a Riemannian manifold of a constant sectional curvature. Let
(M, g, J) be a Riemannian manifold of signature (0, 2m), m ≥ 1, endowed with an almost
complex structure J , i. e. there exists an endomorphism J : Mp −→ Mp such that J2 =
− Id(Mp) and g(X, Y ) = g(JX, JY ), X, Y ∈ Mp, p ∈ M . The triple (M, g, J) is called an

almost Hermitian or AH manifold. If additionally R(X, Y, Z, U) = R(JX, JY, JZ, JU),
X, Y, Z ∈ Mp and p ∈ M , (M, g, J) is called AH3-manifold. If (M, g, J) is an AH3-
manifold with a curvature tensor of the form (‡), then (M, g, J) is called an AH3-manifold
of a pointwise sectional curvature µ = µ(p) and of a pointwise skew-holomorphic sectional
curvature λ = λ(p) at any point p ∈ M [16].

Our main goal is to investigate these classes of Riemannian manifolds which satisfy
(2) for any unit tangent vector X ∈ Mp at any point p ∈ M .
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Example 1. Let (M, g) be a Riemannian manifold of signature (0, n) and of a constant
sectional curvature of the form (†). Then J (X) has the representation

(3) J (X) = κ(U − g(U, X)X).

Using the properties of R and the definition of J (X) we get that

J (X) ◦ J (X) = R(J (X)(U), X, X) = R(κ((U − g((U, X)X, X, X))) =

κR(U, X, X) − g(U, X)R(X, X, X) = κR(U, X, X) = κJ (X)(U).

If κ = 1 in (3) the relation above is equivalent to (2). Hence, if (M, g) is an n-dimensional
Riemannian manifold of constant sectional curvature κ = 1, any Jacobi operator is an
idempotent operator for any unit tangent vector X ∈ Mp at any point p ∈ M . In this
case we have that

(4) R(X, Y, Z) = g(Y, Z)X − g(X, Z)Y = R0(X, Y, Z) or shortly R = R0.

Example 2. Let (M, g) be an AH3-manifold of a pointwise holomorphic sectional
curvature µ = µ(p) and of a pointwise skew-holomorphic sectional curvature λ = λ(p),
and with a curvature tensor of the form (‡). Then for the Jacobi operator we have the
representation

(5) J (X)(U) = λ(U − g(U, X)X) + (µ − λ)g(U, JX)JX.

From here we get that

J (JX)◦J (X) = λ(JX−g(JX, X)X)+(µ−λ)g(JX, JX)JX = λJX+(µ−λ)JX = µJX,

(6) or J (JX) ◦ J (X) = µJX,

using the properties of the almost complex structure J , more precisely, the fact that
g(JX, X) = 0, g(JX, JX) = 1, X ∈ Mp, p ∈ M . Now we have

(7)

J (X) ◦ J (X)(U) = R(J (X)(U), X, X) =
R(λ((U − g(U, X)X)) + (µ − λ)g((U, JX)JX, X, X) =
λR(U, X, X) + (µ − λ)g(U, JX)R(JX, X, X) =
λJ (X)(U) + (µ − λ)g(U, JX) · J (X)(JX).

From (6) and (7) we derive

(8) J (X) ◦ J (X)(U) = λJ (X)(U) + (µ − λ)µg(U, JX)JX.

Assuming that (2) holds we get from (8) that

(∗) (1 − λ)J (X)(U) + (λ − µ)µg(U, JX)JX = 0.

Let us suppose J (X)(U) and JX be linearly independent for at least one U (X is fixed).
Then from (∗) we arrive at the possibilities λ = 1 and µ = 1 or λ = 1 and µ = 0. In
the first case the curvature tensor coincides with (4), and (M, g, J) is a space of constant
sectional curvature κ = 1. In the second case we have that

(9)

R(X, Y, Z) =

g(Y, Z)X − g(X, Z)Y +
1

3
(g(Y, JZ)JX − g(X, JZ)JY − 2g(X, JY )JZ) =

(

R0 +
1

3
RJ

)

(X, Y, Z) or shortly R = R0 +
1

3
RJ .

It is easy to compute using (5) that in the case (9) any Jacobi operator J (X) has
eigenvalues 0, 0, 1, . . . , 1 which correspond to the eigenvectors X, JX, Y1, Y2, . . . , Yn−2,
(Y1, Y2, . . . , Yn−2 ⊥ X, JX), X ∈ Mp, p ∈ M .
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Let now J (X)(U) depend on JX for any tangent vector U . Then J (X)(U) = cJX,
c ∈ R, c 6= 0. Now if Y ⊥ X, JX we get that g(J (X)(U), Y ) = g(R(U, X, X), Y ) = 0 and
from the properties of the curvature tensor we have g(R(U, X, X), Y ) = g(R(Y, X, X), U)
= 0, U ∈ Mp. And since g is a Riemannian metric [15] it follows that

(10) R(Y, X, X) = J (X)(Y ) = 0.

That means that for any unit tangent vector X , any unit tangent vector Y ⊥ X, JX is
an eigenvector of the Jacobi operator with a corresponding eigenvalue 0. Hence, J (X)
has eigenvectors JX, X, Y1, Y2, . . . , Yn−2, (Y1, Y2, . . . , Yn−2 ⊥ X, JX), with corresponding
eigenvalues µ, 0, 0, . . . , 0. But from (5) it follows that

(11) J (X)(Y ) = λY, Y ⊥ X, JX ; Y ∈ Mp, p ∈ M

for every unit tangent vector Y ⊥ X, JX , Y ∈ Mp and p ∈ M . Now from (10) and (11)
we get that λ = 0 and in this case by (‡), we obtain that

(12)
R(X, Y, Z) =

1

3
µ(2g(X, JY )JZ + g(X, JZ)JY − g(Y, JZ)JX) =

µ

3
RJ (X, Y, Z)

or shortly R =
µ

3
RJ .

From here we get that

(13) J (X)(U) = µg(U, JX)JX,

and consequently

(14)
J (X) ◦ J (X)(U) = R(J (X)(U), X, X) =

R(µg(U, JX)JX, X, X) = µg(U, JX)R(JX, X, X) = µg(U, JX)J (X)(JX).

Now using (6) and (14) we get that J (X) ◦ J (X)(U) = µ2g(U, JX)JX and from our
assumption (2) and (13) we arrive at µg(U, JX)JX = µ2g(U, JX)JX. From here we have
either the case µ = 0 (but since λ = 0 it follows that R ≡ 0), or g(U, JX) = µg(U, JX)
and putting U = JX we get that µ = 1. Thus, µ = 1 and λ = 0 and we have that

(15)
R(X, Y, Z) =

1

3
(2g(X, JY )JZ + g(X, JZ)JY − g(Y, JZ)JX) =

1

3
RJ (X, Y, Z)

or R =
1

3
RJ .

and J (X)(U) = g(U, JX)JX respectively. In the latter case J (X) has eigenvectors
JX , X , Y1, Y2, . . . , Yn−2, (Y1, Y2, . . . , Yn−2 ⊥ X, JX) with corresponding eigenvalues
1, 0, 0, . . . , 0.

Now we shall briefly show that only Riemannian manifolds with curvature tensors of
the forms (4), (9) and (15) have idempotent Jacobi operators J (X) for any unit tangent
vector X ∈ Mp, p ∈ M . Let {e1, e2, . . . , en} be an orthonormal basis of Mp. We put
X := e1 and let the Jacobi operators Je1

◦ Je1
and Je1

correspond to the matrix A and
B respectively. For the diagonal elements we get:

(16)

a11 = K2
12 + R2

2112 + · · · + R2
211n

a22 = K2
13 + R2

3112 + · · · + R2
311n

a33 = K2
14 + R2

4112 + · · · + R2
411n,

...
ann = K2

1n + R2
n112 + · · · + R2

(n−1)11n

and
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(17) b11 = K12, b22 = K13, . . . , bnn = K1n,

where Rijks and Kpr are the curvature tensor and the sectional curvature tensor compo-
nents respectively [15]. Let us suppose now that {e1, e2, . . . , en} be the eigenvectors of the
Jacobi operator Je1

with corresponding eigenvalues {0, c2, . . . , cn}. Then the following
relations hold:

(18)
Ri11j = 0, i 6= j, i, j = 2, 3, . . . , n;

ck = K1k, k = 2, 3, . . . , n.

Now because of (2) we have that Je1
◦Je1

= Je1
. That means that aii = bii, i = 1, 2, . . . , n

and from (16)–(18) we get that ck(ck − 1) = 0, k = 2, 3, . . . , n. Since X = e1 can be
arbitrary chosen, the last is true for any Jacobi operator J (X) for any unit tangent
vector X ∈ Mp at any point p ∈ M . Thus, from J (X) being an idempotent follows that
all eigenvalues of the Jacobi operator are equal to 0 or 1 and, hence, they are global
constants on (M, g). Therefore (M, g) is a global Osserman manifold.

Finally we can formulate the main result:

Theorem 3. Let (M, g) be a non-flat Riemannian manifold of signature (0, n), n 6=
16. Then any Jacobi operator J (X) is idempotent for any unit tangent vector X ∈ Mp

at any point p ∈ M iff one of the following is true:

(i) (M, g) is an n-dimensional Riemannian manifold of constant sectional curvature 1

and curvature tensor R = R0 or;

(ii) There exists an almost complex structure J on M such that (M, g, J) is a 2n-

dimensional AH3-manifold of a pointwise holomorphic sectional curvature µ = 0
and of a pointwise skew-holomorphic sectional curvature λ = 1, and curvature

tensor R = R0 +
1

3
RJ or;

(iii) There exists an almost complex structure J on M such that (M, g, J) i an 2n-

dimensional AH3-manifold of a pointwise holomorphic sectional curvature µ = 1
and of a pointwise skew-holomorphic sectional curvature λ = 0, and curvature

tensor R =
1

3
RJ .

Corollary.Let (M, g, J) be an AH-manifold, dim M 6= 16 and let also R0 · RJ =
−RJ ◦R0 at any point p ∈ M . Then J (X) is an idempotent operator at any point p ∈ M
for any tangent vector X ∈ Mp if and only if (i) or (iii) of Theorem 3 is true.

All geometric results above allow a subtle algebraic interpretation. Let V be a finite
dimensional vector space, V1, V2 ⊂ V and f : V −→ V be a linear operator. Then it is
a well-known algebraic fact that f 2 = f if and only if f(V ) = V1 and V = V1 ⊕ V2 =
Im f ⊕ kerf . Then f is called a projector of the vector space V onto the linear space V1

over V2. Now we can formulate the following algebraic

Theorem 4.Let M := (V, 〈·, ·〉, A) be a 0-model, i. e. 〈·, ·〉 is a non-degenerate inner

product of signature (p, q) on a finite dimensional vector space V of dimension m = p+q
and A ∈ ⊗4V ∗ is an algebraic curvature tensor, i.e. A is a 4-tensor which satisfies the

symmetries of the Riemann curvature tensor:

A(v1, v2, v3, v4) = A(v3, v4, v1, v2) = −A(v2, v1, v3, v4),

A(v1, v2, v3, v4) + A(v2, v3, v1, v4) + A(v3, v1, v2, v4) = 0 .
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The associated curvature operator A and Jacobi operator J are then characterized,

respectively, by the identities [9]:

〈A(v1, v2)v3, v4〉 = A(v1, v2, v3, v4) and 〈J (v1)v2, v3〉 = A(v2, v1, v1, v3).

Then Jacobi operator J is a projector over V iff one of the following is true:

(i) V = ImJ ⊕ kerJ and dim(ImJ ) = m − 1, dim(kerJ ) = 1 or;

(ii) V = ImJ ⊕ kerJ and dim(ImJ ) = m − 2, dim(kerJ ) = 2 or;

(iii) V = ImJ ⊕ kerJ and dim(ImJ ) = 1, dim(kerJ ) = m − 1.
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РИМАНОВИ МНОГООБРАЗИЯ С ИДЕМПОТЕНТНИ ОПЕРАТОРИ

НА ЯКОБИ

Веселин Видев, Живко Желев

В настоящата статия ние изследваме риманови многообразия с идемпотентни
оператори на Якоби като представяме и необходимата алгебрична мотивация за
едно такова изследване. Същите проблеми в псевдоримановата геометрия оста-
ват все още неизследвани, но ние вярваме в наличието на доста богати резултати
в този конкретен случай.
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