
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2009
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2009

Proceedings of the Thirty Eighth Spring Conference of
the Union of Bulgarian Mathematicians

Borovetz, April 1–5, 2009

DUMPING OF CAPILLARY-GRAVITY WAVES IN A

CHANNEL: THE WEDGE DISSIPATION EFFECT*

Dimitar Iliev, Stanimir Iliev

This paper presents first a numerical investigation into a novel class of wave motions in
narrow open channels. The distinctive condition on these motions is that: – dissipation
in vicinity of contact line is described by De Gennes approach; – the macroscopic lines
of contact between the free surface and the sides of the channel move with velocity
proportional to cosine of dynamic contact angle; – the effect of the contact angle
hysteresis is included; – there are no restriction to the equilibrium contact angle to
be close to 90 degrees. We obtain the time evolution of the waves. We investigate
influense of the wedge dissipation on the damping rate and frequency of the waves.

There is a large body of literature dealing with the wave motion in an unbounded
fluid. A number of analytical, experimental and numerical studies exist on liquid sloshing
in containers, mostly in simple rectangular, cylindrical and spherical geometries and for
vertical walls. Usually extreme case when the free surface meets the boundary orthogonally
is considered in analytical and in numerical studies. This case is known as “free-end
edge condition”. Benjamin and Scott [1] proposed another extreme boundary condition,
known as “stick condition” at the edge of the free surface, namely that contact line
between the free surface and sides of the channel is fixed in its equilibrium positions.
They argue this condition with phenomenon of contact angle hysteresis. Hocking [2]
firstly suggests to apply the universal contact line moving models to obtain the boundary
condition for waves in container. He proposed simplest, non-trivial, linear hypothesis for
the determination of unsteady contact-line motion when equilibrium contact angle is
close to 90◦. He postulates that effect of viscosity in the boundary layers on the wall
leads to relation (referred as the wetting condition):

(1)
∂η

∂t
= λ

dη

dn
where η is the free surface elevation, t is the time, n is normal to the solid boundary
drawn into the fluid and λ is some constant.
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Developped Hocking’s model is proposed by De Gennes [3]. This approach determines
the rate of energy dissipation T in the vicinity of the contact line using molecular-kinetic
and hydrodynamic reasons and relates this dissipation to the unbalanced Young force:

(2) ∂T/∂v = γ (cos θ − cos θeq)

where θ and θeq are observed (and therefore macroscopic) dynamic and equilibrium
contact angles, γ is liquid/vapour surface tension (in details see [4, 5]). In this work
we shall consider simple form of the energy T dissipated in the system per unit time with
vicinity of the contact line per unit length of the wetting line is [4–6]:

(3) T = ξ (∂η/∂t)
2
/

2

where ξ is a friction dissipation coefficient (ξ has the units of viscosity). More general
case we shall investigate in other work. Substituting (2) in (1), and denoted by λ = γ/ξ
we obtain

(4) ∂η
/

∂t = λ (cos θ − cos θeq)

For θeq = 90◦ and for small variation of the dynamic angle |θeq − θ| ∼ 0◦ (cos θ ∼ ∂η/∂n)
Equation (3) is identical to Equation (1). In model (3) coefficient λ is well founded and
may be obtained in another geometries experimentally [7].

Hysteresis effect can be added in model by substituting in (3) equilibrium angle θeq

with stationary advancing angle θa or stationary receding angle θr. When angle is in
interval θ ∈ [θr, θa] contact line is fixed:

(5)
∂η

∂t
= λΦ (θ, θr, θa) ; Φ (θ, θr, θa) =











0 if θ ∈ [θr, θa]

cos θ − cos θa if θ > θr

cos θ − cos θr if θ < θr

Our goal is to test firstly model (4) for capillary-gravity waves. In this work we are
interested in the small-amplitude wave motion of the interface, since the outer region
viscous dissipation is assumed to be negligible with respect to that in the edge region,
nonviscous hydrodynamics needs to be applied.

We consider the 2D motion of an incompressible liquid in a rectangular homogeneous
solid channel with vertical walls under the action of the surface tensions γ, γv, γs

(liquid/vapour, vapour/solid and liquid/solid, respectively) and gravity g force (see Fig.
1). The equilibrium contact angle θeq satisfy the well-known Young equation cos θeq =
(γv − γs)

/

γ. A Cartesian coordinate system (x, y) depicted in Fig. 1 is employed. The
distance between the walls L0, La is a; Lbot is the channel bottom; depth is a. We denote

by S the liquid domain, by L ≡
{

R
L =

(

RL
x , η

)

}

– liquid interface with the boundaries

A0 and Aa.

All lengths are normalized by a, time by
√

a/g, velocities by
√

ag, acceleration by g.
We are interested in the small-amplitude wave motion of the interface, so we can neglect
the fluid viscosity and assume that the energy is dissipated only at the contact line. The
liquid flow in S = {R (x, y)} is assumed to be irrotational, therefore it can be described
in terms of the velocity potential ϕ; v = gradϕ. We use dimensionless surface tension
γ = γ/ρga2, λ = λ

√
ag and the renormalized ϕ = ϕ/a

√
ag. The ϕ must satisfy the

Laplace equation in the domain S:

(6) ∇2ϕ (R, t) = 0, R(x, y) ∈ S.
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Fig. 1. Definition sketch Fig. 2. Solid lines – numerical solution for
λ = 4. Dashed lines – analytical solution from

Equation (13) with α = 0.22

The container bottom and walls are rigid and impermeable, therefore

(7) ∂ϕ (R, t)/∂x = 0, R ∈ {L0, La} , ∂ϕ (R, t)/∂y = 0, R ∈ Lbot.

the dynamic boundary condition on L is based on the Bernoulli equation and is given by

(8) ∂ϕ
(

R
L, t

)/

∂t = −v2
(

R
L, t

)/

2 − RL
y + γLxx

/

(

1 + L2

x

)3/2

; R
L ∈ L/{A0 ∪ Aa},

in inner point of L and in boundary points

(9) ∂A0/∂t = λΦ (θ, θr, θa) ; ∂Aa/∂t = λΦ (θ, θr, θa) .

We solve (6)–(9) using the numerical method, described in [8]. But two modifications
are made. First, when update the harmonic potential at the free line using equations
(8), we add capillary term. And second – Equation (9) is used for boundary condition of
Laplace equation. To do this we take into account the relations:

F2,101 − F2,100 = ∆2λΦ (θ (A0)) ; F100,101 − F100,100 = ∆100λΦ (θ (Aa))

when we obtain the minimum of the function of variables Fi,j , i = 2, 100; j = 2, 100.

For the case θa = θr = 90◦, free-end edge condition (dynamic contact angle is fixed
at 90◦), and for initial shape of interface

(10) η (x, 0) = ε cos 2πx

where ε is a small parameter, the motion is standing wave [9]:

(11) η (x, t) = ε cosωt cos 2πx

where

(12) ω =
√

2π (1 + 4γπ2) tanh 2π.

In our model this case corresponds to ξ = 0 (no dissipation). We analyse how the
dissipation affects the wave motions, comparing our results with equation

(13) η (x, t) = ε cosωt cos 2πx exp(−αt)

which is modification of the solution (11) with added damping term with coefficient α.

Numerical results. In this work we consider case γ =0.1 because for this value of
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γ influence of gravity and capillary into frequency are of one order (see Equation (12)).
As initial position of the free surface and the initial distribution of the potential we take
here η (x, 0) = 0.02 cos 2πx and ϕ (R, 0) = 0.

First we shall consider the case θa = θr = 90◦. Our results in this case can be compared
with Hocking results (model Equation (1)) since in this case difference between right parts
of Equation (1) and Equation (4) is very small (for |θ − 90◦| < 10◦, |cos θ − cotg θ| <
0.0026).

Free lines from our numerical results are shown in Fig. 2 for λ = 4 (with solid lines),
and from analytical solution from Equation (13) for α=0.22 (with dashed lines). Both
solutions are shown in moments of time t = 0; 0.2; 0.4; 0.6; 0.8; 1; 1.2 (the period in this
case is approximately 1.13). Function (13) describes well the central part of numerically
obtained dumping waves. But that function can’t describe well the behavior of contact
line around borders.

Our results show that the relation between dissipation coefficient ξ and damping
coefficient α is complicated. For waves with small amplitude, when ξ ∼ 0, dissipation per
period is small and increases when ξ increases. But when ξ/γ � 1 contact line motion is
very slow and dissipation per period is very small again. This behavior is similar to the
dependence α (λ) in Hocking’s model (Equation (1)) given in table 1 and figure 1 in Ref
[2]. In Fig. 3 is shown the time evolution of the border point (with initial height 0.02)
and middle point (with x-coordinate 0.5 and initial height −0.02) for different values of
λ. In Fig. 3(a) λ = 6; 4; 2; 1; 0.7 and in Fig. 3(b) λ = 0.3; 0.2; 0.08; 0.05; 0.02. As one can
see in Fig. 3a, border and middle points of the contact line oscillate around equilibrium
zero position of the free line. Also dumping for one period increases when λ decreases.
But for small values of λ, when λ decreases damping of middle point increases. Also on
Fig. 3 is seen another model characteristic, predicted in Ref. [2] - frequency of oscillations
decreases when λ increases. For λ=2 the period is approximately 1.12 and for λ = 0.02
the period is approximately 0.8.

Fig. 3 The time evolution of the border point – solid lines and the middle point – dashed lines

for (a) λ = 6; 4; 2; 1; 0.7; (b) λ = 0.3; 0.2; 0.08; 0.05; 0.02.

Now we shall consider the wave evolution for θa = θr 6= 90◦ and for θa 6= θr. Hocking’s
model doesn’t describe these. In Fig. 4 is shown time evolution of the left border point
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Fig. 4. The time evolution of the border point
– solid line and the middle point – dashed line

for λ = 2, θeq = 85
◦

Fig. 5. The time evolution of the border point
– solid line and the middle point – dashed line
for λ = 2, θa = 92.5

◦, θr = 87.5
◦ and for

λ = 2, θa = 91
◦, θr = 89

◦

and middle point for θa = θr = 85◦, λ=2. In this case these points converge to different
high positions.

Evolution of the wave when hysteresis is included in model (4) is shown in Fig. 5 for
two different values of hysteresis: θa − θr = 2◦ and θa − θr = 5◦. The evolution of the left
border point and middle point of wave is shown in Fig. 5 for λ=2 when θa = 91◦, θr = 89◦

– with solid lines and when θa = 92.5◦, θr = 87.5◦ – with dashed lines respectively. In
this case the border points realize the stick-slip motion.

In “stick regime” there is no dissipation in the waves.
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ЗАТИХВАНЕ НА КАПИЛЯРНО-ГРАВИТАЦИОННИ ВЪЛНИ В

КАНАЛ: ЕФЕКТИ НА ДИСИПАЦИЯТА ОТ ОБЛАСТТА НА

ТРИФАЗЕН КОНТАКТ

Димитър Илиев, Станимир Илиев

В статията е представено числено изследване на нов клас вълнови движения,
имащи място в тесни отворени канали. Отличителните условия на тези движе-
ния са: – дисипацията на енергия от околността на контактната линия се описва
чрез подхода на Де Жан; – микроскопическата трифазна контактна линия се дви-
жи със скорост, която е пропорционална на косинуса на динамичния контактен
ъгъл; – включен е ефекта на хистерезис на контактния ъгъл; няма ограниче-
ния равновесния контактен ъгъл да е 90 градуса. Ние сме намерили времевото
изменение на формата на вълните. Зависимостта на скоростта на затихване и
на честотата на вълните от величината на дисипация от областта на трифазен
контакт е изследвана.
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