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Pavlina Jordanova

Here we obtain Invariance principle for maxima in two particular cases. The time-
intersections of considered sequences of random processes are maxima of properly
affine transformed stationary finite or infinite moving averages. The distribution
function of the noise components belongs to the max-domain of attraction of Weibull
distribution. The max-increments of such processes are dependent.
The limiting process prove to be max-stable. For finite moving averages case its time-
intersections have Weibull distribution. In the case of infinite moving averages, they
have Gumbel distribution.

1. Introduction. In 1964 J. Lamperty [4] proved Invariance principle for maxima
(IPM) of independent identically distributed (iid) random variables (rv’s).

The maxima of a linear process with subexponential noise is investigated mainly by
R. Davis and S. Resnick in [3] and [1]. Another IPMs are given in Theorem 5.5.11 in [5]
and Proposition 4.28 in [7].

In 1991 R. Davis and S. Resnick [2] studied the convergence of point processes which
space coordinates have linear process presentation with noise in the Weibull max-domain
of attraction (max-DA).

Here we prove IPM for strictly stationary sequence and precisely for moving averages
(MA) sequence with noise in the max-DA of

(1) Ψα(x) =

{

exp{−(−x)α}, x ≤ 0,
1, x > 0,

α > 0 (Weibull distribution).

In the paper U ∈ RV∞α means that U is regularly varying at ∞ with exponent α,
U ∈ RV 0

α means that U is regularly varying at 0 with exponent α, and xR
F is the right

end point of a distribution function (df) F , i.e.

xR
F = sup{x : F (x) < 1}.

For a nondecreasing function H , with the convention that inf{�} = +∞,

H←(x) = inf{y : H(y) ≥ x}

is the left-continuous inverse of H .
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Throughout the paper we suppose that (Ω,A, P ) is a given complete probability
space with filtration (At)t≥0. We assume that all P -null sets of A are added to A0 and
all discussed random elements are defined on (Ω,A, P ).

Let S be a complete, separable metric space and S be the Borel σ-algebra of subsets
of S generated by the open sets. By Xn =⇒ X we denote the weak convergence of the
sequence {Xn}n∈N of random elements in S to the random element X in S.

We denote by M([0,∞)) the space of non-decreasing, right-continuous functions y(t) :
[0,∞) → [0,∞), with the finite left limits on (0,∞), endowed with the J1-topology of
Skorokhod.

If E is a locally compact space with countable base, as usually Mp(E) is the set of
point measures on E that are finite on compact subsets of E and Mp(E) is the σ-algebra

generated by the vague open sets. We denote by
v

−→ the vague convergence in Mp(E).

We represent a point measure N ∈ Mp(E) by N(A) =
∑

i εxi
(A), A ⊂ E, where for

x ∈ E and A ⊂ E

εx(A) =

{

0, x /∈ A,
1, x ∈ A.

2. The finite moving averages case. In this section, we suppose that {ci}i=1,2,...,k

are positive real numbers, {ξi}i∈Z is a sequence of iid rv’s with df F ∈ max−DA(Ψα),
α > 0 and that {Xn}n∈N have representation as finite MA, i.e.

(2) Xn =

k
∑

j=1

cjξn−j , n ∈ N, k ∈ N, k < ∞.

Hence the sequence {Xn}n∈N is strictly stationary.
By Proposition 1.13 in [7] the centering and norming constants for maxima of {ξi}i∈Z

could be chosen correspondingly xR
F and xR

F −

(

1

1 − F

)←

(n).

The objective of this section is to find the centering and norming constants and non-
degenerate weak limit of a sequence

(3) Yn(t) =



















M[nt] − an

bn
, t ≥ n−1,

X1 − an

bn
, 0 < t < n−1,

where Mn = max{X1, . . . , Xn} and [s] stands for the biggest integer, less than or equal
to s.

Theorem 2.1. If {Yn}n∈N are defined in (3) with {Xn}n∈N that have representation
(2)) with F ∈ max−DA(Ψα), α > 0 and positive real numbers {ci}i=1,2,...,k, then Yn =⇒

Y in M([0,∞)) when n → ∞, an ∼ xR
F

k
∑

j=1

cj , bn ∼ xR
F −F←(1−n−1/k) and the limiting

process Y is Ψkα-extremal process with df

P (Y (t) ≤ x) = exp{−t
Γk(α + 1)

Γ(αk + 1)

k
∏

i=1

ci(−x)kα}, x < 0, t > 0.

Proof. Because of F ∈ max−DA(Ψα), by Proposition 1.13 in [7], xR
F < ∞.
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Let c =
k
∑

j=1

cj ,

Nn =

∞
∑

i=1

ε �
i
n

,
Xi−xR

F
c

bn � and N =

∞
∑

i=1

ε(ti,−ηi).

By (2.11) in [2] we have Nn =⇒ N on Mp([0,∞) × (−∞, 0]), when n → ∞, bn ∼

xR
F − F←(1 − n−1/k) and

∞
∑

j=1

ε(tj ,ηj) is a Poisson random measure on Mp([0,∞)2) with

mean measure (mm) dt × νk(dx), such that for all x ≥ 0,

νk([0, x]) = c(α, k)xkα, c(α, k) =
Γk(α + 1)

Γ(αk + 1)

k
∏

i=1

cα
i .

This can also be written down in the following way
∞
∑

i=1

ε(tj ,ηj) ∼ PRM(Mp([0,∞)2); dt × νk(dx)).

The above mentioned means that

N ∼ PRM(Mp([0,∞) × (−∞, 0]); dt × µk(dx)),

where µk([x, 0]) = c(α, k)(−x)kα, x ≤ 0.

Define a functional T : Mp([0,∞) × (−∞, 0]) → M([0,∞)) by relations:

(4) (Tm)(t) =
∨

k:τk≤t

θk, t : m([0, t] × (−∞, 0]) > 0, m =
∑

k

ε(τk,θk)

(Tm)(t) =
∨

k:τk=sup{s>0:m((0,s]×(−∞,0])=0}

θk, t : m([0, t] × (−∞, 0]) = 0.

Analogously to Proposition 4.20 [7] we obtain that T is almost surely (a.s.) continuous.

By Continuous mapping theorem (CMTh) we have TNn =⇒ TN on M([0,∞)), when
n → ∞. By definition of T , if we chose an ∼ xR

F c and bn ∼ xR
F − F←(1 − n−1/k) we

obtain that for all t > 0, Yn(t) = (TNn)(t).

We denote (TN) by Y . Because of

N ∼ PRM(Mp([0,∞) × (−∞, 0]); dt × µk),

Y is an extremal process with homogeneous max-increments and

P (Y (1) ≤ x) = P (N([0, 1]× (x, 0]) = 0) = exp{−c(α, k)(−x)kα}, x < 0,

i.e. it is Ψkα-extremal process.

3. The infinite moving averages case. Let {ξi}i∈Z be a sequence of iid rv’s with
df F ∈ max−DA(Ψα), α > 0 and {ci}i∈N be positive real numbers. Suppose {Xn}n∈N

have representation as infinite MA, i.e.

(5) Xn =

∞
∑

j=1

cjξn−j , n ∈ N.

Again the sequence {Xn}n∈N is strictly stationary.

We are interested in the centering and norming constants and the weak limit of a
sequence {Yn}n∈N, defined in (3).
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Theorem 3.1.Assume that {Yn}n∈N are defined in (3) with {Xn}n∈N that have
representation (5) with F ∈ max − DA(Ψα), α > 0 and real numbers ci > 0. Denote by
c(1) ≥ c(2) ≥ . . . the same sequence c1, c2, . . . but ordered.

If for some q > 2, c(j) ∼ O(j−q), j → ∞ and for all s ∈ (0, 1)

lim
n→∞

sn
∞
∑

j=s−n

c2
(j)

c2
(n)

= 0,

then the sequence {Yn}n∈N is weakly convergent, i.e. Yn =⇒ Y in M([0,∞)) when n →
∞, the limiting process Y is Λ-extremal process with Λ(x) = exp{− exp{−x}}, x ∈ R,

an ∼ F←ν

(

1 −
1

n

)

, where ν =
∞
∑

j=1

cjξj and bn ∼ (r←(F←ν (1 − n−1))−1, where

r(λ) =

∞
∑

j=1

cjE(ξ1 exp{λcjξ1})

E exp{λcjξ1}
, λ > 0.

Proof. Because of F ∈ max−DA(Ψα), by Proposition 1.13 in [7], xR
F < ∞ and

U(y) = 1 − F (xR
F − 1

y ) ∈ RV∞−α.

Then for the df, say G, of xR
F − ξ1 we obtain, that for all t > 0,

lim
x→0

G(xt)

G(x)
= lim

x→∞

G(tx−1)

G(x−1)
= lim

x→∞

P ((xR
F − ξ1)

−1 ≥ xt−1)

P ((xR
F − ξ1)−1 ≥ x)

= lim
x→∞

U(xt−1)

U(x)
= tα,

i.e. G ∈ RV 0
α . Conditions of Theorem 4.1 of [2] are satisfied for G (that is why we use

upper index G) and
∞
∑

i=1

ε �
i
n

,
XG

i
−aG

n c

bG
n

� =⇒

∞
∑

i=1

ε(tj ,ηj) on Mp([0,∞) × [−∞,∞)), n → ∞,

where
∞
∑

i=1

ci = c < ∞ and
∞
∑

i=1

ε(tj ,ηj) ∼ PRM(Mp([0,∞) × [−∞,∞)); dt × µ(dx)),

µ([−∞, x]) = ex, x ∈ R,

(6) aG
n ∼ (F G

ν )←(n−1), bG
n ∼

1

(mG)←(aG
n )

and

(7) mG(λ) =

∞
∑

j=1

cjE((xR
F − ξ1) exp{−λcj(x

R
F − ξ1)})

E exp{−λcj(xR
F − ξ1)}

, λ > 0.

These mean that

(8)

∞
∑

i=1

ε �
i
n

,
aG

n c−XG
i

bG
n

� =⇒ N on Mp([0,∞) × (−∞,∞]), n → ∞,

where N =
∞
∑

i=1

ε(tj ,−ηj) ∼ PRM(Mp([0,∞) × (−∞,∞]); dt × µ1(dx)),

µ1([x,∞]) = e−x, x ∈ R.

By definition of XG
n we have XG

n =
∞
∑

j=1

cj(x
R
F − ξn−j) = xR

F c − Xn, n ∈ N.
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Because of

F G
ν (x) = P





∞
∑

j=0

cj(x
R
F − ξj) < x





= P (xR
F c − ν < x) = P (ν > xR

F c − x) = 1 − Fν(xR
F c − x),

we have (F G
ν )←(y) = xR

F c − (Fν)←(1 − y) and

(9) aG
n ∼ (F G

ν )←(n−1) = xR
F c − F←ν

(

1 −
1

n

)

= xR
F c −

(

1

F ν

)←

(n).

By (8), when n → ∞,

(10)

∞
∑

i=1

ε �
i
n

,
Xi−F←ν (1−n−1)

bG
n

� =⇒

∞
∑

i=1

ε(tj ,−ηj) on Mp([0,∞) × (−∞,∞]).

By (7), for λ > 0,

mG(λ) = cxR
F −

∞
∑

j=1

cjE(ξ1 exp{−λcj(x
R
F − ξ1)})

E exp{−λcj(xR
F − ξ1)}

= cxR
F −

∞
∑

j=1

cjE(ξ1 exp{λcjξ1})

E exp{λcjξ1}
.

If we denote the last sum by r(λ) we obtain mG(λ) = cxR
F − r(λ).

Then (mG)←(y) = r←(cxR
F − y), y > 0 and by (6) and (9) we have,

bG
n ∼

1

(mG)←(aG
n )

∼
1

(mG)←
(

cxR
F − F←ν

(

1 − 1
n

)) =
1

r←(F←ν (1 − 1
n ))

.

When we substitute the last in (10) we get

(11)

∞
∑

i=1

ε �
i
n

,
Xi−F←ν (1−n−1)

bG
n

� =

∞
∑

i=1

ε �
i
n

,
Xi−F←ν (1−n−1)

(r←(F←ν (1−n−1)))−1 � .

We denote the above point process by Nn.

Define a functional T1 : Mp([0,∞) × (−∞,∞]) → M([0,∞)) by relations:

(12) (T1m)(t) =
∨

k:τk≤t

θk, t : m([0, t] × (−∞,∞]) > 0, m =
∑

k

ε(τk,θk) and

(T1m)(t) =
∨

k:τk=sup{s>0:m((0,s]×(−∞,∞])=0}

θk, t : m([0, t] × (−∞,∞]) = 0.

In Proposition 4.20 [7] is obtained that T1 is a.s. continuous in M([0,∞)) at
Mp([0,∞) × (−∞,∞]).

So, by CMTh we have T1Nn =⇒ T1N on M([0,∞)) when n → ∞.

By (12) for an ∼ F←ν (1 − n−1) and bn ∼ (r←(F←ν (1 − n−1)))−1, Yn(·) = (T1Nn)(·).

We denote T1N by Y . Because of N ∼ PRM(Mp([0,∞) × (−∞,∞]); dt × µ1), Y is
an extremal process with homogeneous max-increments and

P (Y (1) ≤ x) = P (N([0, 1] × (x,∞]) = 0) = exp{−e−x}, x ∈ R,

i.e. it is Λ-extremal process, where Λ is the Gumbel df.
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МАКСИМУМИ НА ПЛЪЗГАЩИ СЕ СРЕДНИ СЪС СМУЩЕНИЯ В
МАКС-ОБЛАСТТА НА ПРИВЛИЧАНЕ НА УЕЙБУЛ

Павлина Йорданова

Получен е принцип за инвариантност на максимума в два частни случая. Мо-
ментните сечения на разглежданите редици от случайни процеси са максиму-
ми на подходящо афинно трансформирани стационарни крайни или безкрайни
плъзгащи се средни. Функцията на разпределение на шумовите компоненти при-
надлежи на макс-областта на привличане на разпределението на Уейбул. Макс-
нарастванията на тези процеси са зависими.
Граничният процес се оказва макс-устойчив. За случая с крайните плъзгащи се
средни неговите моментни сечения имат разпределение на Уейбул. В случая на
безкрайни плъзгащи се средни те имат разпределение на Гумбел.
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