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MAXIMA OF MOVING AVERAGES WITH NOISE IN THE
WEIBULL MAX-DOMAIN OF ATTRACTION"

Pavlina Jordanova

Here we obtain Invariance principle for maxima in two particular cases. The time-
intersections of considered sequences of random processes are maxima of properly
affine transformed stationary finite or infinite moving averages. The distribution
function of the noise components belongs to the max-domain of attraction of Weibull
distribution. The max-increments of such processes are dependent.

The limiting process prove to be max-stable. For finite moving averages case its time-
intersections have Weibull distribution. In the case of infinite moving averages, they
have Gumbel distribution.

1. Introduction. In 1964 J. Lamperty [4] proved Invariance principle for maxima
(IPM) of independent identically distributed (iid) random variables (rv’s).

The maxima of a linear process with subexponential noise is investigated mainly by
R. Davis and S. Resnick in [3] and [1]. Another TPMs are given in Theorem 5.5.11 in [5]
and Proposition 4.28 in [7].

In 1991 R. Davis and S. Resnick [2] studied the convergence of point processes which
space coordinates have linear process presentation with noise in the Weibull max-domain
of attraction (max-DA).

Here we prove IPM for strictly stationary sequence and precisely for moving averages
(MA) sequence with noise in the max-DA of
(1) U,(x) = { exp{=(=2)%}, <0, a >0 (Weibull distribution).

1, x>0,

In the paper U € RV ° means that U is regularly varying at co with exponent «,
U € RV means that U is regularly varying at 0 with exponent «, and =% is the right
end point of a distribution function (df) F, i.e.

2R = sup{x: F(z) < 1}.
For a nondecreasing function H, with the convention that inf{®} = +o0,
H=(2) = inf{y : H(y) > 2}

is the left-continuous inverse of H.
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Throughout the paper we suppose that (€, A4, P) is a given complete probability
space with filtration (A;);>o. We assume that all P-null sets of A are added to A¢ and
all discussed random elements are defined on (€2, A, P).

Let S be a complete, separable metric space and S be the Borel o-algebra of subsets
of S generated by the open sets. By X,, = X we denote the weak convergence of the
sequence { X, }nen of random elements in S to the random element X in S.

We denote by M([0, 00)) the space of non-decreasing, right-continuous functions y(t) :
[0,00) — [0,00), with the finite left limits on (0,00), endowed with the Ji-topology of
Skorokhod.

If £ is a locally compact space with countable base, as usually M,(E) is the set of
point measures on E that are finite on compact subsets of E and M, (E) is the o-algebra

generated by the vague open sets. We denote by —— the vague convergence in M, (E).

We represent a point measure N € M,(E) by N(A) = >, e2,(A), A C E, where for

re€Fand ACFE
0, =¢A,
EQ(A)_{ 1, z¢€A.

2. The finite moving averages case. In this section, we suppose that {c¢;}i=12... &
are positive real numbers, {£; }iecz is a sequence of iid rv’s with df F € max —DA(¥,),
a > 0 and that {X,, }nen have representation as finite MA, i.e.

k
(2) Xn:Zc]{n_j, neN, keN, k<o
j=1
Hence the sequence {X,, }nen is strictly stationary.
By Proposition 1.13 in [7] the centering and norming constants for maxima of {; }icz
1 «—
could be chosen correspondingly 2% and z& — T—F (n).

The objective of this section is to find the centering and norming constants and non-

degenerate weak limit of a sequence

Mo 200 -y 5 o,

by,

(3) Y, (t) =

X1 —an

bn,

where M,, = max{X;,..., X, } and [s] stands for the biggest integer, less than or equal
to s.

Theorem 2.1. If{Y,, }nen are defined in (3) with { X, }nen that have representation
(2)) with F € max —DA(¥,,), a > 0 and positive real numbers {c;}i=1,2,... k, then Y,, =

, 0<t<n !

k
Y in M([0,00)) when n — 00, ap ~ xR 3 ¢;, by ~ 2k — F—(1—n"1k) and the limiting

j=1
process Y is Wy -extremal process with df
o +1) 4
P(Y(t) <) =exp{— t Cl::il —x)*} <0, t>0.

Proof. Because of F' € max —DA(V,), by Proposition 1.13 in [7], 2& < .
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k
Let c= " ¢j,

Jj=1

n T bn

e %)
Nn = z;ff(l x%fwl{ic) and N = z;g(tiﬁm)'
= i

By (2.11) in [2] we have N,, = N on M ([0, 00) X (—00,0]), when n — oo, b, ~
o)

o — F=(1 —n~'*) and Zﬂtmﬂ is a Poisson random measure on M ([0, 00)?) with
J=

mean measure (mm) dt X vg(dx), such that for all z > 0,
T (o +1)
vp([0,2]) = (e, k)z*,  c(a, k) = Mo+l Hc?
This can also be written down in the following way

(o)
> e(tymy) ~ PRM(M,([0,00)%); dt x vg(da)).
i=1
The above mentioned means that
N ~ PRM(My([0,00) x (=00, 0]); dt x ju(da)),
where pu([x,0]) = c(a, k)(—2)k, 2 <o0.
Define a functional T : M ([0, 00) x (—o0,0]) — M([0, 00)) by relations:

(4) (Tm)(t) = \/ Ok, t:m([0,4] x (—00,0]) >0, m=> &(r, 0,
k

ki <t

(Tm)(t) = \/ Ok, t:m([0,t] x (—o0,0]) =0.
ke =sup{ s>0:m((0,8] X (—00,0])=0}
Analogously to Proposition 4.20 [7] we obtain that 7" is almost surely (a.s.) continuous.
By Continuous mapping theorem (CMTh) we have TN,, = T'N on M([0, 00)), when
n — oco. By definition of T, if we chose a, ~ zfc and b, ~ 8 — F=(1 —n~*) we
obtain that for all ¢ > 0, Y, (t) = (T'N,,)(¢).
We denote (T'N) by Y. Because of
N ~ PRM(My ([0, 50) x (—00,0]); dt x s,
Y is an extremal process with homogeneous max-increments and
P(Y(1) < z) = P(N([0,1] x (,0]) = 0) = exp{—c(a, k)(—z)**}, z <0,
i.e. it is Wio-extremal process.
3. The infinite moving averages case. Let {¢;};cz be a sequence of iid rv’s with

df F € max—DA(¥,), o > 0 and {¢; };en be positive real numbers. Suppose {X,, }nen

have representation as infinite MA; i.e.
o0

(5) Xn =) cilnj, neN.
j=1
Again the sequence {X,, }nen is strictly stationary.
We are interested in the centering and norming constants and the weak limit of a
sequence {Y,, },en, defined in (3).
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Theorem 3.1. Assume that {Y,}nen are defined in (3) with {X,}nen that have
representation (5) with F' € max — DA(V,), o > 0 and real numbers ¢; > 0. Denote by
c(1) = ¢(2) = - .. the same sequence c1,ca, ... but ordered.

If for some q > 2, c(;y ~ O(j~%), j — oo and for all s € (0,1)

e D)
Jim st > @ =0
j=s
then the sequence {Yy,tnen is weakly convergent, i.e. Y, =Y in M([0,00)) when n —
00, the limiting process Y is A-extremal process with A(x) = exp{—exp{—2}}, z € R,

1 oo
nNF<_ 1-—— = £ n “(F (1 — —1))—1
a - ( n)’ where v g ¢;& and by, ~ (r—(Fy (1 —n~1)~t, where

j=1

(o)
¢ B(& exp{Aciér})
r(A) = J J , A>0.
) ; Eexp{Ac;j&}
_ Proof. Because of F € max—DA(¥,), by Proposition 1.13 in [7], zf < oo and
Uly) =1-F(zf - %) € RV=>.
Then for the df, say G, of zft — &, we obtain, that for all ¢ > 0,
G(xt) . G(tz™h) . P((af—¢&) "t > a7l . Uzt

im = lim ——— = lim = lim ——* =1t%,
z—0 G(I) T—00 G(I_l) a:Loo P((ng —51)—1 > Qj) zLoo U(gj)

i.e. G € RV?. Conditions of Theorem 4.1 of [2] are satisfied for G (that is why we use
upper index G) and

o0 o0
ZE(i Py = 3 ety 01 My([0,00) X [00,00)), n — oo,
i=1 \" eF i=1

where ) ¢; = c <ooand ) eu, ) ~ PRM(Mp([0,00) x [-00,00));dt x pu(dx)),
' i=1

=1
p([—o0,2]) = €%, z € R,

1
(6) al ~(FO)~(n7h), b5 ~ mG)=(a0) and
Gy = GE((@f = &) exp{—Ac;(af — &)}
(7) m-(\) = ; Eoml e,k — &) A> 0.
These mean that
(8) ZEG agc,xg) — N on M,([0,00) x (=00, x0]), n — o0,
i=1 n’ b

where N = Zg(tj,,m) ~ PRM (M (]0,00) x (—00,00]); dt x p1(dz)),
i=1

pi([z,00]) =e™*, z€R.

o)
By definition of X& we have X& = Zl cj(alt —¢&,—j) =a2Be—X,, neN.
J:
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Because of

FC(z)=P ch(:cg‘ —-§) <z
§=0

=Pafc—v<r)=Puv>alke—12)=1-F,(28c— 1),
we have (F&)~(y) = zfc— (F,)~ (1 — y) and
) o~ (B~ = e rr (1 1) e (£) )
By (8), when n — oo,
(10) Z%’X ri o ,L,l)) ﬁg% ) 00 M ([0, 00) x (—00, 00)).
By (7), for A > O,

o0

Gy R E(& exp{—Xcj(zf — &)} ¢; E(& exp{Acj&i})
m(A) = crp Z Eexp{—Ac;(z& — 51)} Z ; Eexp{ic;&i}

j=1 j=1

If we denote the last sum by 7(\) we obtain m(\) = cz® — ().

Then (m%)=(y) = r~(cz® —y), y > 0 and by (6) and (9) we have,
bC 1 N 1 _ 1
o m9)T(ef)  (mO) (e - Fr (1-3)) o (FES(-g)

When we substitute the last in (10) we get
o0 oo

1) D2 (4 mtien ) T D8yt )

i=1 \ "’ v i=1 \ " (r—(Fy (-n—1))~1

We denote the above point process by N,,.
Define a functional T7 : M ([0, 00) x (—00,00]) — M([0,o0)) by relations:
(12)  (Tim)(t)= \/ Ok, t:m(0,t] x (—00,00]) >0, M= e(r,0,) and
k

kirg <t
(Tym)(t) = \/ O, t:m([0,¢] x (—o0,00]) = 0.
ki =sup{s>0:m((0,5] X (—o00,00])=0}

In Proposition 4.20 [7] is obtained that 7% is a.s. continuous in M([0,00)) at
M, ([0, 00) x (—00, 0]).

So, by CMTh we have T4 N,, = T1 N on M([0, 00)) when n — oo.

By (12) for a, ~ F;-(1—n"Y) and b, ~ (r—(F; (1 —n= 1))~ Y, (-) = (TANL) ().

We denote T1N by Y. Because of N ~ PRM (M,([0,00) x (—o0,00]);dt X p1), Y is
an extremal process with homogeneous max-increments and

P(Y (1) <z)=P(N([0,1] x (z,00]) =0) = exp{—e~ "}, z € R,

i.e. it is A-extremal process, where A is the Gumbel df.
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MAKCUMYMM HA IIJI'b3TAIIIN CE CPEJHUN CbC CMYIIIEHN A B
MAKC-OBJIACTTA HA IIPUBJINYAHE HA YENUBVYJI

ITaBamuua UMopnamoBa

Tlosmyuen e mpuHIMI 33 WHBAPUAHTHOCT HAa MaKCHUMyMa B JBa JacTHU ciaydasi. Mo-
MEHTHUTE CEYEeHUs] Ha PA3IJIEKJIAHUTE PEIUIU OT CJIydYailHM MPOIECH Ca MaKCHUMY-
MM Ha TOJIXOJSI0 apUHHO TPaHC(OPMUPAHU CTAIMOHAPHU KpailHu min Ge3KpaitHu
mrb3ramy ce cpeaan. QyHKIUATa HA PA3pe/ie/IeHre Ha, IIIy MOBUTE KOMIIOHEHTH TPU-
HaJJIe’)KM Ha Makc-00JIacTTa Ha IPUBJINYAHE Ha pas3lpejiesiennero Ha YeitOysr. Makc-
HapaCTBAHUSITA HA TE3W MPOIECU Ca 3aBUCHUMH.

I'parnyHUST mporec ce 0OKa3Ba MaKC-yCTONYUB. 3a CIydasi ¢ KPAWHUTE TJIb3TAllU Ce
CpeJIHM HErOBHUTE MOMEHTHU CE€YeHUsI MMAT pas3upeseseHne Ha YeitOyn. B caydas na
Ge3KpallHM ITH3rally Ce CPEeJHM Te UMAaT pasnpesesnenne Ha ['ymbes.
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