
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2009
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2009

Proceedings of the Thirty Eighth Spring Conference of
the Union of Bulgarian Mathematicians

Borovetz, April 1–5, 2009

AN EXAMPLE FOR THE USE OF BITWISE OPERATIONS

IN PROGRAMMING

Krasimir Yordzhev
This piece of work presents a meaningful example for the advantages of using bitwise
operations for creating effective algorithms in programming. A task connected with
mathematic modeling in weaving industry is examined and computed.

1. Introduction. The use of bitwise operations is a powerful method provided by
C/C++ programming languages. Unfortunately in widespread books on this topic there
is incomplete or no description for the work of the bitwise operations [2, 4, 5, 9, 11]. The
aim of the article is to correct this lapse to a certain extent and present a meaningful
example of a programming problem, where the use of bitwise operations is appropriate in
order to facilitate the work and to increase the effectiveness of the respective algorithm.

On the other hand the algorithm specified here could have a good practical application
for computing a known combinatorial task connected with the classification of the various
textile structures.

2. Problem formulation. Let us denote by Bn the set of all n×n binary matrices,
i.е. matrices composed by n rows and n columns, all elements of which are either 0 or
1. It is a well-known fact that the number of all matrices of Bn is equal to 2n2

. Let
A, B ∈ Bn. We will say, that A and B are equivalent and we will write A ∼ B, if B is
obtained from A as a result of sequential cyclic move of the last row or column at a first
place. It is easy to see that the so described relation is an equivalence relation. In this
way we come to a formulation of the following programming problem:

Problem 1. Write a program for with assigned positive integer n returns one representa-

tive of each equivalence class in Bn concerning the above mentioned equivalence relation.

As a result from the solution of problem 1 we will also compute a combinatorial
problem to find the number of all equivalence classes in Bn regarding the equivalence
relation ∼, i.e. for finding the cardinal number of the factor set Bn/∼.

This problem is applicable in wavering industry. With the help of the elements of Bn
the various threads interweaving of a certain weaver structure could be coded, and with
this coding by using two equivalent matrices the weaving of one and the same fabric is
coded, because of cyclic recurrence of the repetition of interweaving [6, 8].

From a practical point of view just matrices with at least one 0 and at least one 1 in
each row and each column have meaning. Let us mark with Qn the set of all matrices
of that kind, Qn ⊂ Bn. The next problem which we are going to compute is a bit more
difficult version of problem 1.

Problem 2.Write a program that for assigned positive integer n returns one represen-

tative of each equivalence class in Qn concerning the above mentioned equivalence relation.

196

3. Bitwise operations in C/C++. Bitwise operations can be applied for integer
data type only, i.e. they cannot be used for float and double types. For the definition
of the bitwise operations in C/C++ and some of their elementary applications could be
seen, for example, in [1, 3, 7, 10].

We assume as usually that bits numbering in variables starts from right to left, and
that the number of the very right one is 0.

Let x, y and z be integer variables of one type, for which w bits are needed. Let x and
y be initialized and let the assignment z = xαy is made, where α is one of the operations
& (bitwise AND), | (bitwise inclusive OR) or ∧ (bitwise exclusive OR). For each
i = 0, 1, . . . , w − 1 the new contents of the i bit in z will be as it is presented in the
following table:

The i bit The i bit The i bit of The i bit of The i bit of
of x of y x&y x|y x ∧ y
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

In case that z =∼ x, if the i bit of x is 0, then the i bit of z becomes 1, and if the i
bit of x is 1, then the i bit of z becomes 0, i = 0, 1, . . . , w − 1.

In case that k is a nonnegative integer, then the statement z = x � k; (bitwise shift
left) will write in the (i+k) bit of z the value of the k bit of x, where i = 0, 1, . . . , w−k−1,
and the very right k bits of z will be filled by zeroes. This operation is equivalent to a
multiplication of x by 2k. The statement z = x � k works in similar way (bitwise shift
right). But we must be careful here, because in various programming environments (see
for example in [7]) this operation has different interpretations – somewhere k bits of z
from the very left place are compulsory filled by 0 (logical displacement), and elsewhere
the very left k bits of z are filled with the value from the very left (sign) bit; i.e. if the
number is negative, then the filling will be with 1 (arithmetic displacement). Therefore it
is recommended to use unsigned type of variables (if the opposite is not necessary) while
working with bitwise operations.

Directly from the definition of the operation bitwise shift left follows the effectiveness
of the following function computing 2k, where k is a nonnegative integer:

unsigned int Power2(unsigned int k) {

return 1<<k;

}

To compute the value of the i bit of an integer variable x we can use the function:

int BitValue(int x, unsigned int i) {

if ((x & (1<<i)) == 0) return 0;

else return 1;

}

197

Bitwise operations are left associative.
The priority of operations in descending order is as follows: bitwise complement ∼;

arithmetic operations ∗ (multiply), / (divide), % (remainder or modulus); arithmetic

operations + (binary plus or add) − (binary minus or subtract); the bitwise operations

<< and >>; relational operations <, >, <=, >=, ==, !=; bitwise operations &, ∧ and
|; logical operations && and ‖.

4. Algorithm realization. Each n×n binary matrix A can be coded with the help of
vector (array) of n nonnegative integers v = (v0, v1, . . . , vn−1), where 0 ≤ vi ≤ 2n − 1 for
each i: 0 ≤ i ≤ n− 1. One-to-one correspondence is realized through binary presentation
of natural numbers, i.e. the i row of the matrix A is vi in binary system. The row i of A
will be completely nil if and only if vi = 0; and all elements of the i row of A will be equal
to 1 if and only if vi = 2n−1. In other words, it is a necessary and sufficient condition for
each i = 0, 1, . . . , n−1 to be realized 1 ≤ vi ≤ 2n−2, in order to obtain at least one 0 and
at least one 1 in each row. In order to obtain at least one 0 in each column of the matrix
A, it is necessary and sufficient that the bitwise AND of all numbers, representing the
rows of A to be equal to 0. In order to obtain at least one 1 in each column of the matrix
A it is necessary and sufficient that the bitwise inclusive OR of all numbers, representing
the rows of A to be equal to 2n − 1, i.e. to be equal to the number which is written in
binary system with n ones.

Thus we obtain the following function, which checks whether the array of n integers
v = (v0, v1, . . . , vn−1) represents a matrix of Qn, or not

int IsQn(unsigned int v[], unsigned int n) {

// Returns 1, if with v a matrix in Qn is coded

// Returns 0, otherwise

for (int i=0; i <= n-1; i++)

if (v[i]<1 || $ v[i] > (1<<n)-2) return 0;

int x,y;

x = (1<<n) -1;

y=0;

for (int j=0; j <= n-1; j++) {

x = x & v[j];

y = y | v[j];

}

if (x != 0) return 0;

if (y != (1<<n)-1) return 0;

return 1;

}

Let x be an integer, for which we are certain that it belongs to the interval 0 ≤ x ≤
2n − 1, i.e. there is no need of more than n digits 0 or 1 for its binary code. Then to
present x in binary system (see the function BitValue described in the previous section),
written with the aid of exactly n digits 0 or 1 and eventually with a certain number of
insignificant zeroes at the beginning, we can use the following function:

198

void BinPrn(int x, unsigned int k) {

int z;

for (int i = k-1; i >= 0; i--) {

z = x & (1<<i);

if (z == 0) cout<<’0’;

else cout<<’1’;

}

cout<<’\n’;

}

Let us examine the set

V = {(v0, v1, . . . , vn−1) | 0 ≤ vi ≤ 2n − 1, i = 0, 1, . . . , n − 1} .

All elements of V can be sorted in ascending lexicographic order. The essence of
the proposed by us algorithm is to obtain sequentially all elements of V in the same
increasing order from the smallest one to the biggest one and right after obtaining them
to check whether this element is minimal according to the lexicographic order in the class
of equivalence. At last we will separate just the minimal in their class of equivalency
elements and they will be the only representatives of each equivalency class in the sets
Bn and Qn (which was required in Problems 1 and 2). For this purpose we will design
a function IsMin, which will return 1, if the input argument is minimal in the class of
equivalency to which it belongs to, and 0 otherwise. But before that we need the following
auxiliary function CicleMove, which for assigned nonnegative integers x and n returns a
number, which is obtained from x by moving all bits one position to the right, beginning
with the moving of the very right bit to the place of the bit n − 1. In this case we will
be helped by the bitwise operations.

unsigned int CicleMove(unsigned int x,unsigned int n)

unsigned int b0 = x & 1; // Record the value

//of the very right bit of x

x=x & ((1<<n)-1); // Replaces all bits to the

//left from the on with number (n-1) with 0

return (x >> 1)$\vert $(b0 << n-1);

}

The following auxiliary function will also be useful for the computing of the main
problem:

Int IsLess(unsigned int u[],unsigned int v[],int n)

{

// Return 1, if according to lexicographic order

//u[0] u[1] \ldots u[n-1] < v[0] v[1] \ldots v[n-1]

// Return 0, otherwise

int i = 0;

while ((u[i] == v[i]) && (i<n-1)) i++;

if (u[i] < v[i]) return 1;

else return 0;

}

199

The above mentioned function IsMin could look as follows:

int IsMin(unsigned int v[], unsigned int n) {

// Return 1, if according to lexicographic order

//v[0] v[1] \ldots v[n-1]is minimal in its class of equivalency

// Return 0, otherwise

unsigned int u[32], v1[32];

for (int i = 0; i <= n-1; i++) v1[i] = v[i];

for (int j = 0; j <= n-1; j++) {

for (int i = 1; i <= n-1; i++) {

for (int s = 0; s <= n-1; s++) {

int s1 = (s+i) % n;

u[s] = v1[s1];

}

if (IsLess(u,v,n)) return 0;

}

for (int i=0; i <= n-1; i++) v1[i]=CicleMove(v1[i],n);

}

return 1;

}

Taking the advantages of the above described functions we propose the following
computing of Problems 1 and 2 (for n = 4, for example). In order to be brief here we
will not print all the elements obtained, and we will obtain their numbers only. For the
hard-copy itself for each row of any of the obtained matrices we can take advantage of
the above described procedure BinPrn and after organizing of a cycle by the number of
the row to print the whole matrix as well.

int main() {

const int n=4;

int i;

unsigned long int NBn = 0; // Number of elements in Bn

unsigned long int NQn = 0; // Number of elements in Qn

unsigned long int NBnEq = 0; // Number of the

//classes of equivalency in Bn

unsigned long int NQnEq = 0; // Number of the

//classes of equivalency in Qn

unsigned int v[n];

int r=(1<<n)-1;}

for (i = 0; i<n; i++) v[i]=0;

do {

i=n-1;

for (int k=0; k<=r; k++) {

v[i]=k;

NBn++;

if (IsQn(v,n)) NQn++;

if (IsMin(v,n)) {

200

NBnEq++;

if (IsQn(v,n)) NQnEq++;

}

}

while (v[i]==r) i--;

if (i>=0) {

v[i]++;

for (int k=n-1; k>i; k--) {

v[k]=0;

}

}

} while (i>=0);

cout<<"Number of elements in Bn "<<NBn<<’\n’;

cout<<"Number of elements in Qn "<<NQn<<’\n’;

cout<<"Number of the classes of equivalency in Bn "<<NBnEq<<’\n’;

cout<<"Number of the classes of equivalency in Qn "<<NQnEq<<’\n’;

return 0;

}

The results from the above described program for some values of n can be summarized
in the following table.

n 1 2 3 4 5 6
|Bn| 2 16 512 65 536 33 554 432 236 > 232 − 1
|Qn| 0 2 102 22 874 17 633 670 > 232 − 1

|Bn/∼| 2 7 64 4 156 1 342 208 1 908 897 152
|Qn/∼| 0 1 14 1 446 705 366 1 304 451 482

REFERENCES

[1] S. R. Davis C++ for dummies. IDG Books Worldwide, 2000.
[2] C. S. Horstmann Computing concepts with C++ essentials. John Wiley & Sons, 1999.
[3] B. W. Kernigan, D. M. Ritchie The C programming Language. AT&T Bell Laborato-

ries, 1998.
[4] П. Азълов. Информатика: Езикът С++ в примери и задачи за 9-10 клас. София,

Просвета, 2005.
[5] П. Азълов. Обектно ориентирано програмиране Структури от данни и STL. София,

Сиела, 2008.
[6] Г. И. Борзунов. Шерстяная промишленост – обзорная информация. Москва, ЦНИИ

ИТЭИЛП, 3, 1983.
[7] С. В. Глушаков, А. В. Коваль, С. В. Смирнов. Язык программирования C++.

Харьков, Фолио, 2001.
[8] К. Я. Йорджев, И. В. Статулов. Математическо моделиране и количествена оценка

на първичните тъкачни сплитки. Текстил и облекло, 10, (1999), 18–20.
[9] Х. Крушков. Практическо ръководство по програмиране на С++. Пловдив, Макрос,

2006.
201

[10] Е. Л. Романов. Практикум по программированию на C++. Санкт Петербург, БХВ,
2004.

[11] М. Тодорова. Програмиране на С++. Част I, част II, София, Сиела, 2002.

Krasimir Yordzhev
South-West University “N. Rilsky”
2700 Blagoevgrad, Bulgaria
e-mail: iordjev@swu.bg, iordjev@yahoo.com

ПРИМЕР ЗА ИЗПОЛЗУВАНЕ НА ПОБИТОВИ ОПЕРАЦИИ В
ПРОГРАМИРАНЕТО

Красимир Йорджев

В работата е посочен съдържателен пример за използуването на побитовите опе-
ратори при оформянето на ефективни алгоритми в програмирането. Разгледана
и решена е една задача, свързана с математическото моделиране в тъкачната
промишленост.

202

