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This paper presents the main features of the relatively new statistical technique called
Multivariate Adaptive Regression Splines (MARS) and the corresponding software
product. The MARS method is designed for statistical analysis of data, when stan-
dard parametric modeling by multiple regression or logistic regression methods is not
applicable. A case study from the area of laser technology, especially for modeling of
UV Cu+ Ne-CuBr laser is performed. The obtained results are in a good agreement
with practical issues. It is shown that the constructed nonparametric MARS mod-
els can be applied in estimation and prediction of current and future experiments in
order to improve the output laser power.

1. Introduction. The method of multivariate adaptive regression splines (MARS)
is a kind of nonparametric regression method for studying relationships. It was initially
developed for data mining from large multidimensional datasets, but it displayed excellent
qualities in a number of other fields. Today it is successfully used as a prediction and
description technique in economics, sociology, ecology, geographical information systems,
meteorology, engineering, etc.

Being a nonparametric regression method, MARS does not impose the limitations
on the normal distribution of data, characteristic of classic parametric methods such as
multidimensional regression or logistic regression. It is comparable to other nonparamet-
ric methods used for describing complex relationships between variables, namely Clas-
sification and Regression Tree – CART, Artificial Neural Networks – ANN, additive
models, in particular the generalized additive model (GAM) etc. MARS has a number
of advantages over these methods, including simple interpretation of obtained models,
efficiency with large and small sample size, higher speed of realization of algorithms (for
example 100 to 1000 higher than ANN) etc. [1, 2]

This paper introduces MARS and its capabilities relating to the construction of non-
parametric regression models. Its main elements are described – nodes and algorithms
for adaptive selection, basic functions, testing techniques, validation and avoidance of
overestimation of the model, graphic representation of the results etc. The features of
evaluation of local nonlinearity of data through determination of first, second or higher
order interactions and construction of nonlinear models are demonstrated.
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In this paper, MARS method is applied in a case study regarding experimental data
for a deep ultraviolet copper ion excited neon copper bromide (DUV Cu+ Ne-CuBr)
lasers.

Because of its unique capabilities (high power, various wavelengths) DUV Cu+ Ne-
CuBr laser is widely used in a number of fields [3–5]. The opportunity of extending
its application justifies its theoretical and experimental study. Using the methodology
of MARS, the following problems are solved: investigation on the influence of input
parameters on the output laser power; establishment of the best MARS models of the
0th, 1st and 2nd order for this dependence; comparison between the models constructed
and interpretation of the results.

Experimental results obtained in the Metal Vapor Lasers Laboratory, at the Georgi
Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences are used for
basis of the statistical study. This laboratory is leader in the DUV Cu+ laser development
[5–9].

2. Brief description of the method. The mathematical basis for MARS was
developed by the american statistician J. H. Friedman in 1990–1991 [1]. The algorithms
created by Friedman and their first program implementation have been integrated in the
currently existing MARS software product. The product has gained popularity and has
been applied with increasing success in the last few years [2].

In essence MARS generates adaptive models through partially linear regressions, i.e.
data nonlinearities are approximated using separate sloped intercepts in different subin-
tervals of the set defined for each predictor variable. A broken line is used, instead
of looking for one common regression curve approximating the data. The slope of the
regression line varies from one interval to another at the so called nodes.

The node is a basic element of the model. It shows where the behavior of the function
changes. In the classic spline, nodes are given in advance, while with MARS, the most
suitable place for them is determined using a fast algorithm when certain suitable opti-
mization conditions are met (for example a SSE minimum – the sum of the squares of the
errors). The initial node of the searching procedure is always at the lowest value of the
predictor (the minimum). In addition, it is possible to find new relationships between
variables and to determine new variables to be included in the model. In practice,
determining the best distribution of the nodes for a large number of variables, especially
as they are usually an unknown number, is a very complex task which requires intensive
calculations. This problem is solved by using the so called “forward-backward stepwise
procedure” and intermediate (fictitious) points between data.

The other basic element of MARS is the basic function for transformation of predic-
tors. The basis function is called a “hockey stick” and has the following form:

max(0, X − c) or max(0, c − X),

where c is a constant, with which the function X is mapped inX∗. An example with four
basic functions is given in Fig. 1. In fact, such a function is generated for each value of
X .

In the case of the function BF20 the transformation for X is

BF20 = max(0, X − 20).
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Fig. 1 Graphics of four basic “hockey stick” functions for the predicator variable X, defined in

the interval [0,50].

If in the regression equation X is replaced with the basis function BF20, we get

y = const + b1.BF20 + error.

The spline is written in the following form:

y =

{

const X ∈ [0, 20]

const + b1(X − 20) X ∈ [20, 50]
.

More complex linear splines can be constructed analogically. The coefficients of the
spline are determined by additional optimization conditions, minimizing the total regres-
sion error when using different algorithms, adaptively in relation to the data.

Another important feature of MARS is the application of different smoothing me-
thods. To name a few: floating means method, floating median method, weighted least
squares method, LOWESS – locally-weighted regression smoothness curve etc.

We are also going to give abriefly look at some techniques for testing, validation and
avoidance of overestimation of the model. First, the number of candidate basic functions,
for which it is assumed to be part of the “best model”, is estimated. After that, their
number is at least doubled. The strategy is to exclude those functions which contribute
the least to the accuracy of the model. The exclusion procedure is iterative and can be
described as follows: (1) in the model with the biggest number of basic functions, MARS
determines the one which contributes the least to the sum of the squares of the residuals
(the least squares criterion), after which that function is removed; (2) the new model is
calculated and in the same way the next least influential basic function is removed and
so on; (3) the process is repeated until all basic functions are eliminated.

We have to specify that the “näıve model” suggested by MARS which has the biggest
determination coefficient R2 corresponds to the model with the maximum number of
functions. In order to avoid the overestimation the specified R2 and other criteria are
used. The best MARS model satisfies a special general criterion [1, 2].

Finally, we have to note that usual regression splines, similarly to a normal linear
one-dimensional regression, “mediate” the data grouped around the regression line. For
this reason, when predicting results in the multidimensional dataset, predicted values are
respectively lower or higher for a positive or negative spline slope.
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3. Case study for experimental data for UV Cu+ Ne-CuBr laser.

3.1. Data description. Further we investigate the data of UV Cu+ Ne-CuBr laser
by using MARS method. Development of copper halide lasers continues to be actul
[5]. That is due to the fact that in the visible range (λ1 = 510.6 nm, λ2 = 578.2 nm),
as well as in the ultraviolet range (λ1 = 248.6 nm, λ2 = 252.9 nm, λ3 = 260.0 nm and
λ4 = 270.3 nm), these lasers operate at highest output power.

We examine data of eight input basic variables which determine the UV Cu+ Ne-
CuBr laser operation. They are: D (mm) – inside diameter of the laser tube, L (cm) –
electrode separation (length of the active area), PIN (W) – input electrical power, PRF

(KHz) – pulse repetition frequency, PNE (Torr) – neon gas pressure, PH2 (Torr) –
hydrogen gas pressure, Dr (mm) – inside diameter of the rings, PL (W/cm/4) - specific
electrical power per unit length. The response variable is Pout (mW) – output laser
power.

The data is of historical type. The sample size is n = 176. Here we have to mention
the complexity, long duration and high cost of each conducted experiment.

The data of consideration are not of Gaussian type, which must be checked by applying
the nonparametric Kolmogorov-Smirnov test. This is why the well known parametric
regression methods as multiple linear regression would not give satisfactory results for
our data.

3.2. Zero order MARS model. Within this study only the best MARS models are
presented. They are calculated by using the original eight independent laser variables
D, L, PIN , PRF , PNE, PH2, DR, PL as predictors and the response variable Pout.
The models are selected so as to allow no over fitting of the model, as well as by using
the algorithm for applying the least squares method [1, 2]. The obtained basic statistic
indexes are given in Table 1. All models and statistics are significant at level 0.000.

Firstly we construct the MARS model of the 0th order, without interaction between
predictors. It includes the following eleven piecewise linear basic functions, as described
in Section 1:

(1)

BF1 = max(0, D − 4.0);

BF4 = max(0, 4.5 − PL);

BF7 = max(0, PH2 − 0.04);

BF8 = max(0, 0.04 − PH2);

BF9 = max(0, PNE − 16.5);

BF11 = max(0, PNE − 19.37);

BF13 = max(0, DR − 11.8);

BF14 = max(0, 11.8 − DR);

BF15 = max(0, PNE − 18.75);

BF17 = max(0, PNE − 21.88);

BF19 = max(0, P IN − 1300).

The basic functions include six predictors D, PIN , PNE, PH2, DR, PL. As an
example, some graphs are shown in Fig. 2 – a, b. The estimated values of laser output
power are calculated using the expression
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Fig. 2. The piecewise linear dependences between: a) hydrogen gas pressure PH2 and Pout;

b) input electrical power PIN and Pout

(2)

Pout = 294.7174 + 11.9923 ∗ BF1 + 71.5160 ∗ BF4 − 10013.2227 ∗ BF7
− 6750.2637 ∗ BF8 + 83.5532 ∗ BF9 − 417.2946 ∗ BF11
+ 333.0301 ∗ BF13 − 12.3079 ∗ BF14 + 188.3967 ∗ BF15
+ 149.6411 ∗ BF17 + 0.5734 ∗ BF19.

With the help of MARS model (1)–(2) it is easy to calculate the estimate of Pout

when predictor values are known. The same is valid for predicting a future response.
For example, a maximum laser output power Pout = 1300 mW has been measured
at D = 26 mm, PIN=1900 W, PNE = 19.37 Torr, PH2 = 0 Torr, DR = 12 mm,
PL = 5.52 W/cm/4, L = 80 cm and PRF = 25 KHz. After substituting the latter in
(1)–(2) we find the approximate estimate Pout = 1055.8 mW. More results are presented
in the next section 4.

3.3. First order MARS model. The second MARS model which we consider is the
one which accounts for possible first order interactions between predictors. The resulting
best model includes the following twelve basic functions:

(3)

BF1 = max(0, D − 4.0);
BF2 = max(0, L − 80.0);
BF3 = max(0, PNE − 19.75) ∗ BF1;
BF4 = max(0, 19.75 − PNE) ∗ BF1;
BF5 = max(0, PNE − 18.75) ∗ BF1;
BF7 = max(0, DR − 4.0) ∗ BF2;
BF11 = max(0, DR − 11.8);
BF13 = max(0, PH2 − 0.04) ∗ BF11;
BF14 = max(0, 0.04 − PH2) ∗ BF11;
BF17 = max(0, PNE − 19.25) ∗ BF1;
BF19 = max(0, P IN − 1400.0) ∗ BF1;
BF20 = max(0, 1400.0− PIN) ∗ BF1;
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We can see that basic functions in the best model also include six predictors: D, L,
PIN , PNE, PH2 and DR, almost the same as in (1)–(2). The respective equation that
can be used to calculate the estimates of Pout is:

(4)

Pout = 284.3228 + 11.6263 ∗ BF1 − 46.4685 ∗ BF2 + 17.1403 ∗ BF3

− 2.5005 ∗ BF4 + 38.0011 ∗ BF5 + 4.9766 ∗ BF7

+ 1259.7822 ∗ BF11 − 56044.7969 ∗ BF13 − 27103.3535(4)

∗ BF14 − 57.6090 ∗ BF17 + 0.0240 ∗ BF19 − 0.0495 ∗ BF20.

The contributions of some of the interactions to Pout are shown in Fig. 3.

Fig. 3. The influence of the first order interactions between predictors on Pout:

a) contribution of PNE and D to Pout; b) contribution of L and D to Pout

For the same maximum value of Pout = 1300 mW, the model (3)–(4) predicts ap-
proximately Pout = 1184.9 mW which is much better than the corresponding prediction
by the model (1)–(2).

3.4. Second order MARS model. The 2nd order best MARS model consists of
fifteen basic functions

BF1 = max(0, D − 4.0);

BF2 = max(0, L − 80.0);

BF3 = max(0, PNE − 19.75) ∗ BF1;

BF4 = max(0, 19.75 − PNE) ∗ BF1;

BF5 = max(0, L − 80.0) ∗ BF4;

BF6 = max(0, L − 80.0) ∗ BF3;

BF7 = max(0, PH2 − 0.04) ∗ BF4;

BF8 = max(0, 0.04 − PH2) ∗ BF4;

BF9 = max(0, PNE − 17.5) ∗ BF1;

BF11 = max(0, P IN − 1600.0) ∗ BF9;
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(5) BF13 = max(0, DR − 11.8);

BF14 = max(0, 11.8 − DR);

BF15 = max(0, PNE − 19.37);

BF16 = max(0, 19.37− PNE);

BF17 = max(0, P IN − 1600.0) ∗ BF13;

BF18 = max(0, 1600.0− PIN) ∗ BF13;

BF19 = max(0, D − 4.0) ∗ BF16;

BF20 = max(0, PL − 3.28) ∗ BF15.

The respective equation to calculate the estimates of Pout is:

(6)

Pout = 453.9386− 10.7268 ∗ BF1 − 42.7187 ∗ BF2 + 36.3037 ∗ BF4

+ 0.8727 ∗ BF5 + 0.3679 ∗ BF6 − 381.6795 ∗ BF7

− 177.4236 ∗ BF8 + 5.2942 ∗ BF9 + 0.0530 ∗ BF11(6)

+ 991.4677 ∗ BF13 − 25.4270 ∗ BF14 − 4.7253 ∗ BF17

− 3.5428 ∗ BF18 − 35.0331 ∗ BF19 − 111.1146 ∗ BF20;

In particular, the predicted value for Pout = 1300 mW by the model (5)–(6) is
approximately Pout = 1248.5 mW.

4. Discussion. We briefly discuss the obtained results from nonparametric MARS
models. From Table 1 it can be seen that the 2nd order model (5)–(6) gives the best
results.

Table 1. The basic statistics of constructed best MARS models. GSV is the generalized cross
validation measure criterion [10].

MARS model 0th order 1st order 2nd order

R
2 0.9366 0.9533 0.9700

R
2adjusted 0.9318 0.9498 0.9672

GCV 0.9117 0.9244 0.9451

Direct predictors 6 6 7

Terms in model 12 12 15

The quality of estimation of the models is seen in Figs 4–6, respectively. It is given by
drawing the correlation between measured and predicted values of the response variable
Pout. The best results are also observed for the 2nd order interaction. We have to
mention that the models of higher order of interaction between predictors do not show
further improvement of the obtained results.

Our results can be easily interpreted. For instance, the increase of the inside diameter
of the laser tube D and the input electric power PIN leads to increase in the output
power Pout (see also Fig. 2b). Also the influence of the other laser parameters is observed
and estimated. These results are fully agreed with particular experiment studies [5–9].
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Fig. 4. Correlation of predicted versus measured values of Pout, obtained by the first order
best MARS model (without interactions)

Fig. 5 Correlation of predicted versus measured values of Pout, obtained by the first order best
MARS model

Fig. 6 Correlation of predicted versus measured values of Pout, obtained by the second order
best MARS model
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In our investigation we combine all influences of the input variables and what is more,
we obtain the expressions for estimating the values of Pout with a necessary statistical
inference.

5. Conclusion. Often in a statistical study of real data the standard parametric
techniques of regression analysis as multiple regression analysis and logistic regression
analysis are not applicable or give unsatisfactory results. The nonparametric method of
MARS presented here can be successfully applied for solving many difficult problems in
this type of investigation, especially when data is characterized by a multicolinearity, has
no normal distribution and the mutual dependences between predictors can not be easily
transformed.

In the performed case study of the data arising in laser technology we constructed
and compared three MARS models. The obtained results show that the second order
model is the best. In fact, this model is strongly nonlinear and contains the piecewise
second degree terms of predictor variables.

The obtained models can be used in estimation and prediction of current and future
experiments in order to improve the output laser characteristics, in our case the very
important one – the output laser power.
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ПРИЛОЖЕНИЕ НА МНОГОМЕРНИТЕ АДАПТИВНИ
РЕГРЕСИОННИ СПЛАЙНИ ЗА ПОСТРОЯВАНЕ НА

НЕПАРАМЕТРИЧНИ МОДЕЛИ

Снежана Гочева-Илиева

В тази статия са представени основните възможности на сранително новата ста-
тистическа техника – Многомерни Адаптивни Регресионни Сплайни (МАРС) и
съпътстващия софтуерен продукт. Методът МАРС е предназначен за статисти-
чески анализ на данни, когато стандартното параметрично моделиране с методи-
те на многомерна регресия или логистична регресия не са приложими. Проведено
е конкретно изследване на експериментални данни от областта на лазерните тех-
нологии, по-специално за моделиране на ултравиолетов йонен лазер с пари на
меден бромид. Получените резултати имат добро съвпадение с реално изследва-
ните случаи. Показано е, че построените непараметрични МАРС модели могат
да се използват за оценка и предсказване на настоящи и бъдещи експерименти,
с цел подобряване на изходната лазерна мощност.
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