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NONLOCAL BOUNDARY VALUE PROBLEMS FOR
TWO-DIMENSIONAL POTENTIAL EQUATION ON A
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Let Φ and Ψ be “arbitrary” linear functionals on C1[0, a] and C1[0, b], respectively.
The class of BVPs uxx + uyy = F (x, y) , 0 < x < a, 0 < y < b, u(x, 0) = 0,
u(0, y) = 0, Φξ{u(ξ, y)} = g(y) , Ψη{u(x, η)} = f(x) is considered. An extension
of Duhamel principle, known for evolution equations, is proposed. An operational
calculus approach for explicit solution of these problems is developed. A classical
example of such BVP is the Bitsadze – Samarskii problem.

1. Introductions. Let Φ be a linear functional on C1[0, a] and Ψ be a linear functional
on C1[0, b]. Then they have Stieltjes type representations:

(1) Φ{f} = Af(a) +

a
∫

0

f ′(t)dα(t), f ∈ C1[0, a]

and

(2) Ψ{g} = Bg(b) +

b
∫

0

g′(t)dβ(t), g ∈ C1[0, b]

where α and β are function with bounded variation, A and B being constants.
We consider the potential equation

(3) uxx + uyy = F (x, y)

on the rectangle G = {(x, y) : 0 < x < a, 0 < y < b} with local BV conditions

(4) u(x, 0) = ϕ(x) and u(0, y) = ψ(x)

and nonlocal BV conditions

(5) Φξ{u(ξ, y)} = g(y),Ψη{u(x, η)} = f(x)

with some mild smoothness requirements for the given functions F , ϕ, ψ, f and g.
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The only restrictions on the functionals Φ and Ψ are the requirements Φξ{ξ} 6= 0 and
Ψη{η} 6= 0. They are connected with the approach chosen and may be ousted by means
of some technical involvements. For the sake of some normalization of the functionals Φ
and Ψ, we assume

(6) Φξ{ξ} = 1 and Ψη{η} = 1.

We consider the spaces C(G) and C1(G) of the continuous and smooth functions on
G = [0, a] × [0, b], respectively.

Further, we introduce the right inverse operators Lx and Ly of
∂2

∂x2
and

∂2

∂y2
on

C([0, a] × [0, b]) as the solutions v(x, y) = Lxu(x, y) and w(x, y) = Lyu(x, y) of the
elementary BVPs

(7)
∂2v

∂x2
= u(x, y), v(0, y) = 0, Φξ{v(ξ, y)} = 0

and

(8)
∂2w

∂y2
= u(x, y), w(x, 0) = 0, Ψη{w(x, η)} = 0.

The operators Lx and Ly have the explicit representations:

(9) Lx{u(x, y)} =

x
∫

0

(x− ξ)u(ξ, y)dξ − xΦξ







ξ
∫

0

(ξ − η)u(η, y)dη







,

(10) Ly{u(x, y)} =

y
∫

0

(y − η)u(x, η)dη − yΨη







η
∫

0

(η − ς)u(x, ς)dς







.

2. Convolutions. One of the authors had found a convolution (f1
x
∗ f2)(x) in C[0,

a] and a convolution (g1
y
∗ g2)(y) in C[0, b] such that the operators Lx and Ly are the

convolution operator {x}
x
∗ and {y}

y
∗ , correspondingly.

Theorem 1 [1]. The operations

(11) (f1
x
∗ f2)(x) = −

1

2
Φξ







ξ
∫

0

h(x, η)dη







,

(12) (g1
y
∗ g2)(y) = −

1

2
Ψη







η
∫

0

k(y, ς)dς







,

where

(13) h(x, η) =

η
∫

x

f1(η + x− ς)f2(ς)dς −

η
∫

−x

f1(|η − x− ς|)f2(|ς|)sgn(ς(η − x− ς))dς

(14) k(y, η) =

η
∫

y

g1(η + y − ς)g2(ς)dς −

η
∫

−y

g1(|η − y − ς|)g2(|ς|)sgn(ς(η − y − ς))dς
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are bilinear, commutative and associative operations on C([0, a]) and C([0, b]), respectively,
such that the representations

(15) Lxf(x) = {x}
x
∗ f(x)

and

(16) Lyg(y) = {y}
y
∗ g(y)

hold.

For a proof see [1].
By means of (11) and (12) a two-dimensional convolution in C([0, a] × [0, b]) can be

defined

Theorem 2 [7]. The operation

(17) (u ∗ v)(x, y) =
1

4
Φ̃ξΨ̃η{h(x, y, ξ, η)},

where

Φ̃ξ{f(ξ)} = Φξ







ξ
∫

0

f(σ)dσ







, Ψ̃η{f(η)} = Ψη







η
∫

0

f(τ)dτ







with

h(x, y, ξ, η) =
ξ
∫

x

η
∫

y

u(ξ + x− σ, η + y − τ)v(σ, τ)dσdτ−

−

∫ ξ

−x

∫ η

y

u(|ξ − x− σ|, η + y − τ)v(|σ|, τ) sgn (ξ − x− σ)σdσ dτ−

−

∫ ξ

x

∫ η

−y

u(ξ + x− σ, |η − y − τ |)v(σ, |τ |) sgn (η − y − τ)τdσ dτ+

+

∫ ξ

−x

∫ η

−y

u(|ξ − x− σ|, |η − y − τ |)v(|σ|, |τ |) sgn (ξ − x− σ)(η − y − τ)στdσ dτ

is a bilinear, commutative and associative operation in C(G) such that

(18) Lx{u(x, y)} = {x}
x
∗{u(x, y)}, Ly{u(x, y)} = {y}

y
∗{u(x, y)}

(19) LxLy{u(x, y)} = {xy} ∗ {u(x, y)}.

The linear space C = C(G) equipped with the multiplication (17) is a commutative
Banach algebra (C, ∗).

Further, we introduce the algebra M of the multipliers of (C, ∗). Let us remind the
definition of a multiplier of (C, ∗).

Definition 1. (See [3]) A mapping M : C → C is said to by a multiplier of the
convolutional algebra (C, ∗) iff the relation

(20) M(u ∗ v) = (Mu) ∗ v

holds for all u, v ∈ C.

As it is shown in Larsen [2], each such mapping for our convolution (17) is automatically
linear and continuous. That’s why, further we consider each multiplier of (C, ∗) as a
continuous linear operator.
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If f ∈ C[0, a] and g ∈ C[0, b], then the convolutional operators f
x
∗ and g

y
∗ defined in C

by (f
x
∗)u = f

x
∗u, (g

y
∗)u = g

y
∗u are multipliers of (C, ∗) (See Dimovski and Spiridonova

[7]). Of course, the operator {F (x, y)}∗ is also multiplier of (C, ∗).

Further, we use the notations

(21) [f ]y = {f(x)}
x
∗ and [g]x = {g(y)}

y
∗ .

3. A two-dimensional operational calculus. In M there are elements which

are non-divisors of 0. Indeed, such elements are the multipliers {x}
x
∗ and {y}

y
∗, i.e. the

operators Lx and Ly.

Denote by N the set of the non-zero non-divisors of the zero on M. The set N is a
multiplicative subset of M, i.e. such that p, q ∈ N implies pq ∈ N.

Further, we consider multipliers fractions of the form
M

N
with M ∈ M and N ∈ N .

They are introduced in a standard manner, using the well-known method of “localisation”
from the general algebra [4].

Denote by M the set N
−1

M of multipliers fractions. We consider it as a commutative

ring containing the basic field (R or C), the algebras (C[0, a],
x
∗), (C[0, b],

y
∗), (C, ∗) and

M, due to the embeddings

C → M or C → M : α 7→
αLx

Lx

,

(C[0, a],
x
∗) → M : f(x) 7→

(Lxf)
x
∗

Lx

,

(C[0, b],
y
∗) → M : g 7→

(Lyg)
y
∗

Ly

,

(C([0, a] × [0, b]), ∗) → M : u 7→
(LxLyu)∗

LxLy

.

Further, we consider all numbers, functions, multiplier and multipliers fractions as
elements of a single algebraic system: the ring M of the multipliers fractions.

4. Explicit solution of nonlocal BVPs for the potential equation. We consider
the following boundary value problem:

(22)

∂2u

∂x2
+
∂2u

∂y2
= F (x, y), 0 < x < a, 0 < y < b

u(x, 0) = u(0, y) = 0

Φξ{u(ξ, y)} = g(y), Ψη{u(x, η)} = f(x)

Definition 2. A function u(x, y) ∈ C1([0, a]×[0, b]) is said to be a generalised solution
of (22) iff u(x, y) satisfies the integral relation

(23) Lxu+ Lyu = Lxf(x).y + Lyg(y).x+ LxLyF (x, y)
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Formally, (23) could be obtained from the equation
∂2u

∂x2
+
∂2u

∂y2
= F (x, y) applying to

it the operator LxLy and taking into account the boundary value conditions.

Lemma 1. If u(x, y) ∈ C1([0, a] × [0, b]) satisfy (23), then u(x, y) satisfies the
boundary value conditions:

u(x, 0) = u(0, y) = 0,
Φξ{u(ξ, y)} = g(y), Ψη{u(x, η)} = f(x)

Proof. Let us consider (23). For y = 0 we find Lxu(x, 0) = 0. Next we apply the

operator
∂2

∂x2
and find u(x, 0) = 0. For x = 0 we find Lyu(0, y) = 0. Applying

∂2

∂y2
, we get

u(0, y) = 0. If apply Ψ to (23), we obtain LxΨη{u(x, η)} = Lxf(x). Then, applying
∂2

∂x2

we obtain Ψη{u(x, η)} = f(x). At last, applying Φ to (23), we get LyΦξ{u(ξ, y)} = Lyg(y)
and, hence, Φξ{u(ξ, y)} = g(y). �

Lemma 2. If u(x, y) ∈ C2([0, a]× [0, b]) satisfy (23) then it is a classical solution of
(22).

Proof. Applying the operator
∂4

∂x2∂y2
to (23), we get

∂2u

∂x2
+
∂2u

∂y2
= F (x, y). The

fulfilment of the boundary value conditions follows from Lemma 1. �

Lemma 3. If u ∈ C2(G), then it holds:

(24) Lx

{

∂2u

∂x2

}

= u(x, y) + (xΦξ{1} − 1)u(0, y) − xΦξ{u(ξ, y)}

and

(25) Ly

{

∂2u

∂y2

}

= u(x, y) + (yΨη{1} − 1)u(x, 0) − yΨη{u(x, η)}.

For a proof, see [2].

Most important for our considerations are the algebraic inverses Sx =
1

Lx

and

Sy =
1

Ly

of the multipliers Lx and Ly, correspondingly.

Lemma 4. If u ∈ C2([0, a] × ([0, b]), then

(26) uxx = Sxu+ Sx{(xΦξ{1} − 1)u(0, y)} − [Φξ{u(ξ, y)}]x,

(27) uyy = Syu+ Sy{(yΨη{1} − 1)u(x, 0)} − [Ψη{u(x, η)}]y.

Proof. By multiplication of (24) and (25) by Sx and Sy , correspondingly. �

Using the boundary value conditions of (22), the equation uxx + uyy = F (x, y) can
be reduced to a single algebraic equation in M. Indeed, by (26) and (27) we find

(28) uxx = Sxu− [g(y)]x

(29) uyy = Syu− [f(x)]y
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and the equation uxx + uyy = F (x, y) takes the algebraic form:

(Sx + Sy)u = F (x, y) + [g(y)]x + [f(x)]y.

If Sx + Sy is non-divisor of zero, then the last equation has the following formal
solution in M:

u =
1

(Sx + Sy)
{F (x, y)} +

1

(Sx + Sy)
[f(x)]y +

1

(Sx + Sy)
[g(y)]x.

The requirement Sx +Sy to be a non-divisor of 0 in M is equivalent to a theorem for
uniqueness of the solution of (22). Therefore, our next task is to study the uniqueness for
problem (22). In the direct algebraic approach we are following, this problem reduces to
the purely algebraic requirement the elements Sx + Sy of M to be non-divisors of zero
in M.

To this end we consider the following two eigenvalue problems:

(30) u′′(x) + λ2u(x) = 0, x ∈ (0, a), u(0) = 0, Φξ{u(ξ)} = 0 in C[0, a],

(31) v′′(y) + µ2v(y) = 0, y ∈ (0, b), v(0) = 0, Ψη{v(η)} = 0 in C[0, b].

Let λn and µm be the eigenvalues of (30) and (31) for n, m ∈ N, correspondingly.

Lemma 5. If there exists a dispersion relation of the form λ2
n + µ2

m = 0 for some n,
m ∈ N, then Sx + Sy is a divisor of zero in M.

Proof. Let for some n, m ∈ N we have λ2
n + µ2

m = 0. Then

(Sx + Sy) sinλnx sinµmy = −(λ2
n + µ2

m) sinλnx sinµmy = 0. �

Theorem 3. Let a ∈ suppΦ. If λ2
n + µ2

m 6= 0 for all n, m ∈ N, then Sx + Sy is a
non-divisor of zero in M.

Proof. Assume the contrary. It is easy to see, that Sx + Sy is a divisor of zero in
M iff there is a function u ∈ C2(G) , u 6= 0, such that (Sx + Sy)u = 0. This relation is
equivalent to

(32) (Lx + Ly)u = 0

Let λn be an arbitrary eigenvalue of (30). Then, λn is a zero of the sine-indicatrix

E(λ) = Φξ

{

sinλξ

λ

}

of the functional Φ. Let χn be the multiplicity of λn as a zero of

E(λ). To λn it corresponds the finite sequence of the eigenfunction sinλnx and χn − 1
associated eigenfunctions

ϕn,s(x) =

(

Lx +
1

λ2
n

)s

ϕn,0, 0 ≤ s ≤ χn − 1,

where

ϕn,0(x) =
1

π i

∫

Γn

sinλx

λE(λ)
dλ

(see Dimovski and Petrova [5], p. 94). Note that ϕn,χn−1(x) = αn sinλnx with some
αn 6= 0.

The corresponding χn-dimensional eigenspace is

E
(χn)
λn

= span{ϕn,s(x), s = 0, 1, . . . , χn − 1}

The spectral projector Pλn
: C → E

(χn)
λn

is given by Pλn
{f} = f

x
∗ϕn.
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According to a theorem of N. Bozhinov [8] in the case a ∈ supp Φ, the projectors Pλn

form a total system, i.e. a system for which Pλn
{f} = 0, ∀n ∈ N implies f ≡ 0. For a

simple proof of Bozhinov’s theorem in our case, see [5] p. 97–98.

Denote un(x, y) = u(x, y)
x
∗ϕn(x). From (Lx + Ly) u = 0 it follows

(33) (Lx + Ly)un = 0.

We show that (33) has only the trivial solution un = 0 in E
(χn)
λn

. Assume that there
exists a nonzero solution un of (33), i.e. of the form

(34) un(x, y) = An,k(y)ϕn,k(x) +An,k+1(y)ϕn,k+1(x) + · · · +An,χn−1(y)ϕn,χn−1(x)

with An,k(y) 6= 0 for some k , 0 ≤ k ≤ χn−1. We apply the operator

(

Lx +
1

λ2
n

)χn−k−1

to (33) and obtain

(Lx + Ly)An,χn−1(y)ϕn,χn−1(x) = 0,

since

(

Lx +
1

λ2
n

)s

ϕn, 0 = 0, for s ≥ χn.

But ϕn,χn−1(x) = αn sinλnx with αn 6= 0. Denote An,χn−1(y) = An(y) and consider
(Lx + Ly)An(y) sinλnx = 0 as an equation for An(y). It is equivalent to the BVP

∂2

∂x2
(An(y) sinλnx) +

∂2

∂y2
(An(y) sinλnx) = 0

An(0) = 0, Ψη{An(η)} = 0,

which reduces to

A′′

n(y) − λ2
nAn(y) = 0, An(0) = 0 and Ψη{An(η)} = 0.

From this equation it follows that −λ2
n is an eigenvalue µ2

m of problem (31). Hence,
λ2

n+µ2
m = 0 which is a contradiction. Hence, un(x, y) ≡ 0 for all n ∈ N. By N. Bozhinov’s

theorem it follows that u(x, y) ≡ 0. Thus, we proved, that Sx + Sy is a non-divisor of 0
in M.

4.1. Let us consider BVP (22) for f(x) = Lx{x} =
1

S2
x

and g(y) = F (x, y) ≡ 0. We

assume that there exists a generalized solution of this problem and denote it by U(x, y).
It has the following algebraic representation:

U =
1

(Sx + Sy)
Lx{x} =

1

(Sx + Sy)
L2

x =
1

(Sx + Sy)S2
x

.

Then, there exists also the solution of problem (22) for arbitrary f(x), g(y) and F (x,
y) and it can by represented in the form:

u =
1

(Sx + Sy)
{F (x, y)} +

1

(Sx + Sy)
[f(x)]y +

1

(Sx + Sy)
[g(y)]x =

= S2
x

[

1

(Sx + Sy)S2
x

F (x, y) +
1

(Sx + Sy)S2
x

[f(x)]y +
1

(Sx + Sy)S2
x

[g(y)]x

]

u =
∂4

∂x4

[

U
F
∗(x, y) + U

x
∗ f(x) + U

y
∗ g(y)

]

provided the denoted derivative exists.

4.2. Let us consider BVP (22) for F (x, y) = xy = LxLy =
1

SxSy

and g(y) = f(x) ≡
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0. We denote the solution of this problem by W (x, y). Then, we have an algebraic
representation of this solution:

W =
1

(Sx + Sy)
LxLy =

1

(Sx + Sy)SxSy

The solution of problem (22) for arbitrary f(x), g(y) and F (x, y) can by represented
in the form:

u = SxSy

[

1

SxSy(Sx + Sy)
[f(x)]y +

1

SxSy(Sx + Sy)
[g(y)]x +

1

SxSy(Sx + Sy)
{F (x, y)}

]

u =
∂4

∂x2∂y2

[

W
x
∗ f(x) +W

y
∗ g(y) +W ∗ F (x, y)

]

In order the denoted derivative to exist, some smoothness condition on the functions
f , g and F should be imposed. Here we not enter into details, but we illustrate these
conditions on the example of Bitsadze-Samarskii’s problem:

(35)

∂2u

∂x2
+
∂2u

∂y2
= 0, , 0 < x < 1, 0 < y < 1

u(x, 0) = u(0, y) = 0, u(x, 1) = f(x)

u(1, y) − u

(

1

2
, y

)

= 0.

This is the special case of boundary value problem (22) when

Φξ{u(ξ, y)} = 2(u(1, y)− u(
1

2
, y)) and Ψη{u(x, η)} = u(x, 1).

Following the approach outlined above, we can find ([4], p 175) that the solution

U(x, y) of (35) for f(x) = Lx{x} =
x3

6
−

7x

24
is

U(x, y) =
∞
∑

n=1

sh 4nπy sin 4nπx

32π3n3 sh 4nπ
+

∞
∑

n=1

9 sh 2
3 (2n− 1)πy sin 2

3 (2n− 1)πx

4π3(2n− 1)3 cos 2
3 (1 + n)π sh 2

3 (2n− 1)π

Then, for f ∈ C2[0, 1], with f(0) = f(1) − f

(

1

2

)

= 0, we obtain

u(x, y) =

1

2
∫

x

Ux(
1

2
+ x− ξ, y)f ′′(ξ)dξ −

1

2
∫

−x

Ux(
1

2
− x− ξ, y)f ′′(|ξ|)sgnξ dξ−

−

1
∫

x

Ux(1 + x− ξ, y)f ′′(ξ) dξ +

1
∫

−x

Ux(1 − x− ξ, y)f ′′(|ξ|) sgn ξ dξ

as a generalized solution of (35). It can be shown that it is a classical solution too, if

f ∈ C4[0, 1] and additionally, f ′′(0) = f ′′(1) − f ′′

(

1

2

)

= 0 (see this volume, p. 114).
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НЕЛОКАЛНА ГРАНИЧНА ЗАДАЧА ЗА ДВУМЕРНОТО

УРАВНЕНИЕ НА ПОТЕНЦИАЛА ВЪРХУ ПРАВОЪГЪЛНИК

Иван Димовски, Юлиан Цанков

Нека Φ и Ψ са произволни линейни функционали съответно върху C1[0, a] и
C1[0, b]. Разгледан е класът от гранични задачи uxx + uyy = F (x, y), 0 < x < a,
0 < y < b, u(x, 0) = 0, u(0, y) = 0, Φξ{u(ξ, y)} = g(y), Ψη{u(x, η)} = f(x). Пред-
ложено е разширение на принципa на Дюамел. За намиране на явно решение на
нелокални гранични задачи от този тип е развито операционно смятане основано
върху некласическа двумерна конволюция. Пример от такъв тип е задачата на
Бицадзе-Самарски.
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