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EXPLICIT SOLUTION OF BITSADZE-SAMARSKII
PROBLEM"®

Ivan Dimovski', Yulian Tsankov?

In this paper we find an explicit solution of Bitsadze-Samarskii problem for Laplace
equation using operational calculus approach, based on two non-classical one-
dimensional convolutions and a two-dimensional convolution. In fact, the explicit
solution obtained is a way for effective summation of a solution obtained in the form
of non-harmonic Fourier sine-expansion. This explicit solution is suitable for numer-
ical calculation too.

In [1] it is posed the following nonlocal boundary value problem:
0%u  0%u
— + =0, - 1,0 1
8x2+8y2 , <z<l[,0<y<
u(z,0) =0, u(z,1) = f(z)
More elaborately, this problem is studied in A. Bitsadze’s book [2], p. 214-219. Some
generalisations are proposed by A. Skubachevskii in [3].
In [4], p. 175-176 one of the authors proposed an explicit solution of the problem
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( u(z,0) = u(0,y) = 0,u(x, 1) = f(z)

u(l,y) —u(z,y) =0
which is only a slight modification of Bitsadze-Samarskii’s problem.
This solution has the form
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is the solution of the same problem, but for the special choice of f(x) = ro_ —.
It is a classical solution of (1) under the assumptions f(0) = f”(0) =0, f(1) — f <—> =

- (3) =0

Our aim here is to simplify (2) to the form

(4)

e = [Uo (5o reae - / (5-o-6v) b smeac-

x

=

1

1
—/Uxa La— ey <«s>de+/ (1 =z — €y (€] sgn & de

where
oU(z,y)

Ug(,y) = o

(5)
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In a sense (4) is simpler than (2) since it uses only second derivatives of f instead of
fourth ones and only simple integrals instead of repeated. The boundary value restrictions

1
on f are also relaxed to f(0) = f(1) — f (5) = 0. Then, (4) is a generalised solution of

2 2
m2(2n — 1)2 cos 5(1 + n)mwsh 5(271 -

(1) in the following sense:

Definition 1. A function u(z,y) € C([0,1] %[0, 1]) is said to be a generalised solution
of Bitsadze-Samarskii problem (1), iff u(x,y) satisfies the integral equation
(6) Lyu+ Lyu=L,f(x).y
where
(7)
T 1
Lofu(e)}= [ o - Que. e — 20 | [ (- gulepas / (5-¢) uc.nae
0

0
Y

Ly{u(z,y)} = /(y —nu(z,n)dn —y / (1 = n)u(z,n)dn

0

82 2
The right inverse operators L, and L, of — and —— are defined in

0x? 0y?
C([0,1] x [0,1]) by
2 1
v=Lyu : 520 =W v(O,y)v(l,y)v<§,y)0
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and

correspondingly.

0%u  0%u

o2 " a2

the operator L,L, and using the boundary value conditions.
Lemma 1. Ifu(x,y) € C([0,1] x [0,1]) satisfies (6), then u(zx,y) satisfies the bound-

ary value conditions:

u(z,0) =u(0,y) =0, u(z,1)=f(z), u(l,y)—u (%,y) =0

Formally, (6) could be obtained from the equation = 0 by applying to it

82
Proof. For y = 0 from (6) we obtain L,u(x,0) = 0. Applying the operator Ey) to
x
this equation we find u(z,0) = 0. In a similar way for y = 1 we find u(z,1) = f(x).
2

Next, for z = 0 from (6) we obtain L,u(0,y) = 0. Applying the operator % to this
Y

1
equation we find u(0,y) = 0. Analogically, we find u(1,y) — u (5, y) =0. O

37
Example. If f(x) = ro_ —x, then (3) is a generalized solution of boundary value

24
problem (1) (see [4], p. 175).

Lemma 2. If a function u(z,y) € C*([0,1] x [0,1]) satisfy (6), then it is a classical
solution of (1).
Proof. We apply the operator 874 to (6) and obtain @ + & = 0. As for the
0x20y? oxr?  0y?
boundary value conditions, they are satisfied by Lemma 1. O
In order to elucidate our approach for obtaining of an explicit solution, we consider
the following extension of Bitsadze-Samarskii problem (1):

0?u  0*u
@Jra—nyF(x,y), 0<z<l O<y<l1
0 u(z,0) = u(0,4) = 0
1
) = fo)ult) = u (50) = 900

where f(z), g(y) € C((0,1]), F(z,y) € C([0,1] x [0, 1]).

Definition 2. A function u(z,y) € C([0,1] %[0, 1]) is said to be a generalised solution
of problem (8), iff u(x,y) satisfies the integral equation

9) Lyu+ Lyu=L,f(x).y+ Lyg(y).x + Lo Ly F(z,y)
, , . 0%u 0%u ,
Formally, (9) could be obtained easily from the equation WJFW = F(z,y) applying
z2 - Jy

the operator L, L, to it and using the boundary value conditions.
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Lemma 3. If a function u(x,y) € C([0,1] x [0, 1]) satisfy (9), then u(x,y) fulfils the
boundary value conditions:

e 0) = u0,) =0, D} = @) ultn) = (5.v) =90

Proof. Analogically to the proof of Lemma 1. O

Lemma 4. If a function u(x,y) € C?([0,1] x [0, 1]) satisfies (9), then it is a classical
solution of (1).
" (9), we obtai Fu  Ou F(z,y). Th
——— to we obtain — + — = F(x,y). The
Ox20y>2 ’ 0x?2  9y? Y
boundary value conditions are satisfied by Lemma 3. [
In order to obtain an explicit solution of (1) or (9) we outline an operational calculus
approach to Bitsadze-Samarskii problem. To this end, we introduce three convolution
algebras: (C[0,1]%), (C[0,1],%) and (C(]0,1] x [0, 1])%).

Theorem 1. The operation

Proof. Applying the operator

(10) (fig)(x) = / (e, n)dn — / W, n)dn | |
0 0

where \ ;
W) = / Fla+n— €)g(€)de — / Flln — = — EDg(€]) sgn (€0 — z — €))de,

is a bilinear, commutative and associative operation on C[0,1], such that L, f = {x} ¥ I
1 &
This a special case of a more general operation (f ¥ g)(z) = f§<I>§ /h(:L’, n)dn

0
in C[0,a] where ® is a linear functional in C'[0,a] for the special choice ®{f} =

2 (f(l) —f (%)) and a = 1 (see [4], p. 119).

Theorem 2. The operation

1
1
(11) (f % §/h y,n)dn,
0
where

h(y,n) /fy+77 £)g(&)de — /fln y —&Ng([€]) sgn (E(n —y — €))d¢,

is a bilinear, commutative and associative operation on C0,1], such that L, f = {y}gf

This again is a special case of the above mentioned general operation for the special
choice a = 1 and ®{f} = f(1).

We may combine both one-dimensional convolutions into one two-dimensional convo-
lution.
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Theorem 3 [5]. The operation

1 1 1
1
(12) (f$)(@,y) =5 h(z,y,&,m)de — [ h(z,y,& n)de |dn,
J\/ /
where
£
Wy, &, m) = / / €+ —o.n+y—r)glo,T)dodr—
Ty

n
/f(|£7x70—|777+y77_)g(|0—|;7—)sgn(£*’I’*O’)O’dO’dT*

—

]

|
ma\m
—sc

f+xz—o0n—y—r7l)glo,|r|)sgn (n —y — 7)rdodr+

3 <

+ [ [ e =2~ alln=y - rha(olIrl sen € -« - o)~ y - r)ordar,
2ty
is a bilinear, commutative and associative operation, in C = C([0,1] x [0,1]) such that
the product L, L, has the representation

(13) LoLyu = {zy} *u.
Lemma 5.
(1) LS5} = o)~ u(0.) - 2elu(1.0) u(3.0)
and
(15) L, {giyg} =u(z,y) + (y — Du(x,0) — yu(z,1).

The proof is immediate.

In order to outline our operational calculus approach to the extended Bitsadze-
Samarskii problem, we start with the general definition of a multiplier of convolutional
algebra.

Definition 3 [7]. A linear operator M : C — C' is said to by a multiplier of the
convolutional algebra (C,x) if M(u*v) = (Mu)*v for all u, v e C.

We introduce some notations. The multipliers of the form {u(z,y)}x are denoted as
{u}. Let f = {f(z)} be a function of the variable x only and g = {g(y)} be a function
of the variable y only, but both considered as elements of C. The operators [f], and [¢],

defined by [flyu = f % u and [glzu=g % u are said to be partial numerical operators with
respect to y and x correspondingly. In this notations we have L, = [z], and L, = [y],.
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The set of all the multipliers of the convolutional algebra (C, ) is a commutative ring
M. The multiplicative set 91 of the non-zero non-divisors of 0 in 97 is non-empty, since

at least the operators {x}i = [z], and {y}g = [y, are non-divisors of 0.

A
Next we introduce the ring M = N "' M of the multiplier fractions of the form 5

where A € 9 and B € M. The standard algebraic procedure named “localization” of
constructing of this ring, is described, e.g. in Lang [8]. Most important for our conside-

rations are the algebraic inverses S, = and S, = of the multipliers L, and L,

L, Ly

correspondingly.
Lemma 6. Ifu e C?([0,a] x [0,b]), then
1

tyy = Syu+ Sy{(y — Du(z, 0)} — [u(z, D]y

Proof. By multiplication of (14) and (15) by S, and S, correspondingly. [J

Let us consider problem (1). Using boundary value conditions, the equation wu,, +
Uyy = 0 together with the boundary conditions can be reduced to a single algebraic
equation in M. Indeed, then ugzs = Szt — [9(Y)]a, Uyy = Syu —[f(z)], and the BVP (8)
takes the algebraic form:

(S + Sy)u = [f(@)ly + [9(W)]a +{F(z,9)}.

If S; + Sy is a non-divisor of zero, then the last equation has a solution in M:

: : Lol + 7 (F(z.p)}.

R s 1AC  yory<y S. 1 5,)

In order to show that the element S, + .Sy is a non-divisor of zero in M, we consider
the following eigenvalue problem:
(16) V' (y) + pPu(y) =0, y e (0,1), v(0)=0, v(1)=0.

The eigenvalues of (16) are u,, = mm, m € N, with corresponding eigenfunctions
sinmmx.

Lemma 7. The element S, + Sy is a non-divisor of zero in M.

Proof. Assume the contrary, i.e. that there exists a non-zero multipliers fraction
A A
] # 0 with (S, + Sy)E = 0. The last relation is equivalent to (S, + Sy)A = 0. Since
A # 0, then there exist a function v € C such that Av = u # 0. Then, (S; +S5,)A =0
implies (S; + Sy) u = 0 which is equivalent to
(17) (Ly + Ly)u = 0.

We show that the only solution of this equation is the trivial one, i.e. u = 0, which
would be a contradiction. To this end we multiply (17) by the eigenfunction ¢, (y) =

sinmmy of the eigenvalue problem (16) using the convolution product f & g, defined by
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(11). It easy to see that
1

{u(x,y)i{sinmﬂy}z vm/u(x,n) sinmrndn p sinmny
0

with a constant v, # 0, the exact value of which is unessential for us. The function
1

Am@0==%n/y4%n)$nmﬂndn
0
up to a non-zero constant is the m-th finite Fourier sine-transform of the function u(x,y)

with respect to y. From (L, + L,)[u i ©m (y)] = 0 we obtain
[Ly A (x)]sinmry + Ay (z) Ly sinmmry =0

1
But L, sinmnry = — 2 sinmmy and thus we obtain the following simple integral
mm
equation for A,,(x):
1
Ly Ap(z) = (mﬂ)zAm(w)

It is equivalent to the BVP
(18) Al (x) = (mm)?Am(2), Am(0) =0, A, (1)=0.

The only solution of (18) is the trivial one: A,,(z) = 0.
1

Thus we proved that / u(xz,n) sinmmndn = 0 for arbitrary « € [0,1] and ¥n € N.

0

From a basic property of the Fourier sine-transform it follow u(x,y) = 0 for arbitrary
x €10,1] and y € [0, 1].

This is a contradiction with the assumption u(z,y) # 0 and it proves the Lemma.
Along with this, it is proven the uniqueness of the extended Bitsadze-Samarskii prob-
lem. O

3
Let us consider Bitsadze-Samarskii problem (1) for f(z) = % — — =L {z} =

In [4] a representation of the solution U(z, y) of this problem by the series (3) is found.
The same solution has the algebraic representation
1 > Tz 1 1 1
U= ——F—~|——— L, L? = .
(&+%J m] w+S){} (Sz+Sy) *  (Se+Sy)S?
Then, the solution of Bitsadze-Samarskii problem (1) for arbitrary f can be repre-
sented in the form:

1 1 ot

(19) u= m[f( )y SQm[f(x)]y B 4(U*f( T)).

In [4] one of the authors had shown that for f(z) € C*[0,1] which satisfies the

conditions f(0) = f(1)— f (%) = f"(0)=f"(1)-f" (%) =0, (19) is a representation

of the classical solution of (1). Indeed, since U(z, y) is a (generalised) solution of problem
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1
(1), we have U(1,y) = U (a,y) =0.
1

Assuming that f(z) € C?[0,1] with f(0) = f(1) — f <§) = 0 and using U(1,y) —

1
U (—, y) = 0, we obtain

2
u(e,y) = 55 (U9 5 (@)
(20)
+ [ e+ 1- ) - 00— 0 - ) (e
0
- [+ 5 - )~ U 2 — £
0

with U, (z, y) given by (5).
It is easy to see that this representation of the solution of (1) is equivalent to (4).

Theorem 4. If f(z) € C?0,1], f(0) =0, and f(1) — f <%) = 0, then (19) is a

generalised solution of the boundary value problem (1). If f(z) € C*[0,1] and f(0) =
ot x

PO =0, 50~ £ (5 ) = 5@ = £ (5) = 0. then utep) = 55 W)t £(2))

T oat

v

a classical solution of (1).

The proof of the first part is a matter of a direct check. The second is proved in [4]. O

REFERENCES

[1] A. B. Bunaase, A. A. CAMAPCKUI. O HEKOTOPBIX IPOCTEHIIX 0GOBIIEHUAX JTMHEHHBIX
JIMIITHYECKUX KpaeBblx 3ajnad. JAH CCCP, 185, (1969) 4, 739-741.

[2] A. B. Buniaa3e.Hekoropble Kacchl ypaBHEHMH B YaCTHBIX npou3Boaubix. Mocksa, “Hay-
ka”, 1981.

[3] A. L. SkuBacHEVsKII. The elliptic problems of A. V. Bitsadze and A. A. Samarskii, Soviet
Math. Dokl., 30 (1984), 2.

[4] I. H. Dimovski. Convolutional Calculus. Kluwer, Dordrecht. 1990.

[6] I. H. Dimovskl. Nonlocal boundary value problems. In: Math. and Education in Math.,
31 (2009), 31-40.

[6] I. H. DiMovski, M. SPIRIDONOVA. Computational approach to nonlocal boundary value
problems by multivariate operational calculus. Math. Sci. Res. J., 9 (2005), 12, 315-329.

[7] R. LARSEN. An Introduction in the theory of multipliers. Springer, Berlin—-New York—
Heidelberg, 1971.

[8] S. LanG. Algebra. Addison—Wesley, Reading, Mass. 1965.

121



Ivan Dimovski Yulian Tsankov

Institute of Mathematics and Informatics Faculty of Mathematics and Informatics
Bulgarian Academy of Sciences St. Kliment Ohridsky University of Sofia
Acad. G. Bonchev Str., Bl. 8 5, J. Bourchier Blvd

1113, Sofia, Bulgaria 1164 Sofia, Bulgaria

e-mail: dimovski@math.bas.bg e-mail: ucankov@fmi.uni-sofia.bg

TOYHO PEIHIEHVE HA 3AJAYATA HA BUITAJ3E-CAMAPCKUA

NBau Hdumoscku, FOnuan Ilankos

B craruaTa ¢ HAMEpEHO TOYHO pelleHme Ha 3agadara Ha Bumange-Campceku (1) 3a
ypaBHeHHeTO Ha Jlamsac, KaTo e M3MOI3BAHO ONEPAIMOHHO CMSATAaHE OCHOBAHO HAa
HEKJIACUIeCKa JByMepHa KOHBoJjonus. Ha ToBa TOUHO pellleHnme MoxKe [1a ce IVesa
KaTO HA4YMH 33 CyMHPAHe Ha HEXapMOHHYHUS PeJI II0 CHHYCH Ha PEIIEHHETO, IIOJIyYeH
o merona Ha Pypue.
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