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The class of ℓ-stable at a point functions defined in [2] and being larger than the class
of C

1,1 functions, it is generalized from scalar to vector functions. Some properties
of the ℓ-stable vector functions are proved. It is shown that constrained vector
optimization problems with ℓ-stable data admit second-order conditions in terms of
directional derivatives, which generalizes the results from [2] and [5].

1. Introduction. We deal with the constrained vector optimization problem

(1) minC f(x) , g(x) ∈ −K ,

where f : R
n → R

m and g : R
n → R

p are given functions, C ⊂ R
m and K ⊂ R

p are
pointed closed convex cones, and n, m and p are positive integers. When f and g are ℓ-
stable functions at a point x0, then we derive second-order optimality conditions x0 to be
a solution of this problem. The paper generalizes the results of [5] from problems with C1,1

data to problems with ℓ-stable data and those of [2] from scalar unconstrained problems
to vector constrained problems. Classical second-order conditions assume C2 data. We
call the problem nonsmooth if at least one of the functions f and g is not C2. Problems
with C1,1 data are brought in optimization by J.-B. Hiriart-Urruty, J.-J Strodiot, V.
Hien Nguen [7] and since then are investigated by many authors especially with respect
to second-order optimality conditions in nonsmooth optimization, say J.-P. Penot, X. Q.
Yang, D. Klatte, K. Tammer, V. Jeyakumar, D. T. Luc, L. Liu, P. Georgiev, N. Zlateva
etc. References can be found e.g. in [2], [6] and [5]. Recall that a function is called C1,1 if it
is Fréchet differentiable with locally Lipschitz derivative. In Ginchev, Guerraggio, Rocca
[6] second-order conditions are established in terms of the Dini second-order directional
derivative for C1,1 unconstrained problems, both scalar and vector. These conditions
are generalized in [5] for constrained problems of type (1). Motivated by [6], Bednař́ık,
Pastor introduce in [2] the class of ℓ-stable at a point functions as a generalization of the
class of C1,1 functions and show that unconstrained scalar problems with ℓ-stable data
admit second-order conditions similar to those of [6]. The ℓ-stable functions need not be
differentiable beyond the reference point x0, while this is not the case with the C1,1 (near
x0) functions. For this reason they concord better with the optimality conditions, which
do not assume differentiability beyond the reference point. For this reason we consider
the ℓ-stable at a point functions as an important class of functions. In the present paper
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we generalize the results of [2] to constraint vector problems of type (1) with ℓ-stable
data.

2. Basic notions and ℓ-stable functions. For the norm and the dual parity in the
considered finite-dimensional spaces we write ‖·‖ and 〈·, ·〉, S stands for the unit sphere in
R

n and B(x, r) for the closed ball with center x and radius r. The polar cone of the cone
M ⊂ R

k is defined byM ′ = {ζ ∈ R
k | 〈ζ, φ〉 ≥ 0 for all φ ∈M} and its second polar cone

is M ′′ = {φ ∈ R
k | 〈ζ, φ〉 ≥ 0 for all ζ ∈ M ′}. We set M ′[φ] = {ζ ∈ M ′ | 〈ζ, φ〉 = 0}.

Then M ′[φ] ⊂ M ′ and M [φ] := (M ′[φ])′ is a closed convex cone. It can be shown that
M [φ] is the contingent cone [1] of M at φ. In this paper we apply the notation M [φ] for
M = K and φ = −g(x0); then we deal with the cone K[−g(x0)]. For the closed convex
cone M ′ we define ΓM ′ = {ζ ∈ M ′ | ‖ζ‖ = 1}. Given a set A ⊂ R

k, then the distance
from y ∈ R

k to A is d(y,A) = inf{‖a− y‖ | a ∈ A}. The oriented distance from y to A
is defined by D(y,A) = d(y,A) − d(y,Rk \ A). It is known [5] that when M ⊂ R

k is a
closed convex cone, then D(y,−M) = supξ∈ΓM′

〈ξ, y〉.

We call the (local) solutions of problem (1) minimizers. A point x0 satisfying the
constraint x0 ∈ −K is called feasible for (1). The point x0 is said to be an i-minimizer
(isolated minimizer) of order k for (1), k > 0, if x0 is feasible and there exists a
neighbourhood U of x0 and a constantA > 0 such thatD(f(x)−f(x0),−C) ≥ A ‖x−x0‖k

for x ∈ U ∩ g−1(−K). In [5] through the oriented distance the following characterization
is derived: A feasible point x0 is an i-minimizer of order k for (1) if and only if x0 is an
i-minimizer of order k for the scalar problem

(2) min D(f(x) − f(x0),−C) , g(x) ∈ −K .

The lower directional derivative of the function ϕ : R
k → R at the point x ∈ R

n in
direction u ∈ R

n is defined by ϕℓ(x, u) = lim inft→0+
1

t
(ϕ(x + tu) − ϕ(x)). The function

ϕ is called ℓ-stable at x (see [2]) if there exist a neighbourhood U of x and κ > 0 such
that

|ϕℓ(y, u) − ϕℓ(x, u)| ≤ κ‖y − x‖, ∀y ∈ U, ∀u ∈ S .

The main properties of the ℓ-stable functions are summarized in the next theorem:

Theorem 1 ([2], [3]). Let ϕ : R
n → R be ℓ-stable at x. Then ϕ is Lipschitz near x

and Fréchet differentiable at x.

Actually, this result is proved in [2] under the assumption that ϕ is continuous near
x, while in [3] it is shown that the continuity hypothesis is redundant.

We define the ℓ-stability for vector functions as follows:

Definition 1. Let M ⊂ R
k be a closed convex cone. We define the function Φ : R

n →
R

k to be ℓ-stable at x ∈ R
n with respect to M if there exist a neighbourhood U of x and

κ > 0 such that

(3) |Φℓ
ζ(y, u) − Φℓ

ζ(x, u)| ≤ κ ‖y − x‖, ∀ζ ∈ ΓM ′ , ∀y ∈ U, ∀u ∈ S.

Here Φζ : R
n → R is defined by Φζ(y) = 〈Φ(y), ζ〉. We say that Φ is ℓ-stable at x ∈ R

n

if it is ℓ-stable at x with respect to some pointed closed convex cone M .

Obviously, each C1,1 vector function Φ : R
n → R

k is ℓ-stable (with respect to any
closed convex cone M ⊂ R

k). Examples in [2] show that the converse is not true even
for scalar functions. The following theorem is a generalization of Theorem 1 to vector
functions.
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Theorem 2. Let Φ : R
n → R

k be ℓ-stable at x with respect to the pointed closed

convex cone M . Then, Φ is Lipschitz near x and Fréchet differentiable at x.

Proof. We observe first that R
k = M ′ −M ′. Indeed, since M is pointed, which

means M ∩ (−M) ⊂ {0}, we deduce that intM ′ 6= ∅ (otherwise the linear span of the
convex cone M ′ would be a proper linear subspace L ⊂ R

k and, hence, its polar L′

would be a proper linear subspace contained in M – a contradiction). Therefore, each
ζ ∈ R

k admits a representation ζ = α1ζ
1 + α2ζ

2 with α1, α2 ∈ R and ζ1, ζ2 ∈ ΓM ′ . By
definition the scalar functions Φζi(·) = 〈ζi,Φ(·)〉, i = 1, 2, are ℓ-stable at x, hence, by
Theorem ?? for any x ∈ R

n they are Lipschitz near x and Fréchet differentiable at x.
Then, Φζ = α1Φζ1 +α2Φζ2 implies that Φζ is Lipschitz near x and Fréchet differentiable
at x.

Let ej = (0, . . . , 1, . . . , 0), j = 1, . . . , k, be the canonical basis in R
k (the only unit in

ej is on j-th place). Then,

Φ(·) =

k
∑

j=1

〈ej ,Φ(·)〉 ej =

k
∑

j=1

Φej (·) ej .

Now, the Lipschitz continuity of Φ near x and the Fréchet differentiability of Φ at x
follows on the basis of Theorem 1 from those of Φej , j = 1, . . . , k. �

In the proof of Theorem 2 we have used only that the functions Φζ , ζ ∈ ΓM ′ , are
ℓ-stable at x, which is less restrictive than the condition Φ to be ℓ-stable at x with respect
to M .

Definition 2 ([6]). Given a function Φ : R
n → R

k, possessing a Fréchet derivative

Φ′(x) at x ∈ R
n we define the second-order (set-valued) Dini directional derivative of Φ

at x in direction u ∈ R
n as the Painlevé-Kuratowski limit

Φ′′
u(x) = Limsup

t → 0
+

2

t2
(Φ(x+ tu) − Φ(x) − Φ′(x)u) .

Theorem 3. Let Φ : R
n → R

k be ℓ-stable at x with respect to the pointed closed

convex cone M . Then, there exist constants δ > 0 and α > 0 such that for all u, v ∈ R
n

and all t ∈ R with 0 < t < δ/max(‖u‖, ‖v‖) it holds

(4)

∥

∥

∥

∥

2

t2
(Φ(x+ tu) − Φ(x) − tΦ′(x)u) −

2

t2
(Φ(x+ tv) − Φ(x) − tΦ′(x)v)

∥

∥

∥

∥

≤ α (‖u‖ + ‖v‖) ‖u− v‖ .

In particular, if v = 0, then

∥

∥

∥

∥

2

t2
(Φ(x+ tu) − Φ(x) − tΦ′(x)u)

∥

∥

∥

∥

≤ α ‖u‖2.

Proof. Let δ > 0 be such that inequality (3) be satisfied and Φ be Lipschitz (hence,
continuous) on U = B(x, δ). Fixing u and v consider t ∈ (0, δ/max(‖u‖, ‖v‖)). For any
such t choose ζt ∈ ΓM ′ so that

|〈ζt,Φ(x+ tu) − Φ(x+ tv) − tΦ′(x)(u − v)〉|
= supζ∈ΓM′

|〈ζ,Φ(x + tu) − Φ(x+ tv) − tΦ′(x)(u − v)〉| .

Put L = inf‖e‖=1 supζ∈ΓM′
|〈ζ, e〉|. Since int ΓM ′ 6= ∅, we have L > 0. In the sequel we

use the following result being a corollary of the Diewert Mean Value Theorem [4] for the
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continuous function Φζt : There exist τ−, τ+ ∈ [ 0, 1] such that

Φℓ
ζt(x+ ta−, u− v) ≤

Φζt(x + tu) − Φζt(x + tv)

t
≤ Φℓ

ζt(x + ta+, u− v)

with a− = (1 − τ−)u+ τ−v and a+ = (1 − τ+)u+ τ+v (and applying this result taking
τ to be either τ− or τ+). We get the estimations

∥

∥

∥

∥

2

t2
(Φ(x+ tu) − Φ(x) − tΦ′(x)u) −

2

t2
(Φ(x+ tv) − Φ(x) − tΦ′(x)v)

∥

∥

∥

∥

≤
2

Lt2
‖Φζt(x+ tu) − Φζt(x+ tv) − t〈ζt,Φ′(x)(u − v)〉 ‖

≤
2

Lt
‖Φℓ

ζt(x+ t((1 − τ)u + τv), u − v) − Φℓ
ζt(x, u − v) ‖

≤
2κ

L
‖(1 − τ)u + τv‖ ‖u− v‖ ≤

2κ

L
(‖u‖ + ‖v‖) ‖u− v‖ ,

which is (4) with α = 2κ/L. �

The above proof used the Diewert Mean Value Theorem, which is given below for the
sake of completeness.

Theorem 4 (Diewert Mean Value Theorem [4]). Let α, β ∈ R with α < β, and

ψ : [α, β] → R be lower semicontinuous function. Then there exists γ ∈ [α, β) such that

ψℓ(γ, 1) ≥
ψ(β) − ψ(α)

β − α

3. Optimality conditions. While the proofs of the auxiliary results of Theorems
2 and 3 show essential differences with the corresponding results in [5], the proof of
Theorem below is similar to that for C1,1 functions.

Theorem 5 (Sufficient conditions). Let x0 be a feasible point for problem (1) with

f and g being ℓ-stable at x0 with respect to the pointed closed convex cones C and K
correspondingly. Suppose that for each u ∈ R

n \ {0} one of the following two conditions

is satisfied:

S
′ : (f ′(x0)u, g′(x0)u) /∈ −(C ×K[−g(x0)]) ,

S
′′ : (f ′(x0)u, g′(x0)u) ∈ −(C ×K[−g(x0)] \ intC × intK[−g(x0)])

and ∀ (y0, z0) ∈ (f, g)′′u (x0) : ∃ (ξ0, η0) :

(ξ0, η0) ∈ C′ ×K ′[−g(x0)] \ {(0, 0)},

〈ξ0, f ′(x0)u〉 + 〈η0, g′(x0)u〉 = 0, 〈ξ0, y0〉 + 〈η0, z0〉 > 0 .

Then, x0 is an i-minimizer of order two for problem (1).

Proof. Suppose that x0 is not an i-minimizer of order two for (1). We claim that
then there exists u0, for which no one of the conditions S

′ and S
′′ is satisfied. Choose

a monotone decreasing sequence εk → 0+. Then, by assumption there exist sequences
tk → 0+ and uk ∈ R

n, ‖uk‖ = 1, such that g(x0 + tku
k) ∈ −K and

(5) D(f(x0 + tku
k) − f(x0),−C) = max

ξ∈ΓC′

〈ξ, f(x0 + tku
k) − f(x0)〉 < εkt

2
k .

Passing to a subsequence, due to the compactness of S, we may assume that uk → u0.
We may assume according to the boundedness claimed in Theorem 3, that y0,k → y0,
z0,k → z0, where y0,k and z0,k (and similarly yk and zk) are defined by
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y0,k =
2

t2k

(

f(x0 + tku
0) − f(x0) − tk f

′(x0)u0
)

,

yk =
2

t2k

(

f(x0 + tku
k) − f(x0) − tk f

′(x0)uk
)

,

z0,k =
2

t2k

(

g(x0 + tku
0) − g(x0) − tk g

′(x0)u0
)

,

zk =
2

t2k

(

g(x0 + tku
k) − g(x0) − tk g

′(x0)uk
)

.

Now we have (y0, z0) ∈ (f(x0), g(x0))′′u. We may assume also that 0 < tk < r and both f
and g are Lipschitz and satisfy inequality (4) (mutatis mutandis) with constants κf and
κg respectively on B(x0, r). Now we have yk → y0 (and similarly zk → z0) obtained on
the basis of the estimations from Theorem 3

‖yk − y0‖ ≤ ‖yk − y0,k‖ + ‖y0,k − y0‖ ≤ αf (‖uk‖ + ‖u0‖) ‖uk − u0‖ + ‖y0,k − y0‖ .

We prove that S
′
p is violated at u0, that is

(6) f ′(x0)u0 ∈ −C , g′(x0)u0 ∈ −K[−g(x0)] .

The first inclusion in (6) comes from D(f ′(x0)u0),−C) = maxξ∈ΓC′
〈ξ, f ′(x0)u0〉 < ε ,

∀ε > 0. This follows from

〈ξ, f ′(x0)u0〉 =

〈

ξ,
1

tk

(

f(x0 + tku
k) − f(x0)

)

〉

+

〈

ξ, f ′(x0)uk −
1

tk

(

f(x0 + tku
k) − f(x0)

)

〉

+ 〈ξ, f ′(x0)(u0 − uk)〉 ,

since each term on the right-hand side can be made arbitrary small uniformly on ξ ∈ ΓC′

(the first one is due to (5), the second one is due to the Fréchet differentiability of f at
x0, the third one because uk → u0). Similar estimations can be repeated substituting f
for g and ξ ∈ ΓC′ for η ∈ K[−g(x0)]′, which gives the second inclusion in (6). The only
difference occurs with the first estimation, now

〈

η,
1

tk

(

g(x0 + tku
k) − g(x0)

)

〉

=
1

tk
〈η, g(x0 + tku

k)〉 ≤ 0 ,

since g(x0 + tku
k) ∈ −K.

We prove that S
′′ is violated at u0. To finishe we assume that

(f ′(x0)u, g′(x0)u) ∈ −(C ×K[−g(x0)] \ intC × intK[−g(x0)]) ,

since otherwise the first requirement in condition S
′′ would not be satisfied. Let (y0, z0)

be taken as above and suppose that (ξ0, η0) can be chosen so that S
′′ be satisfied. Then,

〈ξ0, y0〉 + 〈η0, z0〉 = lim
k

(

〈ξ0, yk〉 + 〈η0, zk〉
)

= lim
k

(

2

t2k
〈ξ0, f(x0 + tku

k) − f(x0)〉 +
2

t2k
〈η0, g(x0 + tku

k) − g(x0)〉

−
2

t2k

(

〈ξ0, f ′(x0)uk〉 + 〈η0, g′(x0)uk〉 ≤ 0
)

)

≤ lim sup
k

2

t2k
D(f(x0 + tku

k) − f(x0),−C) + lim sup
k

2

t2k
〈η0, g(x0 + tku

k)〉

≤ lim sup
k

2

t2k
εkt

2
k = 0 ,
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a contradiction.
The hypotheses of Theorem 5 can be relaxed to ℓ-stable f and g, instead of ℓ-stable

with respect to C and K, respectively.
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ℓ-УСТОЙЧИВИ ФУНКЦИИ И УСЛОВНА ОПТИМИЗАЦИЯ

Иван Гинчев

Класът на ℓ-устойчивите в точка функции, дефиниран в [2] и разширяващ класа
на C

1,1 функциите, се обобщава от скаларни за векторни функции. Доказани
са някои свойства на ℓ-устойчивите векторни функции. Показано е, че векторни
оптимизационни задачи с ограничения допускат условия от втори ред изразени
чрез посочни производни, което обобщава резултати от [2] и [5].
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