ℓ-STABLE FUNCTIONS AND CONSTRAINED

 OPTIMIZATION*
Ivan Ginchev

The class of ℓ-stable at a point functions defined in [2] and being larger than the class of $C^{1,1}$ functions, it is generalized from scalar to vector functions. Some properties of the ℓ-stable vector functions are proved. It is shown that constrained vector optimization problems with ℓ-stable data admit second-order conditions in terms of directional derivatives, which generalizes the results from [2] and [5].

1. Introduction. We deal with the constrained vector optimization problem

$$
\begin{equation*}
\min _{C} f(x), \quad g(x) \in-K \tag{1}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ are given functions, $C \subset \mathbb{R}^{m}$ and $K \subset \mathbb{R}^{p}$ are pointed closed convex cones, and n, m and p are positive integers. When f and g are ℓ stable functions at a point x^{0}, then we derive second-order optimality conditions x^{0} to be a solution of this problem. The paper generalizes the results of [5] from problems with $C^{1,1}$ data to problems with ℓ-stable data and those of [2] from scalar unconstrained problems to vector constrained problems. Classical second-order conditions assume C^{2} data. We call the problem nonsmooth if at least one of the functions f and g is not C^{2}. Problems with $C^{1,1}$ data are brought in optimization by J.-B. Hiriart-Urruty, J.-J Strodiot, V. Hien Nguen [7] and since then are investigated by many authors especially with respect to second-order optimality conditions in nonsmooth optimization, say J.-P. Penot, X. Q. Yang, D. Klatte, K. Tammer, V. Jeyakumar, D. T. Luc, L. Liu, P. Georgiev, N. Zlateva etc. References can be found e.g. in [2], [6] and [5]. Recall that a function is called $C^{1,1}$ if it is Fréchet differentiable with locally Lipschitz derivative. In Ginchev, Guerraggio, Rocca [6] second-order conditions are established in terms of the Dini second-order directional derivative for $C^{1,1}$ unconstrained problems, both scalar and vector. These conditions are generalized in [5] for constrained problems of type (1). Motivated by [6], Bednařík, Pastor introduce in [2] the class of ℓ-stable at a point functions as a generalization of the class of $C^{1,1}$ functions and show that unconstrained scalar problems with ℓ-stable data admit second-order conditions similar to those of [6]. The ℓ-stable functions need not be differentiable beyond the reference point x^{0}, while this is not the case with the $C^{1,1}$ (near x^{0}) functions. For this reason they concord better with the optimality conditions, which do not assume differentiability beyond the reference point. For this reason we consider the ℓ-stable at a point functions as an important class of functions. In the present paper

[^0]we generalize the results of [2] to constraint vector problems of type (1) with ℓ-stable data.
2. Basic notions and ℓ-stable functions. For the norm and the dual parity in the considered finite-dimensional spaces we write $\|\cdot\|$ and $\langle\cdot, \cdot\rangle, S$ stands for the unit sphere in \mathbb{R}^{n} and $B(x, r)$ for the closed ball with center x and radius r. The polar cone of the cone $M \subset \mathbb{R}^{k}$ is defined by $M^{\prime}=\left\{\zeta \in \mathbb{R}^{k} \mid\langle\zeta, \phi\rangle \geq 0\right.$ for all $\left.\phi \in M\right\}$ and its second polar cone is $M^{\prime \prime}=\left\{\phi \in \mathbb{R}^{k} \mid\langle\zeta, \phi\rangle \geq 0\right.$ for all $\left.\zeta \in M^{\prime}\right\}$. We set $M^{\prime}[\phi]=\left\{\zeta \in M^{\prime} \mid\langle\zeta, \phi\rangle=0\right\}$. Then $M^{\prime}[\phi] \subset M^{\prime}$ and $M[\phi]:=\left(M^{\prime}[\phi]\right)^{\prime}$ is a closed convex cone. It can be shown that $M[\phi]$ is the contingent cone [1] of M at ϕ. In this paper we apply the notation $M[\phi]$ for $M=K$ and $\phi=-g\left(x^{0}\right)$; then we deal with the cone $K\left[-g\left(x^{0}\right)\right]$. For the closed convex cone M^{\prime} we define $\Gamma_{M^{\prime}}=\left\{\zeta \in M^{\prime} \mid\|\zeta\|=1\right\}$. Given a set $A \subset \mathbb{R}^{k}$, then the distance from $y \in \mathbb{R}^{k}$ to A is $d(y, A)=\inf \{\|a-y\| \mid a \in A\}$. The oriented distance from y to A is defined by $D(y, A)=d(y, A)-d\left(y, \mathbb{R}^{k} \backslash A\right)$. It is known [5] that when $M \subset \mathbb{R}^{k}$ is a closed convex cone, then $D(y,-M)=\sup _{\xi \in \Gamma_{M^{\prime}}}\langle\xi, y\rangle$.

We call the (local) solutions of problem (1) minimizers. A point x^{0} satisfying the constraint $x^{0} \in-K$ is called feasible for (1). The point x^{0} is said to be an i-minimizer (isolated minimizer) of order k for (1), $k>0$, if x^{0} is feasible and there exists a neighbourhood U of x^{0} and a constant $A>0$ such that $D\left(f(x)-f\left(x^{0}\right),-C\right) \geq A\left\|x-x^{0}\right\|^{k}$ for $x \in U \cap g^{-1}(-K)$. In [5] through the oriented distance the following characterization is derived: A feasible point x^{0} is an i-minimizer of order k for (1) if and only if x^{0} is an i-minimizer of order k for the scalar problem

$$
\begin{equation*}
\min D\left(f(x)-f\left(x^{0}\right),-C\right), \quad g(x) \in-K \tag{2}
\end{equation*}
$$

The lower directional derivative of the function $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ at the point $x \in \mathbb{R}^{n}$ in direction $u \in \mathbb{R}^{n}$ is defined by $\varphi^{\ell}(x, u)=\liminf _{t \rightarrow 0^{+}} \frac{1}{t}(\varphi(x+t u)-\varphi(x))$. The function φ is called ℓ-stable at x (see [2]) if there exist a neighbourhood U of x and $\kappa>0$ such that

$$
\left|\varphi^{\ell}(y, u)-\varphi^{\ell}(x, u)\right| \leq \kappa\|y-x\|, \quad \forall y \in U, \quad \forall u \in S
$$

The main properties of the ℓ-stable functions are summarized in the next theorem:
Theorem 1 ([2], [3]). Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be ℓ-stable at x. Then φ is Lipschitz near x and Fréchet differentiable at x.

Actually, this result is proved in [2] under the assumption that φ is continuous near x, while in [3] it is shown that the continuity hypothesis is redundant.

We define the ℓ-stability for vector functions as follows:
Definition 1. Let $M \subset \mathbb{R}^{k}$ be a closed convex cone. We define the function $\Phi: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{k} to be ℓ-stable at $x \in \mathbb{R}^{n}$ with respect to M if there exist a neighbourhood U of x and $\kappa>0$ such that

$$
\begin{equation*}
\left|\Phi_{\zeta}^{\ell}(y, u)-\Phi_{\zeta}^{\ell}(x, u)\right| \leq \kappa\|y-x\|, \quad \forall \zeta \in \Gamma_{M^{\prime}}, \quad \forall y \in U, \quad \forall u \in S \tag{3}
\end{equation*}
$$

Here $\Phi_{\zeta}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by $\Phi_{\zeta}(y)=\langle\Phi(y), \zeta\rangle$. We say that Φ is ℓ-stable at $x \in \mathbb{R}^{n}$ if it is ℓ-stable at x with respect to some pointed closed convex cone M.

Obviously, each $C^{1,1}$ vector function $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is ℓ-stable (with respect to any closed convex cone $M \subset \mathbb{R}^{k}$). Examples in [2] show that the converse is not true even for scalar functions. The following theorem is a generalization of Theorem 1 to vector functions.

Theorem 2. Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be ℓ-stable at x with respect to the pointed closed convex cone M. Then, Φ is Lipschitz near x and Fréchet differentiable at x.

Proof. We observe first that $\mathbb{R}^{k}=M^{\prime}-M^{\prime}$. Indeed, since M is pointed, which means $M \cap(-M) \subset\{0\}$, we deduce that int $M^{\prime} \neq \emptyset$ (otherwise the linear span of the convex cone M^{\prime} would be a proper linear subspace $L \subset \mathbb{R}^{k}$ and, hence, its polar L^{\prime} would be a proper linear subspace contained in M - a contradiction). Therefore, each $\zeta \in \mathbb{R}^{k}$ admits a representation $\zeta=\alpha_{1} \zeta^{1}+\alpha_{2} \zeta^{2}$ with $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ and $\zeta^{1}, \zeta^{2} \in \Gamma_{M^{\prime}}$. By definition the scalar functions $\Phi_{\zeta^{i}}(\cdot)=\left\langle\zeta^{i}, \Phi(\cdot)\right\rangle, i=1,2$, are ℓ-stable at x, hence, by Theorem ?? for any $x \in \mathbb{R}^{n}$ they are Lipschitz near x and Fréchet differentiable at x. Then, $\Phi_{\zeta}=\alpha_{1} \Phi_{\zeta^{1}}+\alpha_{2} \Phi_{\zeta^{2}}$ implies that Φ_{ζ} is Lipschitz near x and Fréchet differentiable at x.

Let $e^{j}=(0, \ldots, 1, \ldots, 0), j=1, \ldots, k$, be the canonical basis in \mathbb{R}^{k} (the only unit in e^{j} is on j-th place). Then,

$$
\Phi(\cdot)=\sum_{j=1}^{k}\left\langle e^{j}, \Phi(\cdot)\right\rangle e^{j}=\sum_{j=1}^{k} \Phi_{e^{j}}(\cdot) e^{j} .
$$

Now, the Lipschitz continuity of Φ near x and the Fréchet differentiability of Φ at x follows on the basis of Theorem 1 from those of $\Phi_{e^{j}}, j=1, \ldots, k$.

In the proof of Theorem 2 we have used only that the functions $\Phi_{\zeta}, \zeta \in \Gamma_{M^{\prime}}$, are ℓ-stable at x, which is less restrictive than the condition Φ to be ℓ-stable at x with respect to M.

Definition 2 ([6]). Given a function $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, possessing a Fréchet derivative $\Phi^{\prime}(x)$ at $x \in \mathbb{R}^{n}$ we define the second-order (set-valued) Dini directional derivative of Φ at x in direction $u \in \mathbb{R}^{n}$ as the Painlevé-Kuratowski limit

$$
\Phi_{u}^{\prime \prime}(x)=\operatorname{Limsup}_{t \rightarrow 0^{+}} \frac{2}{t^{2}}\left(\Phi(x+t u)-\Phi(x)-\Phi^{\prime}(x) u\right)
$$

Theorem 3. Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be ℓ-stable at x with respect to the pointed closed convex cone M. Then, there exist constants $\delta>0$ and $\alpha>0$ such that for all $u, v \in \mathbb{R}^{n}$ and all $t \in \mathbb{R}$ with $0<t<\delta / \max (\|u\|,\|v\|)$ it holds

$$
\begin{align*}
& \| \frac{2}{t^{2}}(\Phi(x+t u)-\Phi(x)\left.-t \Phi^{\prime}(x) u\right)-\frac{2}{t^{2}}\left(\Phi(x+t v)-\Phi(x)-t \Phi^{\prime}(x) v\right) \| \tag{4}\\
& \leq \alpha(\|u\|+\|v\|)\|u-v\|
\end{align*}
$$

In particular, if $v=0$, then $\left\|\frac{2}{t^{2}}\left(\Phi(x+t u)-\Phi(x)-t \Phi^{\prime}(x) u\right)\right\| \leq \alpha\|u\|^{2}$.
Proof. Let $\delta>0$ be such that inequality (3) be satisfied and Φ be Lipschitz (hence, continuous) on $U=B(x, \delta)$. Fixing u and v consider $t \in(0, \delta / \max (\|u\|,\|v\|))$. For any such t choose $\zeta^{t} \in \Gamma_{M^{\prime}}$ so that

$$
\begin{gathered}
\left|\left\langle\zeta^{t}, \Phi(x+t u)-\Phi(x+t v)-t \Phi^{\prime}(x)(u-v)\right\rangle\right| \\
=\sup _{\zeta \in \Gamma_{M^{\prime}}}\left|\left\langle\zeta, \Phi(x+t u)-\Phi(x+t v)-t \Phi^{\prime}(x)(u-v)\right\rangle\right| .
\end{gathered}
$$

Put $L=\inf { }_{\|e\|=1} \sup _{\zeta \in \Gamma_{M^{\prime}}}|\langle\zeta, e\rangle|$. Since int $\Gamma_{M^{\prime}} \neq \emptyset$, we have $L>0$. In the sequel we use the following result being a corollary of the Diewert Mean Value Theorem [4] for the
continuous function $\Phi_{\zeta^{t}}$: There exist $\tau^{-}, \tau^{+} \in[0,1]$ such that

$$
\Phi_{\zeta^{t}}^{\ell}\left(x+t a^{-}, u-v\right) \leq \frac{\Phi_{\zeta^{t}}(x+t u)-\Phi_{\zeta^{t}}(x+t v)}{t} \leq \Phi_{\zeta^{t}}^{\ell}\left(x+t a^{+}, u-v\right)
$$

with $a^{-}=\left(1-\tau^{-}\right) u+\tau^{-} v$ and $a^{+}=\left(1-\tau^{+}\right) u+\tau^{+} v$ (and applying this result taking τ to be either τ^{-}or $\left.\tau^{+}\right)$. We get the estimations

$$
\begin{aligned}
& \| \frac{2}{t^{2}}(\left.\Phi(x+t u)-\Phi(x)-t \Phi^{\prime}(x) u\right)-\frac{2}{t^{2}}\left(\Phi(x+t v)-\Phi(x)-t \Phi^{\prime}(x) v\right) \| \\
& \quad \leq \frac{2}{L t^{2}}\left\|\Phi_{\zeta^{t}}(x+t u)-\Phi_{\zeta^{t}}(x+t v)-t\left\langle\zeta^{t}, \Phi^{\prime}(x)(u-v)\right\rangle\right\| \\
& \quad \leq \frac{2}{L t}\left\|\Phi_{\zeta^{t}}^{\ell}(x+t((1-\tau) u+\tau v), u-v)-\Phi_{\zeta^{t}}^{\ell}(x, u-v)\right\| \\
& \quad \leq \frac{2 \kappa}{L}\|(1-\tau) u+\tau v\|\|u-v\| \leq \frac{2 \kappa}{L}(\|u\|+\|v\|)\|u-v\|
\end{aligned}
$$

which is (4) with $\alpha=2 \kappa / L$.
The above proof used the Diewert Mean Value Theorem, which is given below for the sake of completeness.

Theorem 4 (Diewert Mean Value Theorem [4]). Let $\alpha, \beta \in \mathbb{R}$ with $\alpha<\beta$, and $\psi:[\alpha, \beta] \rightarrow \mathbb{R}$ be lower semicontinuous function. Then there exists $\gamma \in[\alpha, \beta)$ such that

$$
\psi^{\ell}(\gamma, 1) \geq \frac{\psi(\beta)-\psi(\alpha)}{\beta-\alpha}
$$

3. Optimality conditions. While the proofs of the auxiliary results of Theorems 2 and 3 show essential differences with the corresponding results in [5], the proof of Theorem below is similar to that for $C^{1,1}$ functions.

Theorem 5 (Sufficient conditions). Let x^{0} be a feasible point for problem (1) with f and g being ℓ-stable at x^{0} with respect to the pointed closed convex cones C and K correspondingly. Suppose that for each $u \in \mathbb{R}^{n} \backslash\{0\}$ one of the following two conditions is satisfied:

$$
\begin{array}{lc}
\mathbb{S}^{\prime}: & \left(f^{\prime}\left(x^{0}\right) u, g^{\prime}\left(x^{0}\right) u\right) \notin-\left(C \times K\left[-g\left(x^{0}\right)\right]\right), \\
\mathbb{S}^{\prime \prime}: & \left(f^{\prime}\left(x^{0}\right) u, g^{\prime}\left(x^{0}\right) u\right) \in-\left(C \times K\left[-g\left(x^{0}\right)\right] \backslash \operatorname{int} C \times \operatorname{int} K\left[-g\left(x^{0}\right)\right]\right) \\
& \text { and } \forall\left(y^{0}, z^{0}\right) \in(f, g)_{u}^{\prime \prime}\left(x^{0}\right): \exists\left(\xi^{0}, \eta^{0}\right): \\
& \left(\xi^{0}, \eta^{0}\right) \in C^{\prime} \times K^{\prime}\left[-g\left(x^{0}\right)\right] \backslash\{(0,0)\}, \\
& \left\langle\xi^{0}, f^{\prime}\left(x^{0}\right) u\right\rangle+\left\langle\eta^{0}, g^{\prime}\left(x^{0}\right) u\right\rangle=0,\left\langle\xi^{0}, y^{0}\right\rangle+\left\langle\eta^{0}, z^{0}\right\rangle>0 .
\end{array}
$$

Then, x^{0} is an i-minimizer of order two for problem (1).
Proof. Suppose that x^{0} is not an i-minimizer of order two for (1). We claim that then there exists u^{0}, for which no one of the conditions \mathbb{S}^{\prime} and $\mathbb{S}^{\prime \prime}$ is satisfied. Choose a monotone decreasing sequence $\varepsilon_{k} \rightarrow 0^{+}$. Then, by assumption there exist sequences $t_{k} \rightarrow 0^{+}$and $u^{k} \in \mathbb{R}^{n},\left\|u^{k}\right\|=1$, such that $g\left(x^{0}+t_{k} u^{k}\right) \in-K$ and

$$
\begin{equation*}
D\left(f\left(x^{0}+t_{k} u^{k}\right)-f\left(x^{0}\right),-C\right)=\max _{\xi \in \Gamma_{C^{\prime}}}\left\langle\xi, f\left(x^{0}+t_{k} u^{k}\right)-f\left(x^{0}\right)\right\rangle<\varepsilon_{k} t_{k}^{2} . \tag{5}
\end{equation*}
$$

Passing to a subsequence, due to the compactness of S, we may assume that $u^{k} \rightarrow u^{0}$. We may assume according to the boundedness claimed in Theorem 3, that $y^{0, k} \rightarrow y^{0}$, $z^{0, k} \rightarrow z^{0}$, where $y^{0, k}$ and $z^{0, k}$ (and similarly y^{k} and z^{k}) are defined by

$$
\begin{aligned}
y^{0, k} & =\frac{2}{t_{k}^{2}}\left(f\left(x^{0}+t_{k} u^{0}\right)-f\left(x^{0}\right)-t_{k} f^{\prime}\left(x^{0}\right) u^{0}\right) \\
y^{k} & =\frac{2}{t_{k}^{2}}\left(f\left(x^{0}+t_{k} u^{k}\right)-f\left(x^{0}\right)-t_{k} f^{\prime}\left(x^{0}\right) u^{k}\right) \\
z^{0, k} & =\frac{2}{t_{k}^{2}}\left(g\left(x^{0}+t_{k} u^{0}\right)-g\left(x^{0}\right)-t_{k} g^{\prime}\left(x^{0}\right) u^{0}\right) \\
z^{k} & =\frac{2}{t_{k}^{2}}\left(g\left(x^{0}+t_{k} u^{k}\right)-g\left(x^{0}\right)-t_{k} g^{\prime}\left(x^{0}\right) u^{k}\right)
\end{aligned}
$$

Now we have $\left(y^{0}, z^{0}\right) \in\left(f\left(x^{0}\right), g\left(x^{0}\right)\right)_{u}^{\prime \prime}$. We may assume also that $0<t_{k}<r$ and both f and g are Lipschitz and satisfy inequality (4) (mutatis mutandis) with constants κ_{f} and κ_{g} respectively on $B\left(x^{0}, r\right)$. Now we have $y^{k} \rightarrow y^{0}$ (and similarly $z^{k} \rightarrow z^{0}$) obtained on the basis of the estimations from Theorem 3

$$
\left\|y^{k}-y^{0}\right\| \leq\left\|y^{k}-y^{0, k}\right\|+\left\|y^{0, k}-y^{0}\right\| \leq \alpha_{f}\left(\left\|u^{k}\right\|+\left\|u^{0}\right\|\right)\left\|u^{k}-u^{0}\right\|+\left\|y^{0, k}-y^{0}\right\| .
$$

We prove that \mathbb{S}_{p}^{\prime} is violated at u^{0}, that is

$$
\begin{equation*}
f^{\prime}\left(x^{0}\right) u^{0} \in-C, \quad g^{\prime}\left(x^{0}\right) u^{0} \in-K\left[-g\left(x^{0}\right)\right] \tag{6}
\end{equation*}
$$

The first inclusion in (6) comes from $\left.D\left(f^{\prime}\left(x^{0}\right) u^{0}\right),-C\right)=\max _{\xi \in \Gamma_{C^{\prime}}}\left\langle\xi, f^{\prime}\left(x^{0}\right) u^{0}\right\rangle<\varepsilon$, $\forall \varepsilon>0$. This follows from

$$
\begin{gathered}
\left\langle\xi, f^{\prime}\left(x^{0}\right) u^{0}\right\rangle=\left\langle\xi, \frac{1}{t_{k}}\left(f\left(x^{0}+t_{k} u^{k}\right)-f\left(x^{0}\right)\right)\right\rangle \\
+\left\langle\xi, f^{\prime}\left(x^{0}\right) u^{k}-\frac{1}{t_{k}}\left(f\left(x^{0}+t_{k} u^{k}\right)-f\left(x^{0}\right)\right)\right\rangle+\left\langle\xi, f^{\prime}\left(x^{0}\right)\left(u^{0}-u^{k}\right)\right\rangle
\end{gathered}
$$

since each term on the right-hand side can be made arbitrary small uniformly on $\xi \in \Gamma_{C^{\prime}}$ (the first one is due to (5), the second one is due to the Fréchet differentiability of f at x^{0}, the third one because $u^{k} \rightarrow u^{0}$). Similar estimations can be repeated substituting f for g and $\xi \in \Gamma_{C^{\prime}}$ for $\eta \in K\left[-g\left(x^{0}\right)\right]^{\prime}$, which gives the second inclusion in (6). The only difference occurs with the first estimation, now

$$
\left\langle\eta, \frac{1}{t_{k}}\left(g\left(x^{0}+t_{k} u^{k}\right)-g\left(x^{0}\right)\right)\right\rangle=\frac{1}{t_{k}}\left\langle\eta, g\left(x^{0}+t_{k} u^{k}\right)\right\rangle \leq 0
$$

since $g\left(x^{0}+t_{k} u^{k}\right) \in-K$.
We prove that $\mathbb{S}^{\prime \prime}$ is violated at u^{0}. To finishe we assume that

$$
\left(f^{\prime}\left(x^{0}\right) u, g^{\prime}\left(x^{0}\right) u\right) \in-\left(C \times K\left[-g\left(x^{0}\right)\right] \backslash \operatorname{int} C \times \operatorname{int} K\left[-g\left(x^{0}\right)\right]\right),
$$

since otherwise the first requirement in condition $\mathbb{S}^{\prime \prime}$ would not be satisfied. Let $\left(y^{0}, z^{0}\right)$ be taken as above and suppose that $\left(\xi^{0}, \eta^{0}\right)$ can be chosen so that $\mathbb{S}^{\prime \prime}$ be satisfied. Then,

$$
\begin{gathered}
\left\langle\xi^{0}, y^{0}\right\rangle+\left\langle\eta^{0}, z^{0}\right\rangle=\lim _{k}\left(\left\langle\xi^{0}, y^{k}\right\rangle+\left\langle\eta^{0}, z^{k}\right\rangle\right) \\
=\lim _{k}\left(\frac{2}{t_{k}^{2}}\left\langle\xi^{0}, f\left(x^{0}+t_{k} u^{k}\right)-f\left(x^{0}\right)\right\rangle+\frac{2}{t_{k}^{2}}\left\langle\eta^{0}, g\left(x^{0}+t_{k} u^{k}\right)-g\left(x^{0}\right)\right\rangle\right. \\
\left.-\frac{2}{t_{k}^{2}}\left(\left\langle\xi^{0}, f^{\prime}\left(x^{0}\right) u^{k}\right\rangle+\left\langle\eta^{0}, g^{\prime}\left(x^{0}\right) u^{k}\right\rangle \leq 0\right)\right) \\
\leq \limsup _{k} \frac{2}{t_{k}^{2}} D\left(f\left(x^{0}+t_{k} u^{k}\right)-f\left(x^{0}\right),-C\right)+\limsup _{k} \frac{2}{t_{k}^{2}}\left\langle\eta^{0}, g\left(x^{0}+t_{k} u^{k}\right)\right\rangle \\
\leq \limsup _{k} \frac{2}{t_{k}^{2}} \varepsilon_{k} t_{k}^{2}=0,
\end{gathered}
$$

a contradiction.
The hypotheses of Theorem 5 can be relaxed to ℓ-stable f and g, instead of ℓ-stable with respect to C and K, respectively.

REFERENCES

[1] J.-P. Aubin, H. Frankowska. Set-valued analysis. Birkhäuser, Boston, 1990.
[2] D. Bednařík, K. Pastor. On second-order conditions in unconstrained optimization. Math. Program., 113 (2008), Ser. A, 283-298.
[3] D. Bednařík, K. Pastor. ℓ-stable functions are continuous. Nonlinear Anal., 70 (2009), 2317-2324.
[4] W. E. Diewert. Alternative characterization of six kind of quasiconvexity. In: Generalized concavity in optimization and economics, (Eds S. Schaible, W. T. Ziemba), Academic Press, New York, 1981, 51-93.
[5] I. Ginchev, A. Guerraggio, M. Rocca. Second-order conditions in $C^{1,1}$ constrained vector optimization. Math. Program., 104 (2005), Ser. B, 389-405.
[6] I. Ginchev, A. Guerraggio, M. Rocca. From scalar to vector optimization. Appl. Math., 51 (2006), 5-36.
[7] J.-B. Hiriart-Urruty, J.-J Strodiot, V. Hien Nguen. Generalized Hessian matrix and second order optimality conditions for problems with $C^{1,1}$ data. Appl. Math. Optim., 11 (1984), 169-180.

Ivan Ginchev
Department of Mathematics
Technical University of Varna
9010 Varna, Bulgaria
e-mail: iginchev@yahoo.com

ℓ-УСТОЙЧИВИ ФУНКЦИИ И УСЛОВНА ОПТИМИЗАЦИЯ

Иван Гинчев

Класът на ℓ-устойчивите в точка функции, дефиниран в [2] и разширяващ класа на $C^{1,1}$ функциите, се обобщава от скаларни за векторни функции. Доказани са някои свойства на ℓ-устойчивите векторни функции. Показано е, че векторни оптимизационни задачи с ограничения допускат условия от втори ред изразени чрез посочни производни, което обобщава резултати от [2] и [5].

[^0]: *2000 Mathematics Subject Classification: 90C29, 90C30, 90C46, 49J52.
 Key words: Vector optimization, ℓ-stable functions, second-order conditions.

