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We are concerned with a class of L?-critical nonlinear Schrédinger equations in R**™
with convolution nonlinearity of Hartree type. We aim to establish local and global
existence and well-posedness of solutions in a small neighborhood of the origin in
L*(R™). As a natural consequence of the global results, we prove the existence of
scattering operator for small initial data.

1. Introduction. In this paper we consider the Cauchy problem for the defocussing
mass-critical Schrodinger equation with convolution nonlinearity of the form

(L.1) i+ Dap = (# " |w|a) b (0,2) = vola),

ol
(t,z) € Ry x R™ for n > 3, where a > 0 and 0 < 7 < n. Here ¢ = ¢(¢, ) is a complex
valued function, the initial data 1y takes value in L?(R™) and * denotes the convolution
in space. Equation (1.1) can be written in terms of the wave function % and the potential
V' as the following system
(1.2) 10+ M=V, (=L8)FV = Calyl®,
where the constant C,, = Cy,(7y) in the second equation can be calculated explicitly (see
Chapter V in Stein [5]). Due to the appearance of convolution operator, equation (1.1) is
known as the Schrédinger equation with nonlocal nonlinearity (or Hartree equation). As
a special case of (1.1), the Schrodinger equation of Hartree type in R?, say a = 2, with
the Coulomb convolution kernel |z|~! is derived from the Maxwell-Schrédinger system
with zero magnetic field.

In this paper we study the local and global existence, well-posedness and scattering
of solutions to (1.1) with small initial data. The scaling argument, i.e. the scaling
symmetry ¥y (t,2) = AZ1p(\%t, Ax), for A > 0 gives the value of the mass-critical power

2(2
Qe = M It is obvious that the scalling trasformation preserves the L?-norm

n
and leaves equation (1.1) unperturbed. For dimension n = 3 and v = 2 the system
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(1.2) becomes the mass-critical Schrodinger-Poisson system, which has been extensively
studied in [8, 9].

It is essential in our study that, in general, equation (1.1) does not possess Hamiltonian
structure, i.e. it is not a Hamiltonian completely integrable dynamical system. We prove
that except for the value v = n —2, equation (1.1) has only one conserved quantity — the
mass, while its solution does not satisfy the energy conservation law. This fact prevents
one from studying (1.1) for general powers « of the nonlinear term.

In general, the scaling symmetry relates (1.1) to a wide class of equations, referred
to as the mass-critical (L?-critical or pseudoconformal) nonlinear Schrodinger equations.
The name comes from the fact that the above transform leaves both the equation and
the mass (the L2-norm) invariant. Mass is one of the basic structures used in physics and
is defined by M(¢(t)) = [g. [¢(t, )[Pdz. For (1.1), we prove (see Theorem 1.1 bellow)
that the mass is a conserved quantity, i.e. M (¢(t)) = M (o). As in the papers [2, 8, 9],
our results make use of mixed spaces of the type L?([0,T], L"(R™)) for admissible ¢ and
r. Thus, we use the following

Definition 1.1. We say that the pair (q,7) of exponents is Schrédinger—admissible if

1

2 1
qandrsatisfy—n(——),for2§q§oo.
q 2 r

Following the strategy developed for the semilinear Schrodinger equation (see for
instance [1, 2, 7]), we aim to establish the local well-posedness theory for (1.1) and to
construct global solutions for sufficiently small L2-initial data. More precisely, we use
the following

Definition 1.2. A function ¢ : [0,T*) x R* — C, is a L*(R™) solution to (1.1) if
2n+~v+2) 2n+~v+2
b € COO.T] ERNLR (O.T) L (RY) for (an,ro) = (222, Mt a2 2)

n Tondny
and 0 < T <T*. Moreover, we have the following Duhamel’s integral representation
t
(1.3) wamwg/U@$< ﬂwgw)w@@,teMTy
0

Here U(t) = €™ is the free Schrédinger evolution group defined via the Fourier transform
byU(t)f = Fle= P Ff. We say that 1 is a global solution to (1.1) if T* = c0.
The first main result of the present paper is the following
—4
Theorem 1.1. Let 0 < vy < vn?2 +1—1 forn = {3,4} and nT <y<vnZ4+1-1

for n > 4. Then, for every initial data 19 € L*(R™), there exists a unique mazimal
solution 1 € C°([0,T*), L2(R™)) N L9 ([0,T*), L™ (R™)) of (1.1). Furthermore:

(i) v € L9([0, T], L™ (R™)), for 0 < T < T* and every admissible pair (q,7);
(ii) the mass is conserved, i.e. M(¢(t)) = M(vbg) fort € [0,T*);

=

(iii) there exists a constant € > 0 sufficiently small, such that if ||[¢o| L2mn) < €, then
T* =00 and ¢ € LY(Ry, L"(R™)) for every admissible pair (q,7);

(iv) iof T < oo, then ||V Lao,7+),Lrrn)) = 00 for every r > ro;

(v) % depends continuously on the initial data 1o € L*(R™) in the space
€ CO([0,T), L2(R™)) N L% ([0, T*), L™ (R™)).
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With our second result we develop a scattering theory for (1.1) in L?(R") with small
initial data.

Theorem 1.2. Let ¢ > 0 be sufficiently small and consider the ball B. = {¢ €
L2R"); |[¥|l 2 < €}. Let o € C°([0,T%), L>(R™)) N L9([0,T*), L™ (R™)) be the unique
mazimal solution of (1.1), given by part (iii) of Theorem 1.1. Then, we have:

(i) for any vy € B, there exists unique g € B, such that
14 lim U000 — el = lim [9(0) — U s = 0
—Z+o0 t—=Foo

(ii) for any g € B., there exists unique ¥+ € B., such that (1.4) is satisfied;

(iii) the wave operators Qi : Yy — ¢o and the scattering operator S = Q;l o are
homeomorphisms from B, onto itself and isometric in the L? norm.

2. Proof of Theorems 1.1 and 1.2. We point out that the mixed space L% L™
2 2 2 2
M and ro = M plays a
n+vy
fundamental role. This is better understood if we recall the dispersive properties of the

Schrédinger operator [4, 10].

for the admissible pair (qg,r9) with ¢ =

Lemma 2.1. Let (q,7) be an admissible pair. Then, for every o € L?(R") the follow-
ing estimate holds

(2.1) U)ol La,r@ny) < CollellLzmn)-
Moreover, for every admissible pair (0, p) and f € L ([0,T], L" (R™)) we have
< Cllfllze o1y, ®ryys 0 <T < o0

¢
/ U(t—s)f(s)ds
0 La([0,T],L7(R™))

Here the constants Cy,C > 0 and depend only on the spatial exponents r and p.

(2.2)

The arguments of Theorem 1.1 rely primarily on the estimate (2.2), applied to the
integral representation (1.3), Holder inequality and the following Lemma

Lemma 2.2 (Hardy-Littlewood-Sobolev Inequality [6]). For 0 < v < n consider the
Riesz potential

_ f)
(2.3) L(f)(z) = /Rn Ty
Then, for any 1 <r <0 < oo and f € L"(R™), we have
1 1
(2.4) 1L (Ao < Clfllers 5 === 2.

Let us denote by N(¢) the nonlinear term
(2.5) N() = (Ja]~ "7 % [l <)y
in the Schrédinger equation (1.1).

Lemma 2.3. Let 0 < T < oo and let (¢,7) be a Schrédinger-admissible
pair. Then, there exists a constant C > 0, independent of T, such that for every
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P, x € L®([0,T], L™ (R™)) we have

(2.6) \ [ vt= 9w - Nets)as

La([0,T],L")

< C (00 S50q0.11,100) + X050 073700 ) 1 = X230 00,71, 270

Proof. To prove the Lemma, it is sufficient to show that
(2.7) IN (%)

1% — x| Lao (jo,77,L70)-

N(X)HL‘I(J([O,T L70)
<C (HWE%([O’T]VUD) + ”X”%ZO([O,T],L"O)S
Indeed, we can write

N@)=NO) = L([¢[*)¢—L(IxI*)x

(2.8) L(191%) (@ = x) + L(J9]* = [xI*)x,
where the operator I, is defined by (2.3). Then, using Holder inequality we estimate

INGE) = NOOl oy < CIL 1) [zl = 2o
(2.9) H{ Ly (1% = x| [ o HXIILm
with p; = %’M Now, using Lemma 2.2 we have
(2.10) 1Ly (1| = [x|*)lzer < CllI1% = |x|*|| ez,
where py = n(n+y+2) . The condition 1 < py < p; is equivalent to the following

(n+7)(+2)
algebraic inequality 72 + 2y — n? < 0, which gives the upper bound v < v/n2 +1 — 1.

On the other hand, the lower bound n% < « ensures that a. > 1 and, thus, we can
estimate
(2.11) 1% — x| < Cmax {Jp|* 7%, |x|* 7} [ — x|.
Combining the above estimates, we obtain the following inequality
(2.12) [IN@W) = NI < CURITS + IXZ50) 1Y = Xz

Applying Holder inequality in time to (2.12), we obtain (2.7). Finally, it is sufficient
to use the estimate (2.2) from Lemma 2.1 and the proof is completed. O

Now we prove Theorem 1.1. The proof of (ii) is rather technical. We prove the
existence of solution to (1.1) by a fix point argument. Let 19 € L?(R?) be an arbitrary
initial data, R > 0 and T be a fixed positive time and consider the ball
(2.13) Br(T) = {v € C°([0,T], L*)) N L® ([0, T], L"); [ ]| Lo fo,71,20) < R},
endowed with the metric d(¢, x) = |[¢ — X||L40([0,T],Lv~o)- It is clear that Bgr(T) is a
complete metric space.

Consider the map ®[¢] defined by the right-hand side of the Duhamel’s integral
representation (1.3). Then, for ¢ € Br(T'), using (2.1), (2.2) and (2.6), we can write

(2.14) | @[]l Lao(f0,77,270) < 1U ()%l Lao ([0,77,L70) + Cl||¢||1;§o+(lo [0,77,L70)"

From the fact that |[U(-)%ol| £ ([0,77,c70y — 0 as T" — 0, we can choose T" in such a
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=y

way that |[U(-)vollLao([0,77,070) < = . Now, we can take R < (201)11%, which implies

2
®[¢)] € Br(T'). On the other hand, from the relation
t
(2.15) (@] = B0 = —i | Ult=5) (V) = N () (s)ds.
and (2.6) it follows that
(2.16) [@[y] — (I)[X]HLQO([O,T],LTO < 2R*Ca|[Y = Xl Loo 0,7, L70)

for every ¢, x € Br(T). If we choose R < min {(201)_a%, (202)_a%}, then we finally

obtain that the map ®[¢] is a strict contraction on the ball Br(T'). Thus, ®[¢] has a
fixed point, which is the unique solution of (1.1) in C°([0,T7], L?)) N L% ([0,T], L™). To
prove (iii), let us denote by T the supremum of all T > 0 for which such a solution exists.
Observe now that if v is sufficiently small, then (2.14) holds regardless of the value of
T. Thus, we may accomplish the fixed point procedure in the ball Br(c0), providing
T = 0.

Further, we claim that if 7% < oo, then |[[¢||Le(0,7+),Lr) = oo for every r > ro.
Indeed, on the contrary, let us assume that 7% < oo and ||[¢|| Lao (jo,7+),L70) < 00. For any
t€[0,7%) let 7 € [0,T* — t). Using Duhamel’s formula (1.3), we can write

t+7
(2.17) Wt +7) = U(r)(t) — z/t Ut + 7 — 8)N()(s)ds.

From (2.17) and the estimate (2.6) in Lemma 2.3 we obtain
(218) U zoqor—,100) < C (WO ooy, ooy + 1815 ey 10 )

Observing now that [|U ()|l e (jo,7],z70) — 0 as T'— 0 and taking ¢ close enough to
T, it follows that ||U(-)¥(t) Lao (0,7 —#),L70) can be made small enough and the assump-
tions in (iii) are fulfilled. Therefore, ¢ can be extended beyond T*, which contradicts
the maximality. Let (¢,7) be a Schrodinger-admissible pair with » > rg. Then, from
Holder inequality, for T' < T, we can write

(2.19) 191l Loo (0,77, L70) < H1/1||};;9([0,T]7L2)||¢H%q([0,T],L7‘)v 0 €(0,1).

Letting T — T™, we obtain that ||¢||z¢([0,17,L~) = 00, which proves the statement
(iv).

To prove (v), consider a sequence ¥f € L*(R"), such that ¢% — ¢y € L*(R") as
k — oo. Thus, for k large enough, |U(-)4§]| Leo (jo,77,270) < €. We can use the Duhamel’s
formula (1.3) to construct a sequence of solutions ¥* € L% ([0, T], L™ (R")) to (1.1) with
initial data ¥)§. Applying the proof of (iii), we obtain that ¢»* — ¢ in C°([0, T], L>(R™))N
L]0, T], L™ (R™)) as k — oo, and in fact in every L%([0,T], L"(R™))) for (g,r) be an
admissible pair. Thus, the proof of the Theorem is completed.

We begin the proof of Theorem 1.2 by recalling some definitions from the scattering
theory for Schréodinger equation. Let v(t) = U(t)Y+ be a solution to the free Schrodinger
equation with initial data ¢+ € L?(R") (called the asymptotic state). If there exists
a solution of (1.1), which behaves asymptotically as v when ¢ — =+oo, then the map
Q4 : L*(R™) — L?*(R") is called the wave operator for positive or negative times. In
other words, a global strong L2-solution ¢ to the nonlinear equation (1.1) with an initial
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data v scatters in L?(R™) to a solution v(t) = U(t)y4 if we have
(220 lim [0~ Ulps s = lim_[U(=0)(t) — llze = 0.

The arguments for proving the existence of the wave operator are standard and follows
the exposition in [3]. We prove only the (4) case since the (—) case can be proved
similarly. Let ¢ € L*(R"™) with ||U(-)o| g (jo,r,70) < € and ¢ € By.. Then, for
t > tg, using Duhamel’s integral formula (1.3), we have

(2.21) IN%W®=UPWW%%%/UFﬂNWWM&

to
Therefore, the estimate (2.6) yields

(2.22) U (=t)eb(t) = U(=to)tb (o)l 22 < C 15 (10,41, 270) — 05

as tg — o0o. Since U(—tg)t(tg) € L?, the proof of part (ii) is completed.
To prove (i), assume that 1, € L2(R"), ¢ € Ba. and consider the map

+oo
@2 WWO=U0e+i [ UGN > T

for some T' = T'(¢4) large enough. Then, using the same arguments as in the proof of
part (iii) of Theorem 1.1, we find that ®; is a contraction on Bs. and has a unique
fixed point if ||14] L2 < €. Using the global well-posedness result established in Theorem
1.1 for small data, one can then extend this solution uniquely for any ¢ € [0, c0), and in
particular 1 takes some value 1o = 1(0) € L? at time ¢ = 0. This ensures the existence
of the wave operator ()4, defined by

+oo
(2.24) Qi = o=y +1 [ UCIN@) )

To prove (iii), we use the following observations. Since the wave operators Q4 are
isometric in the space Bag, it is clear that the scattering operator S : ¢_ — ¢4 is well
defined as a map from B, onto itself and is isometric in the L? norm, i.e. ||Sv¢|pz =
||| z2. This completes the proof of the Theorem 1.2.
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TJIOBAJIHUM PE3VYJITATU 3A PEHNIEHVUETO HA YPABHEHUVETO HA
MIPLOAVHTEP C KPUTNYHA MACA 1 HEJIMHEWMHOCT OT
KOHBOJIFOIITMOHEH THUII B RY

T'eopru BenkoB, Xpucro I'enenB

Pasruexname equu kiaac or L2-xputuany HesuHeiinn ypasaenus Ha LIIpboguarep B
R'*" ¢ komBosmIOIMONHA HenmHeRHOCT OT THI XapTpu. IlenTa HE € Ma yCTaHOBUM JIO-
KaJIHOTO U I'VIODAJIHO C'hIIECTBYBAaHE HA PEIIEHUsITa, KAKTO ¥ KOPEKTHOCT Ha 3a/a9aTa
ma Koy B Z0CTATBIHO MaIKa OKOJIHOCT Ha HYJIATA B IPOCTPAHCTBOTO L2 (R™). Karo
€CTECTBEHO CJIEJCTBUE Ha IVIODAJIHUTE PE3yJITaTH HHE JOKa3BaMe CbINeCTBYBaHe Ha
orepaTop Ha pa3ceiiBaHe 3a MAJIKA HAYaJIHU YCJIOBUSI.
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