MATEMATUKA W MATEMATUWYECKO OBPA3OBAHWE, 2010
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2010
Proceedings of the Thirty Ninth Spring Conference of

the Union of Bulgarian Mathematicians
Albena, April 6-10, 2010

A REPRESENTATION OF BINARY MATRICES®

Hristina Kostadinova, Krasimir Yordzhev

In this article we discuss the representation of binary matrix using a sequence of
positive integers. We examine some advantages and disadvantages of this presentation
as an alternative to the standard representation using a two-dimensional matrix. It
is shown that the representation of binary matrices using ordered n-tuples of natural
numbers makes the algorithms faster and saves a lot of memory. In this work we use
object-oriented programming using the syntax and the semantic of C++ programming
language.

1. Introduction. One of the basic principles of object-oriented programming is en-
capsulation, which means that the client knows objects’ data, properties and algorithms,
to which events the object reacts, but it is not necessary to have the information about
their realization and the algorithms used in the member functions of the corresponding
class. Here we ask the following question: if there are two different classes, which describe
one and the same object in mathematics or in the real world, and they have the same
properties and methods, the question is which one of these two classes we have to choose.
The answer is trivial: the class, which objects use less memory and which algorithms
work faster, i.e. which algorithms use less standard computer operations.

The present paper is a continuation of the paper [5]. Our aim is to show that the
representation of the binary matrices using ordered n-tuple of positive integers and the
bitwise operations make the realization of a better class (as it was mentioned above)
compared with the standard representation of the binary matrices using two-dimensional
n X n matrix of positive integers. About the definition and some examples how to
use bitwise operations see [2, 3, 5, 7]. We recommend [4] about the object-oriented
programming using C++ language in the area of the computer algebra.

We examine the set B = {0,1}. B together with the operations conjunction &&,
disjunction || and negation ! form the all known boolean algebra B(&&, ||,!), which role
is very important in the computers and programming. We use the mentioned symbols
for the operations in B(&&, ||,!), have in mind the semantic and the syntax of these
operations in the widespread C++ programming language.

Binary matrix (or boolean, or (0,1)-matriz) is a matrix, which elements belong to the
set B ={0,1}. We denote by B,, the set of all n x n square matrices.

*2000 Mathematics Subject Classification: 68N15, 68W40, 15B34.
Key words: Binary matrix, object-oriented programming, C++ programming language, bitwise
operations, computer algebra.

198

Let A = (a;;) and B = (b;;) be matrices of B,,. We consider the semantic and syntax
of C++ language and the first index is 0, i.e 4,5 € {0,1,2,...,n — 1}. We examine the
following operations in B,,, defined according to our aim as follows:

component conjunction

(1) A&& B=C = (cj)

where, by definition ¢;; = a;; && b;; for every ¢,j € {0,1,2...,n —1};
component disjunction

(2) Al B=C=(cy)

where, by definition ¢;; = a;; || b for every 4,5 € {0,1,2...,n—1};
component negation

(3) IA=C= (Cij)

where, by definition ¢;; =la;; for every ¢,5 € {0,1,2...,n —1};
transpose

(1) HA) = C = (ciy)

where, by definition ¢;; = aj; for every ¢,5 € {0,1,2...,n —1};
logical product

(5) A% B =C = (c;)

where, by definition

n—1

cij = \/ (aix && bij) = (aio & bo ;) || (ai1 &&byj) | - || (@in—1 && by_1;)
k=0
for every 4,5 € {0,1,2...,n —1}.
That is the way B,, and the above-described operations &&, ||, !, t() and * to form the

algebra B, (&&, ||,!,t(), *). Here and in the whole article the term algebra means abstract
algebra considering the definition given in [1], and, namely, set equipped with various
operations, assumed to satisfy some specified system of axiomatic laws. It is naturally
to put the linear order, and exactly the lexicographic order in B, (&&, ||, !, (), *).

We examine the following set of standard operations with integer arguments in the
C++ programming language:

(6) Op:{+)_)*7/)%)<<7>>7&)|)/\)N)&&7 ||)!):7if7<7<:7>7 :7::7!:}'

These operations mean addition, subtraction, multiplication, division, integer division,
bitwise left shift, bitwise right shift, bitwise “and”, bitwise “or”, bitwise “exclusive or”,
bitwise “negation”, conjunction, disjunction, negation, assignment, if check, and com-
paring. We consider that the time, needed for each of these operations of the set Op
are proportional, i.e. if ¢; and 5 are the times needed to execute arbitraty operations
of Op, then t; = Ct9, where C' is a const. The algorithms in this paper are evaluated
according to the number of the needed operations of the set Op.

The present paper is also an appropriate example how to use bitwise operations in
the object-oriented programming courses. This matter does not take enough place in the
studying literature(see for example [5]).

199

2. Two classes, which describe the algebra B, (&&, ||,!,t(), *). To create the
first class we use the standard realization of the binary matrices: using a two-dimensional
n X n matrix of positive integers and standard algorithms to execute the operations (1)
+ (5). Let us denote this class by Bn_array.

A square binary n X n matrix, as it is described in [5], can be realized using ordered
n-tuple of whole nonnegative numbers, which belong to the closed interval [0, 2™ — 1].
There is one to one correspondence between the representation of the integers in decimal
and in binary number system. Let us denote by Bn_tuple the class which describes the
algebra B, (&&;, ||,!,t(), *) using ordered n-tuple of positive integers.

These two classes have the same specifications (we use the terminology in [6, 8]), and
we describe these specification using the name Bn_X, i.e. “X” means “array”, or ”tuple”
depending on the case.

Let the two classes Bn_X have the following specification:
class Bn_X {

int n;
int *Matr;
public:
/* constructor without parameter: */
Bn_XQO);
/* constructor with parameter n pointing the row of the square matrix: */
Bn_X (unsigned int);
/* copy constructor: */
Bn_X (const Bn_X &);
/* destructor: */
"Bn_XQ);
/* predefines the assignment operator: */
Bn_X & operator = (const Bn_X &);
/* returns the size (row) of the matrix: */
int get_n() { return n; };
/* sets value 1 to the element (i,j) of the matrix: */
void set_1 (int,int);
/* sets value O to the element (i,j) of the matrix: */
void set_0 (int,int);
/* f£ills row i of the matrix using integer number r
(just for the class Bn_tuple): */
void set_row(int,int); // must not be included when "X" = "array"!
/* gets element (i,j) of the matrix: */
int get_element (int,int);
/* gets the row i of the matrix
(just for the class Bn_tuple): */
int get_row (int); // must not be included when "X" = "array"!
/* transposes matrix : x/
Bn_X t O;
/* predefines operators according to (1), (2), (3) and (5): */
Bn_X operator && (Bn_X &);
Bn_X operator || (Bn_X &);
200

Bn_X operator ! (O;
Bn_X operator * (Bn_X &);

/* defines order (lexicographical) */
int operator < (Bn_X &);

}

When we predefine the operators &&, || and * and if the dimensions of the two
operands are not equal, then we receive the zero matrix of order the same as the first
operand. But this result is not correct. We can say something more: in this case the
operation is not defined, i.e. the result of the operation function is not correct and we
have to be very careful in such situations. The situation is the same about the entered
linear order, i.e. although the lexicographic order can be put for the words with different
length, we examine by definition only the matrices of the same order. The result we
receive when we compare the matrices with different dimensions is not correct. We give
suitable comments in this situations.

Since the objects of the two classes get dynamic operation memory, using pointers
and the new operator, then to realize the applications, using such objects, it is necessary
to predefine the operations of “the big three” [6] — copy constructor, destructor and the
assignment operator.

The constructor without parameter and the destructor are the same for both classes
Bn_array and Bn_tuple. Actually, when we work with objects of the class Bn_X, from
the mathematical point of view it is necessary to point the dimension of the matrix and
this dimension does not change. In this aspect using a constructor without parameter
have not sense and we are not interested in it. But yet we add such a constructor to
make our presentation complete and to make, that “the big three” to become “the big
four” [6].

We use the universal integer type int to save the exactness in testing the program,
this type can be changed to any other whole number type.

To evaluate the effectiveness and speed of the algorithms, which use objects of the
algebra B, (&&, ||,!,t(), *) it is necessary to evaluate the algorithms, which realize the
operations &&, || !, t(), including the operation |, comparing two elements, and operation
= “assignment”. In that sense we describe in details just these methods, realizing the
above mentioned operations. We suppose that the experienced programmer can easyly
create the other methods in each of the two classes.

In the present work we predefine the operator “<” too. Using the same model we
can predefine the other relational operators: “<=", “>” “>=" “==" and “!=". If the
dimensions of the two matrices, we compare, are not equal, then the relation “<” is not
defined and the result we get is the negative number —1.

3. Realization of the class Bn_array. When “X”==“array” we propose the fol-
lowing (standard) realization of the examined methods in the class Bn_array:

Bn_array Bn_array :: t () {
Bn_array temp(n);
for (int i=0; i<n; i++)
for (int j=0; j<m; j++)
*(temp.Matr + i*n+j) = x(Matr + j*n+i);
return temp;
201

Bn_array Bn_array :: operator && (Bn_array &B) {
Bn_array temp(n);
int n2 = n*n;
if (B.get_n() !'= n)
cout<<"unallowable value of a parameter \n'";
else
for (int p=0; p<n2; p++)
*(temp.Matr + p) = *(this->Matr + p) && *(B.Matr + p);
return temp;

Bn_array Bn_array :: operator || (Bn_array &B) {
Bn_array temp(n);
int n2 = n*n;
if (B.get_n() !'= n)
cout<<"unallowable value of a parameter \n";
else
for (int p=0; p<n2; p++)
*(temp.Matr + p) = *(this->Matr + p) || *(B.Matr + p);
return temp;

Bn_array Bn_array :: operator ! () {
int n2 = n*n;
for (int p=0; p<n2; p++)
*(this->Matr + p) = *(this->Matr + p) 72 0 : 1;
return *this;

Bn_array Bn_array :: operator * (Bn_array &B) {
Bn_array temp(n);
int c;
if (B.get_n() !'= n)
cout<<"unallowable value of a parameter \n";
else
for (int i=0; i<n; i++)
for (int j=0; j<n; j++) {
c=0;
for (int k=0; k<n; k++) ¢ = ¢ || (*(this->Matr + i*n+k)
&% *(B.Matr +k*n+j));
*x(temp.Matr +i*n+j)=c;
}

return temp;

202

Bn_array& Bn_array :: operator = (const Bn_array &B) {
int n2=n*n;
if (B.get_n() !'= n)
cout<<"unallowable value of a parameter \n";
else
for (int p=0; p<n2; p++)
*(this->Matr + p) = *(B.Matr + p);
return *this;

}
int Bn_array :: operator < (Bn_array &B) {
int p = 0;
int n2 = n*n;
if (B.get_n() !'= n)
cout<<"unallowable value of a parameter \n";
else
while ((*(Matr +p) == *(B.Matr +p)) && (p<n2-1)) p++;
if (*(Matr +p) < *(B.Matr +p)) return O;
else return 1;
}

Analogously we can realize the remaining relational operators <=, ==, >, >=, ==,
1=

It is easy to convince that the following proposition is true:

Proposition 1. For each positive integer n, for the computer representation via the
class Bn_array, using the C++ programming language, of the algebra B, (&&, ||,!, t(),),
the following propositions are true:

(i) When we use standard realization (standard predefining) of the operation functions
&&, ||, !, <, the operation transpose and the assignment operator, then each of them
performs O(n?) operations of the set Op;

(ii) When we use standard realization (standard predefining) of the operation function
%, then this operation performs O(n®) operations of the set Op;

(iii) For every object of the class Bn_array are necessary O(n?) x sizeof (int) bytes of
the operating memory;

(iv) To make initialization of the object of the class Bn_array O(n?) operations are
performed of the set Op.

We can prove the propositions (i) and (ii) as we count the number of the inner cycles
and the maximal number of the iterations in each of the methods. The propositions (iii)
and (iv) are obvious.

4. Representing the binary matrices using ordered n-tuples of nonnegative
integers. As it is shown in [5] there is one to one corresponding between the set of all
n X n binary matrices and the set of all ordered n-tuples of whole numbers, which belong
to the closed interval [0, 2" — 1], based on the binary representation of the positive
integers. This idea takes place in the realization of the class Bn_tuple.

To create the class Bn_tuple we propose the following methods, which realize the
examined operations in the algebra B, (&&, ||,!, (), *). To create these methods we use
bitwise operations: bitwise conjunction &, bitwise disjunction |, bitwise exclusive “or” A

203

and bitwise negation ~, using these operations we raise the effectiveness and make the
algorithms work faster.

Bn_tuple Bn_tuple :: t() {
Bn_tuple temp(n);

int k;
for (int i=0; i<n; i++)
for (int j=0; j<m; j++) {
k=get_element (i, j);

if (k) temp.set_1(j,i);
else temp.set_0(j,1);
}
return temp;

}

Bn_tuple Bn_tuple :: operator && (Bn_tuple &B) {
Bn_tuple temp(n);
if (B.get_n() !'= n)
cout<<"unallowable value of a parameter \n'";
else
for (int p=0; p<n; p++)
*(temp.Matr + p) = *(this->Matr + p) & *(B.Matr + p);
return temp;

Bn_tuple Bn_tuple :: operator || (Bn_tuple &B) {
Bn_tuple temp(n);
if (B.get_n() !'= n)
cout<<"unallowable value of a parameter \n";
else
for (int p=0; p<n; p++)
*(temp.Matr + p) = *(this->Matr + p) | *(B.Matr + p);
return temp;

Bn_tuple Bn_tuple :: operator ! () {
Bn_tuple temp(n);

for (int i=0; i<n; i++) {

for (int j=0; j<mn; j++) {

if (get_element(i,j)) temp.set_0(i,j);
else temp.set_1(i,j);

}

}
return temp;

}

204

Bn_tuple Bn_tuple :: operator * (Bn_tuple &B) {
Bn_tuple temp(n), TB(n);
TB = t(B);
int ¢, r_i, r_j;
if (B.get_n() != n)
cout<<"unallowable value of a parameter \n'";
else
for (int i=0; i<n; i++)
for (int j=0; j<n; j++) {
r_i = this->get_row(i);
r_j = TB.get_row(j);
c=r_1i&r_j;
if (c==0) temp.set_0(i,j);
else temp.set_1(i,j);

}

return temp;
}
Bn_tuple& Bn_tuple :: operator = (const Bn_tuple &B) {
if (B.get_n() '= n)

cout<<"unallowable value\n";
else
for (int p=0; p<n; p++)

*(this->Matr + p) = *(B.Matr + p);
return *this;

}
int Bn_tuple :: operator < (Bn_tuple &B) {
int p = 0;

if (B.get_n() '= n)
cout<<"unallowable value\n";
else
while ((get_row(p)==B.get_row(p))&&(p<n-1)) p++;
if (get_row(p)<B.get_row(p)) return 1;
else return O;

}

Analogously to Proposition 1 we are convinced that the following proposition is true:

Proposition 2. For each positive integer n, for the computer representation via the
class Bn_tuple, using the C++ programming language, of the algebra B, (&&, ||,!, t(), *),
the following propositions are true:

(i) When we use the above-described realization of the operation functions &&, ||, <
and the predefining of the assignment operator, then each one of them performs O(n)
operations of the set Op;

(ii) The transpose and negation operation performs O(n?) operations of the set Op.

(ii1) When we use the above-described realization of the operation functions x, then
this operation performs O(n?) operations of the set Op;

(iv) For every object of the class Bn_tuple O(n) * sizeof (int) bytes of the operating

205

Memory are Mecessary;
(v) Initialization of the object of the class Bn_tuple can be performed using O(n)
operations of the set Op.

We see that to create the class Bn_array is easy and it is not a difficult task even
for the beginning programmer, when we describe the algorithms we conform to the
definitions of the corresponding operations. On the other side, comparing Proposition 1
with Proposition 2 we are convinced that following proposition is true:

Theorem 1. The algorithms using objects of the class Bn_tuple work faster than the
algorithms using objects of the class Bn_array and they save a lot of operating memory.

REFERENCES

[1] J. DainTITH, R. D. NELSON. The Penguin Dictionary of Mathemathics. Penguin books,
1989.

[2] S. R. Davis. C++ for Dummies. IDG Books Worldwide, 2000.

[3] B. W. KERNIGAN, D. M RiITCHIE. The C Programming Language. AT&T Bell Laborato-
ries, 1998.

[4] TaN KiaT SHi, W.-H. STEEB, Y. HARDY. Symbolic C++: An Introduction to Computer
Algebra using Object-Oriented Programming. Springer, 2001.

[5] K. YORDZHEV. An Example for the Use of Bitwise Operations in programming. Mathema-
tics and Fducation in Mathematics, 38 (2009), 196-202.

[6] II. A3boB. O6ekTHO opuenTupano nporpamupane Crpykrypu or nanau u STL. Codus,
Cueuta, 2008.

[7] E. JI. PoMmaHOB. IIpaktuky™m mo nporpammuposannio Ha C+-+. BXB-Ilerep6ypr, 2004.

[8] M. TonoproBA. Ilporpamupane va C++. Yacr I, gact II, Codusi, Cuena, 2002.

Hristina Kostadinova, Krasimir Yordzhev
South-West University ”"N. Rilsky”

2700 Blagoevgrad, Bulgaria

e-mail: hkostadinova@gmail.com

e-mail: yordzhev@swu.bg, iordjev@yahoo.com

BBbPXY EJHO IIPEJCTABAHE HA BUHAPHUTE MATPUIIN

Xpuctuna Kocragunosa, Kpacumup ﬁopAKeB

B crarusita ce obcbk1a IpeicTaBsIHETO Ha IPOU3BOJIHA OMHAPHA MATPHUIIA C TTOMOIII-
Ta Ha MOCJIEOBATETHOCT OT IEJIN HEOTPUIATETHN YUC/Ia. Pa3riietanu ca HIKOU Ipe-
JIMMCTBA U HEJIOCTATHIM HAa TOBA IPECTaBsiHEe KATO aJTEPHATUBA Ha CTAHJAPTHOTO,
O0IIOIPUETO IpejIcTaBsAHe Ype3 JByMepeH mMacuB. [lokasaHo e, 4e NnpeJcTaBsiHeTo Ha
OMHAPHUTE MATPUIM C ITOMOIITA Ha HapPEJIEHU N-TOPKU OT €CTECTBEHU YMCJIa BOJIU 0
110-6'bP3H AJITOPUTMU U JI0 ChINECTBEHA MKOHOMUSI Ha OlepaTuBHa namer. V3nonsysan
e anapaTa Ha 00EKTHO-OPUEHTUPAHOTO IPOrPAMUPAHE CbC CUHTAKCUCA U CEMAHTUKATA
na esuka C-++.

206

