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δK-SMALL SETS IN GRAPHS*

Asen Bojilov, Nedyalko Nenov

Let G be a simple n-vertex graph and W ⊆ V(G). We say that W is a δk-small set if

k

sP
v∈W

dk(v)

|W |
≤ n − |W | .

Let ϕ
(k)(G) denote the smallest natural number r such that V(G) decomposes into

r δk-small sets, and let α
(k)(G) denote the maximal number of vertices in a δk-

small set of G. In this paper we obtain bounds for α
(k)(G) and ϕ

(k)(G). Since

ϕ
(k)(G) ≤ ω(G) ≤ χ(G) and α(G) ≤ α

(k)(G), we obtain also bounds for the clique
number ω(G), the chromatic number χ(G) and the independence number α(G).

1. Introduction. We consider only finite, non-oriented graphs without loops and
multiple edges. We shall use the following notations:

V(G) – the vertex set of G;
e(G) – the number of edges of G;
ω(G) – the clique number of G;
α(G) – the independence number of G;
χ(G) – the chromatic number of G;
d(v) – the degree of a vertex v;
∆(G) – the maximal degree of G;
δ(G) – the minimal degree of G.
All undefined notation are from [8].
Definition 1. Let G be an n-vertex graph and W ⊆ V(G). We say that W is a small

set in the graph G if

d(v) ≤ n − |W | , for all v ∈ W.

With ϕ(G) we denote the smallest natural number r such that V(G) decomposes into r

small sets.
The number ϕ(G) is defined for the first time in [6]. Some properties of ϕ(G) are

proved in [6] and [2]. Further ϕ(G) is more thoroughly investigated in [1]. There an
effective algorithm for the calculation of ϕ(G) is given. First of all let us note the
following bounds for ϕ(G).
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Proposition 1.1 ([1]).
⌈

n

n − d1(G)

⌉

≤ ϕ(G) ≤
⌈

n

n − ∆(G)

⌉

,

where d1(G) is the average degree of the graph G.

Let G be a graph and W ⊆ V(G). We define

dk(W ) =
k

√

√

√

√

∑

v∈W

dk(v)

|W | , dk(G) = dk

(

V(G)
)

.

Definition 2. Let G be an n-vertex graph and W ⊆ V(G). We say that W is a
δk-small set of G if

dk(W ) ≤ n − |W | .
With ϕ(k)(G) we denote the minimal number of δk-sets of G into which V(G) decomposes.

Remark 1. δ1-small sets are defined in [1] as β-small sets and ϕ(1)(G) is denoted by
ϕβ(G). Also in [1] it is proven

Proposition 1.2 ([1]).

ϕ(1)(G) ≥
⌈

n

n − d1(G)

⌉

.

Further we shall need the following
Proposition 1.3. Let G be an n-vertex graph. Then

(i) Every small set of G is a δk-small set of G for all natural k.

(ii) Every δk−1-small set of G is a δk-small set of G.

Proof. Let W be a small set of G. Then d(v) ≤ n − |W |, ∀v ∈ W . Therefore
dk(W ) ≤ n − |W |, i. e. W is a δk-small set.

The statement in (ii) follows from the inequality dk−1(W ) ≤ dk(W ) (cf. [4, 5]). �

Let us note that if G is an r-regular graph then dk(W ) = r for all natural k. So, in
this case, every δk-set of G is a small set of G.

In this paper we shall prove that for a given graph G and for sufficiently large natural
k every δk-small set of G is a small set of G (Theorem 2.1).

Proposition 1.4. Let G be a graph. Then

ϕ(1)(G) ≤ ϕ(2)(G) ≤ · · · ≤ ϕ(k)(G) ≤ · · · ≤ ϕ(G) ≤ ω(G) ≤ χ(G).

Proof. The inequality χ(G) ≥ ω(G) is obvious. The inequality ϕ(G) ≤ ω(G) is
proven in [6] (see also [1]). The inequality ϕ(k)(G) ≤ ϕ(G) follows from Proposition 1.3 (i)
and the inequlity ϕ(k−1)(G) ≤ ϕ(k)(G) follows from Proposition 1.3 (ii). �

According to Proposition 1.4 every lower bound for ϕ(k)(G) is a lower bound for ϕ(G),
ω(G) and χ(G). In this paper we shall obtain a lower bound for ϕ(k)(G) (Theorem 3.2)
from which we shall derive new lower bounds for ϕ(G), ω(G) and χ(G). As a corollary
we shall get and some results for ϕ(G), ω(G) and χ(G) already from [1] and [2].

Proposition 1.5.
⌈

n

n − d1(G)

⌉

≤ ϕ(k)(G) ≤
⌈

n

n − ∆(G)

⌉

.
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Proof. The right inequality follows from Proposition 1.1 and Proposition 1.4. The
left inequality follows from Proposition 1.2 and Proposition 1.4. �

2. Strengthening Proposition 1.4.
Theorem 2.1. Let G be a graph. There exists a natural k0 = k0(G) such that for all

k ≥ k0 we have

(i) Every δk-small set of G is a small set of G.

(ii) ϕ(1)(G) ≤ · · · ≤ ϕ(k0)(G) = ϕ(k0+1)(G) = · · · = ϕ(G).

Proof. Fix a subset of V(G), say W , and let ∆(W ) = max {d(v) | v ∈ W}. Then
dk(W ) ≤ ∆(W ) and lim

k→∞
dk(W ) = ∆(W ) (see [4]).

Therefore, since V(G) has only finitely many subsets, there exists k0 such that for
arbitrary W ⊆ V(G)

(2.1) ∆(W ) − 1

2
≤ dk(W ), if k ≥ k0.

Let us suppose now that W is a δk-small set of G and k ≥ k0, i. e.

(2.2) dk(W ) ≤ n − |W | .
From (2.1) and (2.2) we have that

∆(W ) − 1

2
≤ n − |W | .

Since ∆(W ) and n − |W | are integers, from the last inequality we derive that ∆(W ) ≤
n− |W |. From the definition of ∆(W ) it follows d(v) ≤ n− |W | for all v ∈ W , i. e. W is
a small set. Thereby (i) is proven. The statement (ii) obviously follows from (i). �

3. Lower bounds for dk(G) and ϕ(k)(G).
Lemma 3.1. Let β1, β2, . . . , βr ∈ [0, 1] and β1 + β2 + · · · + βr = r − 1. Then for all

positive integer k ≤ r

(3.1)

r
∑

i=1

(1 − βi)β
k
i ≤

(

r − 1

r

)k

.

Proof. The case k = r is proven in [1]. That is why we suppose that k ≤ r− 1. For
all natural n we define

Sn = βn
1 + βn

2 + · · · + βn
r .

We can rewrite the inequality (3.1) in following way

(3.2) Sk − Sk+1 ≤
(

r − 1

r

)k

.

Since

r − 1

r
=

S1

r
≤ k

√

Sk

r
≤ k+1

√

Sk+1

r
(cf. [4, 5]),

we have

(3.3) Sk+1 ≥ 1
k
√

r
S

k+1

k

k

and

(3.4) Sk ≥ (r − 1)k

rk−1
.
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From (3.3) we see that

(3.5) Sk − Sk+1 ≤ Sk − 1
k
√

r
S

k+1

k

k .

We consider the function

f(x) = x − 1
k
√

r
x

k+1

k , x > 0.

According to (3.2) and (3.5) it is sufficient to prove that

f(Sk) ≤
(

r − 1

r

)k

.

From f ′(x) = 1 − k + 1

k k
√

r
x

1
k , it follows that f ′(x) has unique positive root

x0 =
rkk

(k + 1)k

and f(x) decreases in [x0,∞). According to (3.4), Sk ≥ (r − 1)k

rk−1
. Since k ≤ r − 1,

(r − 1)k

rk−1
≥ x0. Therefore

f(Sk) ≤ f

(

(r − 1)k

rk−1

)

=

(

r − 1

r

)k

. �

Theorem 3.2. Let G be an n-vertex graph and

V(G) = V1 ∪ V2 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, i 6= j,

where Vi are δk-small sets. Then for all integer k ≤ r the following inequalities are

satisfied

(i) dk(G) ≤ n(r − 1)

r
;

(ii) r ≥ n

n − dk(G)
.

Proof. Let ni = |Vi|, i = 1, 2, . . . , r. Then

∑

v∈V(G)

dk(v) =

r
∑

i=1

∑

v∈Vi

dk(v) ≤
r
∑

i=1

ni(n − ni)
k.

Let βi = 1 − ni

n
, i = 1, 2, . . . , r. Then

∑

v∈V(G)

dk(v) ≤ nk+1
r
∑

i=1

βi(1 − βi)
k, k ≥ r.

The inequality (i) follows from the last inequality and Lemma 3.1. Solving the inequality
(i) for r, we derive the inequality (ii). �

4. Some corollaries from Theorem 3.2.
Corollary 4.1. Let G be an n-vertex graph and let k and s be positive integers such

that k ≤ ϕ(s)(G). Then
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(i) dk(G) ≤
(

ϕ(s)(G) − 1
)

n

ϕ(s)(G)
≤
(

ϕ(G) − 1
)

n

ϕ(G)
≤ (ω(G) − 1)n

ω(G)
≤ (χ(G) − 1)n

χ(G)
;

(ii) ϕ(s)(G) ≥ n

n − dk(G)
.

Proof. Let ϕ(s)(G) = r and V(G) = V1 ∪ V2 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, where Vi are
δk-small sets. Then the left inequality in (i) follows from Theorem 3.2 (i). The other
inequalities in (i) follow from the inequalities ϕ(s)(G) ≤ ϕ(G) ≤ ω(G) ≤ χ(G). The
inequality (ii) follows from Theorem 3.2 (ii). �

Remark 2. In the case k = s = 1, Corollary 4.1 is proven in [1] (cf. Theorem 6.3 (i)
and Theorem 6.2 (ii)).

Corollary 4.2. Let G be an n-vertex graph. Then for all integer s ≥ 2,

ϕ(s)(G) ≥ n

n − d2(G)
.

Proof. If ϕ(2)(G) = 1 then E(G) = ∅, i. e. G = Kn and the inequality is obvious.
If ϕ(2)(G) ≥ 2 then ϕ(s)(G) ≥ 2 because s ≥ 2. Therefore Corollary 4.2 follows from
Corollary 4.1 (ii). �

Corollary 4.3 ([2]). For every n-vertex graph

ϕ(G) ≥ n

n − d2(G)
.

Proof. This inequality follows from Corollary 4.2 because ϕ(s)(G) ≤ ϕ(G). �

Corollary 4.4 ([1]). Let G be an n-vertex graph. Then for every positive integer

k ≤ ϕ(G)

ϕ(G) ≥ n

n − dk(G)
.

Proof. According to Theorem 2.1 there exists a natural number s such that ϕ(G) =
ϕ(s)(G). Since k ≤ ϕ(s)(G) from Corollary 4.1 (ii) we derive

ϕ(G) = ϕ(s)(G) ≥ n

n − dk(G)
. �

Corollary 4.5. Let G be an n-vertex graph. Then for every integer s ≥ 3

ϕ(s)(G) ≥ n

n − d3(G)
.

Proof. Since s ≥ 3, ϕ(s)(G) ≥ ϕ(3)(G). Therefore it is sufficient to prove the
inequality

(4.1) ϕ(3)(G) ≥ n

n − d3(G)
.

If ϕ(3)(G) ≥ 3 then (4.1) follows from Corollary 4.1 (ii). If ϕ(3)(G) = 1 then the inequality
(4.1) is obvious because d3(G) = 0. Let ϕ(3)(G) = 2 and V(G) = V1 ∪ V2, where Vi,
i = 1, 2 are δ3-small sets. Let ni = |Vi|, i = 1, 2. Then

(4.2)
∑

v∈V(G)

d3(v) =
∑

v∈V1

d3(v) +
∑

v∈V2

d3(v) ≤

n1(n − n1)
3 + n2(n − n2)

3 = n1n2(n
2 − 2n1n2) ≤

n4

8
.
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Therefore d3(G) ≤ n

2
and we obtain

n

n − d3(G)
≤ 2 = ϕ(3)(G). �

Since ϕ(G) ≥ ϕ(3)(G) from Corollary 4.5 we derive
Corollary 4.6 ([1]). For every n-vertex graph G

ϕ(G) ≥ n

n − d3(G)
.

Corollary 4.7. Let G be an n-vertex graph and ϕ(4)(G) 6= 2. Then for every integer

s ≥ 4,

ϕ(s)(G) ≥ n

n − d4(G)
.

Proof. Since ϕ(s)(G) ≥ ϕ(4)(G) for s ≥ 4, it sufficient to prove the inequality

(4.3) ϕ(4)(G) ≥ n

n − d4(G)
.

If ϕ(4)(G) ≥ 4 the inequality (4.3) follows from Corollary 4.1 (ii). If ϕ(4)(G) = 1
the inequality (4.3) is obvious because d4(G) = 0. It remains to consider the case
ϕ(4)(G) = 3. Let V(G) = V1∪V2∪V3, where Vi, are δ4-small sets and let ni = |Vi|, i = 1,
2, 3. Then

(4.4)
∑

v∈V(G)

d4(v) =
∑

v∈V1

d4(v) +
∑

v∈V2

d4(v) +
∑

v∈V3

d4(v) ≤

n1(n − n1)
4 + n2(n − n2)

4 + n3(n − n3)
4.

Denoting βi = 1 − ni

n
, i = 1, 2, 3 we receive

∑

v∈V(G)

d4(v) ≤ n4

(

3
∑

i=1

(1 − βi)β
4
i

)

.

Since

3
∑

i=1

(1 − βi)β
4
i ≤ 2

3
(see the proof of Theorem 5.4 (iii) in [1]) we take

d4(G) ≤ 2

3
=

ϕ(4)(G) − 1

ϕ(4)(G)
.

Solving the last equation for ϕ(4)(G) we obtain (4.3). �

Corollary 4.8. Let G be an n-vertex graph and ϕ(4)(G) 6= 2. Then

(4.5) ϕ(G) ≥ n

n − d4(G)
.

Remark 3. In [1] it is proven that the inequlity (4.3) is held if ϕ(G) 6= 2.
5. Maximal δk-sets. We denote the maximal number of vertices in a δk-set of G

by α(k)(G). S(G) is the maximal number of vertices of small sets of G. It is easilly seen
that Proposition 1.3 yields.

Proposition 5.1. For every graph G

α(1)(G) ≥ α(2)(G) ≥ · · · ≥ α(k)(G) ≥ · · · ≥ S(G) ≥ α(G).

Remark 4. Note that α(1)(G) is denoted in [1] by Sα(G).
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From Theorem 2.1 we have
Theorem 5.2. For every graph G there exists an unique number k0 = k0(G) such

that

α(1)(G) ≥ α(2)(G) ≥ · · · ≥ α(k0)(G) = α(k0+1)(G) · · · = S(G).

Proposition 5.3. Let V(G) = {v1, v2, . . . , vn} and d(v1) ≤ d(v2) ≤ · · · ≤ d(vn).
Then

α(k)(G) = max {s | dk({v1, v2, . . . vs}) ≤ n − s} =

= max {s | {v1, v2, . . . vs} is δk-small set in G} .

Proof. Let s0 = max {s | {v1, v2, . . . vs} be δk-small set in G}. Then s0 ≤ α(k)(G).
Let α(k)(G) = r and let {vi1 , vi2 , . . . , vir

} be a δk-small set. Since dk({v1, v2, . . . , vr}) ≤
dk({vi1 , vi2 , . . . , vir

}) it follows that {v1, v2, . . . , vr} is δk-small set too. Therefore
α(k)(G) = r ≤ s0. �

Proposition 5.4. For every positive number k the following inequalities hold

n − ∆(G) ≤ α(k)(G) ≤ n − δ(G).

Proof. The left inequality follows from the inequality S(G) ≥ n − ∆(G) from [1]
and Proposition 5.1. Let r = α(k)(G). According to Proposition 5.3, {v1, v2, . . . , vr} is a
δk-small set. So

δ(G) = d(v1) ≤ dk({v1, v2, . . . , vr}) ≤ n − r = n − α(k)(G),

hence α(k)(G) ≤ n − δ(G). �

Remark 5. The inequality α(G) ≥ n − ∆(G) is not always true. For example,
α(C5) < 5 − ∆(C5) = 3.

Theorem 5.5. Let A ⊆ V(G) be a δ1-small set of G and s = d1(V(G) \ A). Then

(5.1) |A| ≤
⌊

n − s

2
+

√

(n − s)2

4
+ ns − 2e(G)

⌋

Proof.

2e(G) =
∑

v∈V(G)

d(v) =
∑

v∈A

d(v) +
∑

v∈V(G)\A

d(v) ≤ |A| (n − |A|) + s(n − |A|).

Solving for |A| we obtain the inequality (5.1). �

Corollary 5.6 ([1]). For every number k

α(k)(G) ≤
⌊

n − ∆(G)

2
+

√

(n − ∆(G))2

4
+ n∆(G) − 2e(G)

⌋

≤

≤
⌊

1

2
+

√

1

4
+ n2 − n − 2e(G)

⌋

.

(5.2)

Proof. According to Proposition 5.1, it is sufficient to prove (5.2) only in the case
k = 1. Let A be a maximal δ1-small set, i. e. |A| = α(1)(G), and s = d1

(

V(G) \ A
)

.
According to Theorem 5.5 the inequality (5.1) holds. Since the right side of (5.1) is
an increasing function for s and s ≤ ∆(G) ≤ n − 1, the inequalities (5.2) follow from
(5.1). �

6. α-small sets.
Definition 3 ([1]). Let G be an n-vertex graph and let W ⊆ V(G). We say that W
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is an α-small set if
∑

v∈W

1

n − d(v)
≤ 1.

We denote the smallest natural number r for which V(G) decomposes into r α-small sets
by ϕα(G).

The idea for α-small sets is coming from the following Caro-Wey inequality ([3] and
[7])

ω(G) ≥
∑

v∈V(G)

1

n − d(v)
.

We have the proposition
Proposition 6.1 ([1]).

ϕ(1)(G) ≤ ϕα(G) ≤ ϕ(G).

The following problem is inspired by Proposition 6.1 and Theorem 2.1.
Problem. Is it true that for every graph G there exists natural number k0 = k0(G)

such that ϕα(G) = ϕ(k0)(G)?
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δK-МАЛКИ МНОЖЕСТВА В ГРАФИ

Асен Божилов, Недялко Ненов

Нека G е прост n-върхов граф и W ⊆ V(G). Казваме, че W е δk-малко множество,

ако

k

sP
v∈W

dk(v)

|W |
≤ n − |W | .

ϕ
(k)(G) означава най-малкото естествено число r, за което V(G) се разлага на

r δk-малки множества, а α
(k)(G) означава максимума на броя на върховете на

δk-малките множества на G. В тази работа ние получаваме оценки за α
(k)(G) и

ϕ
(k)(G). Тъй като ϕ

(k)(G) ≤ ω(G) ≤ χ(G) и α(G) ≤ α
(k)(G), получаваме също

оценки за кликовото число ω(G), хроматичното число χ(G) и числото на незави-

симост α(G).
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