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dx-SMALL SETS IN GRAPHS®

Asen Bojilov, Nedyalko Nenov

Let G be a simple n-vertex graph and W C V(G). We say that W is a dx-small set if

k Zvewdk(v) <
= < n-—|W|.
W] W]

Let »*) (@) denote the smallest natural number r such that V(G) decomposes into
r Ok-small sets, and let a(k)(G) denote the maximal number of vertices in a Jx-
small set of G. In this paper we obtain bounds for a(k)(G) and w(k)(G). Since
o"(@) < w(@) < x(G) and a(G) < a'¥ (@), we obtain also bounds for the clique
number w(G), the chromatic number x(G) and the independence number a(G).

1. Introduction. We consider only finite, non-oriented graphs without loops and
multiple edges. We shall use the following notations:

V(G) — the vertex set of G;

e(@) — the number of edges of G;

w(G) — the clique number of G;

a(QG) — the independence number of G;

X(G) — the chromatic number of G;

d(v) — the degree of a vertex v;

A(G) - the maximal degree of G;

§(G) — the minimal degree of G.

All undefined notation are from [8].

Definition 1. Let G be an n-vertex graph and W C V(G). We say that W is a small
set in the graph G if

d(v) <n—|W|, forallveW.

With ¢(G) we denote the smallest natural number r such that V(G) decomposes into r
small sets.

The number ¢(G) is defined for the first time in [6]. Some properties of p(G) are
proved in [6] and [2]. Further ¢(G) is more thoroughly investigated in [1]. There an
effective algorithm for the calculation of ¢(G) is given. First of all let us note the
following bounds for ¢(G).
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Proposition 1.1 ([1]).

{%@J < 0(@) < [#A(GJ ,

where d1(G) is the average degree of the graph G.
Let G be a graph and W C V(G). We define

—_— di(G) = di (V(G)).
i (V@)

Definition 2. Let G be an n-vertex graph and W C V(G). We say that W is a
Or-small set of G if

d(W) <n—|W].

With *) (G) we denote the minimal number of §;-sets of G into which V(G) decomposes.

Remark 1. §;-small sets are defined in [1] as S-small sets and ¢M (G) is denoted by
©P(@). Also in [1] it is proven

Proposition 1.2 ([1]).

2@ > [#1(@:)} '

Further we shall need the following
Proposition 1.3. Let G be an n-vertex graph. Then

(i) Every small set of G is a 6x-small set of G for all natural k.
(ii) Every 0r—1-small set of G is a di-small set of G.

Proof. Let W be a small set of G. Then d(v) < n — |W]|, Yo € W. Therefore
dp(W) <n—|W|,i.e. W is a dp-small set.

The statement in (ii) follows from the inequality dp—1 (W) < dx (W) (cf. [4, 5]). O

Let us note that if G is an r-regular graph then di (W) = r for all natural k. So, in
this case, every di-set of G is a small set of G.

In this paper we shall prove that for a given graph G and for sufficiently large natural
k every dp-small set of G is a small set of G (Theorem 2.1).

Proposition 1.4. Let G be a graph. Then

PpD(G) <pP(G) < - < M(G) < < 9(G) Sw(G) < X(G).

Proof. The inequality x(G) > w(G) is obvious. The inequality ¢(G) < w(G) is
proven in [6] (see also [1]). The inequality o) (G) < (@) follows from Proposition 1.3 (i)
and the inequlity ¢*~1(G) < (@) follows from Proposition 1.3 (ii). O

According to Proposition 1.4 every lower bound for ¢®)(G) is a lower bound for ¢(G),
w(@) and x(G). In this paper we shall obtain a lower bound for ¢*)(G) (Theorem 3.2)
from which we shall derive new lower bounds for ¢(G), w(G) and x(G). As a corollary
we shall get and some results for p(G), w(G) and x(G) already from [1] and [2].

Proposition 1.5.

i | =0 [ |
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Proof. The right inequality follows from Proposition 1.1 and Proposition 1.4. The
left inequality follows from Proposition 1.2 and Proposition 1.4. (I

2. Strengthening Proposition 1.4.

Theorem 2.1. Let G be a graph. There exists a natural ko = ko(G) such that for all
k > ko we have

(i) Every or-small set of G is a small set of G.
(i) ¢M(@) <+ < e™(@) = pTt(@) = -+ = ¢(@).

Proof. Fix a subset of V(G), say W, and let A(W) = max{d(v) | v € W}. Then
dp(W) < A(W) and klim dp (W) = A(W) (see [4]).

Therefore, since V(G) has only finitely many subsets, there exists kg such that for
arbitrary W C V(G)

1
(2.1) A(W) - B < di(W), if k > ko.
Let us suppose now that W is a di-small set of G and k > ko, i.e.
(2.2) A (W) <n— [W].

From (2.1) and (2.2) we have that
1
A(W)—§ <n—|W|.

Since A(W) and n — |W| are integers, from the last inequality we derive that A(W) <
n — |W/|. From the definition of A(W) it follows d(v) < n—|W| for allv € W,i.e. W is
a small set. Thereby (i) is proven. The statement (ii) obviously follows from (i). O
3. Lower bounds for di(G) and ¢® (G).
Lemma 3.1. Let $1,082,...,0- € [0,1] and B1+ B2+ -+ B =1 — 1. Then for all
positive integer k < r

(3.1) S )k < (= 1)k

i=1

Proof. The case k = r is proven in [1]. That is why we suppose that k <r — 1. For
all natural n we define

Sp =01+ 065+ + 5
We can rewrite the inequality (3.1) in following way

k
-1
(3.2) Sk — Spe1 < (T - ) .
Since
TS B B oy )

we have
(3.3) Spiy > g
and

r— 1)’“
(3.4) Sk > ( 1
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From (3.3) we see that

1 k1
(3.5) Sk — Sk4+1 < Sk — k_rskk .

r

1 k1
flz)=2——=a %, x>0
r

According to (3.2) and (3.5) it is sufficient to prove that

s < ()

We consider the function

k+1
From f'(z) =1 - #x%, it follows that f’(x) has unique positive root
T
rk*
To = ———
RCERL
: . (r=1% .
and f(z) decreases in [z9,00). According to (3.4), Sy > ~————. Since k < r — 1,
r
— 1)k
(r T 1) > xg. Therefore
oy

(ﬂ&)gf(%;jﬁ)(igi)é 0

Theorem 3.2. Let G be an n-vertex graph and
V(G)=ViuVeU--- UV, VinV;=0, i#j,

where V; are 0r-small sets. Then for all integer k < r the following inequalities are
satisfied

() d(@) < 2,
(i) Tzn—dk(G)

Proof. Letn;=1Vi|,i=1,2,...,r. Then

Z d*(v) = Z Z d"(v) < an(n —ny)F.

veV(G) i=1veV;

Let Bi=1—"2 i=1,2,...,r. Then
n

T
Z d*(v) < pFtt Zﬁi(l -Gk k>
veV(G) i=1
The inequality (i) follows from the last inequality and Lemma 3.1. Solving the inequality
(i) for r, we derive the inequality (ii). O
4. Some corollaries from Theorem 3.2.
Corollary 4.1. Let G be an n-vertex graph and let k and s be positive integers such
that k < @) (G). Then
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(NG —n _ (p(G)—n _ (w(G) —Dn _ (x(G) —)n

Q) o) S U
(i) ¢ (G)_nfdk(G)

Proof. Let ga(s)(G) =rand V(G) =V1UVU---UV,, V;NV, = 0, where V; are
dr-small sets. Then the left inequality in (i) follows from Theorem 3.2 (i). The other
inequalities in (i) follow from the inequalities ¢*)(G) < ¢(G) < w(G) < x(G). The
inequality (ii) follows from Theorem 3.2 (ii). d

Remark 2. In the case k = s = 1, Corollary 4.1 is proven in [1] (cf. Theorem 6.3 (i)
and Theorem 6.2 (ii)).

Corollary 4.2. Let G be an n-vertex graph. Then for all integer s > 2,

(s) "
PE) 2 n—d2(G)’

Proof. If ¢®(G) =1 then E(G) =0, i.e. G = K,, and the inequality is obvious.

If @(2)(6') > 2 then ¢ (G) > 2 because s > 2. Therefore Corollary 4.2 follows from

Corollary 4.1 (ii). O
Corollary 4.3 ([2]). For every n-vertex graph
Q) > —2
14 - n-— dQ(G) '
Proof. This inequality follows from Corollary 4.2 because ¢ (G) < ¢(@). O

Corollary 4.4 ([1]). Let G be an n-vertex graph. Then for every positive integer
k< ¢(G)
n
G)>——.
w()_nfdﬂa
Proof. According to Theorem 2.1 there exists a natural number s such that ¢(G) =
©(@). Since k < ¢ (@) from Corollary 4.1 (ii) we derive
G) =¢"(G) > —— 0
e(G) =¢ ()_n*dﬁ@
Corollary 4.5. Let G be an n-vertex graph. Then for every integer s > 3
e@G) > —2
~ n—dj (G)
Proof.  Since s > 3, '¥(G) > ¢®(G). Therefore it is sufficient to prove the
inequality

(4.1) (@) = —

n— dg(G) .
If 93 (G) > 3 then (4.1) follows from Corollary 4.1 (ii). If ) (G) = 1 then the inequality
(4.1) is obvious because d3(G) = 0. Let ¢ (G) = 2 and V(G) = Vi U Vs, where V;,
i =1, 2 are d3-small sets. Let n; = |V;|, ¢ = 1, 2. Then

42) Y dP)=) P+ Yy P <
veV(G) veV] vEV:
4
ni(n —n1)® 4+ ng(n —ng)® = nina(n? — 2niny) < %
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Therefore d3(G) < — and we obtain

|3

_n

n — dg(G)
Since p(G) > <p(3)(G) from Corollary 4.5 we derive
Corollary 4.6 ([1]). For every n-vertex graph G

<2=B8(q). O

#(G) 2 n—dz(G)’

Corollary 4.7. Let G be an n-vertex graph and 30(4)(67) # 2. Then for every integer
s >4,

OG> "
Proof. Since o*)(G) > o™ (G) for s > 4, it sufficient to prove the inequality
4.3 Ol (e) g —
(13) 6) > i
If o™ (G) > 4 the inequality (4.3) follows from Corollary 4.1 (ii). If o*(G) = 1
the inequality (4.3) is obvious because d4(G) = 0. It remains to consider the case

oW (@) = 3. Let V(G) = V; UV, UVs, where V;, are §;-small sets and let n; = [V;], i = 1,
2, 3. Then

(4.4) Z d*(v) = Z d*(v) + Z d*(v) + Z d*(v) <

veV(G) veV] vEV2 vEV3
n1(n —ni)* 4+ na(n —no)* + nz(n —nz)t.

n
Denoting ; =1 — #, 1 =1, 2, 3 we receive

3
> diw) <nt (Z(l - @-)ﬂ?) :

veV(G) i=1
& 2
Since Z(l — BBt < 3 (see the proof of Theorem 5.4 (iii) in [1]) we take
i=1
2 oM@ -1
du(G) < - = —~F—.
(=3 e W(G)
Solving the last equation for o) (G) we obtain (4.3). O
Corollary 4.8. Let G be an n-vertex graph and 30(4)(67) # 2. Then
n
4.5 G)> ——.
(4.5) (0> i

Remark 3. In [1] it is proven that the inequlity (4.3) is held if ¢(G) # 2.

5. Maximal Ji-sets. We denote the maximal number of vertices in a dp-set of G
by o®(@). S(G) is the maximal number of vertices of small sets of G. It is easilly seen
that Proposition 1.3 yields.

Proposition 5.1. For every graph G

a(G) 2 a?(@) 2 2 a®(@) 2 2 5(G) 2 a(G).

Remark 4. Note that oY) (G) is denoted in [1] by S%(G).
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From Theorem 2.1 we have
Theorem 5.2. For every graph G there exists an unique number kg = ko(G) such
that
aM(@) > a?(@) > >a)(@) = aFt)(@) ... = 5(G).
Proposition 5.3. Let V(G) = {v1,v2,...,0,} and d(vy) < d(vz) < -+ < d(vy).
Then
o™ (@) = max {s | dp({v1,v2,...05}) <n—s}=

= max{s | {v1,va,...vs} is dp-small set in G}.

Proof. Let so = max{s | {v1,vs,...vs} be dp-small set in G}. Then so < o™ (G).
Let o™ (G) = r and let {v;,,vi,,...,v;, } be a dp-small set. Since di({v1,vs,...,0v,}) <
di({viy, Vig, ..., v;,.}) it follows that {vi,ve,...,v.} is Jx-small set too. Therefore
(@) =r < s. O

Proposition 5.4. For every positive number k the following inequalities hold

n—A(G) < oa®(G) <n—6(a).

Proof. The left inequality follows from the inequality S(G) > n — A(G) from [1]
and Proposition 5.1. Let r = a(® (G). According to Proposition 5.3, {vi,ve,...,v.} is a
Or-small set. So

§(G) =d(v1) < de({v1,v2,...,0:}) <n—r =n—a®(G),
hence o™ (G) < n — 6(G). O

Remark 5. The inequality a(G) > n — A(G) is not always true. For example,
Ot(Cs) <5H-— A(CS) =3.

Theorem 5.5. Let A C V(G) be a d1-small set of G and s = d1(V(G) \ A). Then

— _ 52
(5.1) 4| < V —+ \/(” 45) +ns — 2@(G)J
Proof.
2eG)= D dlv)=) dv)+ D dw) <|A|(n—|A)+s(n— |A]).
veV(G) vEA veV(G)\A
Solving for |A| we obtain the inequality (5.1). O

Corollary 5.6 ([1]). For every number k

a9(@) < V_ﬁ(G) N wn—i(G»Q G 2@ J S

< {%+\/i+n2—n—2e(G)J.

Proof. According to Proposition 5.1, it is sufficient to prove (5.2) only in the case
k = 1. Let A be a maximal d;-small set, i.e. |A] = oY(G), and s = d; (V(G)\ A).
According to Theorem 5.5 the inequality (5.1) holds. Since the right side of (5.1) is
an increasing function for s and s < A(G) < n — 1, the inequalities (5.2) follow from
(5.1). O

6. a-small sets.

Definition 3 ([1]). Let G be an n-vertex graph and let W C V(G). We say that W
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is an a-small set if

We
by

[71)

1
2w <
veW e (U)
denote the smallest natural number r for which V(G) decomposes into r a-small sets

(@)
The idea for a-small sets is coming from the following Caro-Wey inequality ([3] and
“(@)z ¥
- n — d(v)

We have the proposition
Proposition 6.1 ([1]).

(@) < ¢*(@) < 9(Q).
The following problem is inspired by Proposition 6.1 and Theorem 2.1.
Problem. Is it true that for every graph G there exists natural number kg = ko(G)

such that ¢®(G) = %) (G)?

(1]
2]
3]
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0x-MAJIKN MHO>KECTBA B I'PA®N

Acen Boxuigos, Heasiiko Henos

Heka G e npoct n-ebpxos rpad u W C V(G). Kaspame, ue W e d;-MajIKo MHOXKECTBO,

aKo
/ k
k ZvGWd (U)
=~ < n-|W]|.
[W| - Wi

©*) (@) osnauasa maii-mMankoTO ecrecTBEHO UHCIO T, 3a KoeTo V(G) ce pasnara Ha
7 Sp-Manku MHOMNecTBa, a o™ (G) o3HauaBa MakcHMyMa Ha 6POSI Ha BbPXOBETE Ha
Sk-MasknTe MHOKecTBa Ha (. B Tasu paGora mume momydaBame onenku 3a ol (G) u
©"(@). Twit xaro (@) < w(G) < X(G) 1 (@) < o™ (G), nonyuasame cbuo
OLIEHKH 33 KJIMKOBOTO 1HCJIO w(G), xpoMaTnaHoTo uncio X(G) u 4uciaoro Ha He3aBU-
cumoct a(G).
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