МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2013 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2013
 Proceedings of the Forty Second Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 2-6, 2013

δ_{K}-SMALL SETS IN GRAPHS*

Asen Bojilov, Nedyalko Nenov

Let G be a simple n-vertex graph and $W \subseteq \mathrm{~V}(G)$. We say that W is a δ_{k}-small set if

$$
\sqrt[k]{\frac{\sum_{v \in W} d^{k}(v)}{|W|}} \leq n-|W|
$$

Let $\varphi^{(k)}(G)$ denote the smallest natural number r such that $\mathrm{V}(G)$ decomposes into $r \delta_{k}$-small sets, and let $\alpha^{(k)}(G)$ denote the maximal number of vertices in a $\delta_{k^{-}}$ small set of G. In this paper we obtain bounds for $\alpha^{(k)}(G)$ and $\varphi^{(k)}(G)$. Since $\varphi^{(k)}(G) \leq \omega(G) \leq \chi(G)$ and $\alpha(G) \leq \alpha^{(k)}(G)$, we obtain also bounds for the clique number $\omega(G)$, the chromatic number $\chi(G)$ and the independence number $\alpha(G)$.

1. Introduction. We consider only finite, non-oriented graphs without loops and multiple edges. We shall use the following notations:
$\mathrm{V}(G)$ - the vertex set of G;
$e(G)$ - the number of edges of G;
$\omega(G)$ - the clique number of G;
$\alpha(G)$ - the independence number of G;
$\chi(G)$ - the chromatic number of G;
$d(v)$ - the degree of a vertex v;
$\Delta(G)$ - the maximal degree of G;
$\delta(G)$ - the minimal degree of G.
All undefined notation are from [8].
Definition 1. Let G be an n-vertex graph and $W \subseteq \mathrm{~V}(G)$. We say that W is a small set in the graph G if

$$
d(v) \leq n-|W|, \text { for all } v \in W
$$

With $\varphi(G)$ we denote the smallest natural number r such that $\mathrm{V}(G)$ decomposes into r small sets.

The number $\varphi(G)$ is defined for the first time in [6]. Some properties of $\varphi(G)$ are proved in [6] and [2]. Further $\varphi(G)$ is more thoroughly investigated in [1]. There an effective algorithm for the calculation of $\varphi(G)$ is given. First of all let us note the following bounds for $\varphi(G)$.

[^0]Proposition 1.1 ([1]).

$$
\left\lceil\frac{n}{n-\mathrm{d}_{1}(G)}\right\rceil \leq \varphi(G) \leq\left\lceil\frac{n}{n-\Delta(G)}\right\rceil
$$

where $\mathrm{d}_{1}(G)$ is the average degree of the graph G.
Let G be a graph and $W \subseteq \mathrm{~V}(G)$. We define

$$
\mathrm{d}_{k}(W)=\sqrt[k]{\frac{\sum_{v \in W} d^{k}(v)}{|W|}}, \quad \mathrm{d}_{k}(G)=\mathrm{d}_{k}(\mathrm{~V}(G))
$$

Definition 2. Let G be an n-vertex graph and $W \subseteq \mathrm{~V}(G)$. We say that W is a δ_{k}-small set of G if

$$
\mathrm{d}_{k}(W) \leq n-|W|
$$

With $\varphi^{(k)}(G)$ we denote the minimal number of δ_{k}-sets of G into which $\mathrm{V}(G)$ decomposes.
Remark 1. δ_{1}-small sets are defined in [1] as β-small sets and $\varphi^{(1)}(G)$ is denoted by $\varphi^{\beta}(G)$. Also in [1] it is proven

Proposition 1.2 ([1]).

$$
\varphi^{(1)}(G) \geq\left\lceil\frac{n}{n-\mathrm{d}_{1}(G)}\right\rceil
$$

Further we shall need the following
Proposition 1.3. Let G be an n-vertex graph. Then
(i) Every small set of G is a δ_{k}-small set of G for all natural k.
(ii) Every δ_{k-1}-small set of G is a δ_{k}-small set of G.

Proof. Let W be a small set of G. Then $d(v) \leq n-|W|, \forall v \in W$. Therefore $\mathrm{d}_{k}(W) \leq n-|W|$, i. e. W is a δ_{k}-small set.

The statement in (ii) follows from the inequality $\mathrm{d}_{k-1}(W) \leq \mathrm{d}_{k}(W)(c f .[4,5])$.
Let us note that if G is an r-regular graph then $\mathrm{d}_{k}(W)=r$ for all natural k. So, in this case, every δ_{k}-set of G is a small set of G.

In this paper we shall prove that for a given graph G and for sufficiently large natural k every δ_{k}-small set of G is a small set of G (Theorem 2.1).

Proposition 1.4. Let G be a graph. Then

$$
\varphi^{(1)}(G) \leq \varphi^{(2)}(G) \leq \cdots \leq \varphi^{(k)}(G) \leq \cdots \leq \varphi(G) \leq \omega(G) \leq \chi(G)
$$

Proof. The inequality $\chi(G) \geq \omega(G)$ is obvious. The inequality $\varphi(G) \leq \omega(G)$ is proven in [6] (see also [1]). The inequality $\varphi^{(k)}(G) \leq \varphi(G)$ follows from Proposition 1.3 (i) and the inequlity $\varphi^{(k-1)}(G) \leq \varphi^{(k)}(G)$ follows from Proposition 1.3 (ii).

According to Proposition 1.4 every lower bound for $\varphi^{(k)}(G)$ is a lower bound for $\varphi(G)$, $\omega(G)$ and $\chi(G)$. In this paper we shall obtain a lower bound for $\varphi^{(k)}(G)$ (Theorem 3.2) from which we shall derive new lower bounds for $\varphi(G), \omega(G)$ and $\chi(G)$. As a corollary we shall get and some results for $\varphi(G), \omega(G)$ and $\chi(G)$ already from [1] and [2].

Proposition 1.5.

$$
\left\lceil\frac{n}{n-\mathrm{d}_{1}(G)}\right\rceil \leq \varphi^{(k)}(G) \leq\left\lceil\frac{n}{n-\Delta(G)}\right\rceil
$$

Proof. The right inequality follows from Proposition 1.1 and Proposition 1.4. The left inequality follows from Proposition 1.2 and Proposition 1.4.
2. Strengthening Proposition 1.4.

Theorem 2.1. Let G be a graph. There exists a natural $k_{0}=k_{0}(G)$ such that for all $k \geq k_{0}$ we have
(i) Every δ_{k}-small set of G is a small set of G.
(ii) $\varphi^{(1)}(G) \leq \cdots \leq \varphi^{\left(k_{0}\right)}(G)=\varphi^{\left(k_{0}+1\right)}(G)=\cdots=\varphi(G)$.

Proof. Fix a subset of $\mathrm{V}(G)$, say W, and let $\Delta(W)=\max \{d(v) \mid v \in W\}$. Then $\mathrm{d}_{k}(W) \leq \Delta(W)$ and $\lim _{k \rightarrow \infty} \mathrm{~d}_{k}(W)=\Delta(W)$ (see [4]).

Therefore, since $\mathrm{V}(G)$ has only finitely many subsets, there exists k_{0} such that for arbitrary $W \subseteq \mathrm{~V}(G)$

$$
\begin{equation*}
\Delta(W)-\frac{1}{2} \leq \mathrm{d}_{k}(W), \text { if } k \geq k_{0} \tag{2.1}
\end{equation*}
$$

Let us suppose now that W is a δ_{k}-small set of G and $k \geq k_{0}$, i.e.

$$
\begin{equation*}
\mathrm{d}_{k}(W) \leq n-|W| \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2) we have that

$$
\Delta(W)-\frac{1}{2} \leq n-|W|
$$

Since $\Delta(W)$ and $n-|W|$ are integers, from the last inequality we derive that $\Delta(W) \leq$ $n-|W|$. From the definition of $\Delta(W)$ it follows $d(v) \leq n-|W|$ for all $v \in W$, i. e. W is a small set. Thereby (i) is proven. The statement (ii) obviously follows from (i).
3. Lower bounds for $\mathrm{d}_{k}(G)$ and $\varphi^{(k)}(G)$.

Lemma 3.1. Let $\beta_{1}, \beta_{2}, \ldots, \beta_{r} \in[0,1]$ and $\beta_{1}+\beta_{2}+\cdots+\beta_{r}=r-1$. Then for all positive integer $k \leq r$

$$
\begin{equation*}
\sum_{i=1}^{r}\left(1-\beta_{i}\right) \beta_{i}^{k} \leq\left(\frac{r-1}{r}\right)^{k} \tag{3.1}
\end{equation*}
$$

Proof. The case $k=r$ is proven in [1]. That is why we suppose that $k \leq r-1$. For all natural n we define

$$
S_{n}=\beta_{1}^{n}+\beta_{2}^{n}+\cdots+\beta_{r}^{n} .
$$

We can rewrite the inequality (3.1) in following way

$$
\begin{equation*}
S_{k}-S_{k+1} \leq\left(\frac{r-1}{r}\right)^{k} \tag{3.2}
\end{equation*}
$$

Since

$$
\frac{r-1}{r}=\frac{S_{1}}{r} \leq \sqrt[k]{\frac{S_{k}}{r}} \leq \sqrt[k+1]{\frac{S_{k+1}}{r}} \quad(\text { cf. }[4,5])
$$

we have

$$
\begin{equation*}
S_{k+1} \geq \frac{1}{\sqrt[k]{r}} S_{k}^{\frac{k+1}{k}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{k} \geq \frac{(r-1)^{k}}{r^{k-1}} \tag{3.4}
\end{equation*}
$$

From (3.3) we see that

$$
\begin{equation*}
S_{k}-S_{k+1} \leq S_{k}-\frac{1}{\sqrt[k]{r}} S_{k}^{\frac{k+1}{k}} \tag{3.5}
\end{equation*}
$$

We consider the function

$$
f(x)=x-\frac{1}{\sqrt[k]{r}} x^{\frac{k+1}{k}}, \quad x>0
$$

According to (3.2) and (3.5) it is sufficient to prove that

$$
f\left(S_{k}\right) \leq\left(\frac{r-1}{r}\right)^{k}
$$

From $f^{\prime}(x)=1-\frac{k+1}{k \sqrt[k]{r}} x^{\frac{1}{k}}$, it follows that $f^{\prime}(x)$ has unique positive root

$$
x_{0}=\frac{r k^{k}}{(k+1)^{k}}
$$

and $f(x)$ decreases in $\left[x_{0}, \infty\right)$. According to (3.4), $S_{k} \geq \frac{(r-1)^{k}}{r^{k-1}}$. Since $k \leq r-1$, $\frac{(r-1)^{k}}{r^{k-1}} \geq x_{0}$. Therefore

$$
f\left(S_{k}\right) \leq f\left(\frac{(r-1)^{k}}{r^{k-1}}\right)=\left(\frac{r-1}{r}\right)^{k}
$$

Theorem 3.2. Let G be an n-vertex graph and

$$
\mathrm{V}(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{r}, \quad V_{i} \cap V_{j}=\emptyset, \quad i \neq j
$$

where V_{i} are δ_{k}-small sets. Then for all integer $k \leq r$ the following inequalities are satisfied
(i) $\mathrm{d}_{k}(G) \leq \frac{n(r-1)}{r}$;
(ii) $r \geq \frac{n}{n-\mathrm{d}_{k}(G)}$.

Proof. Let $n_{i}=\left|V_{i}\right|, i=1,2, \ldots, r$. Then

$$
\sum_{v \in \mathrm{~V}(G)} d^{k}(v)=\sum_{i=1}^{r} \sum_{v \in V_{i}} d^{k}(v) \leq \sum_{i=1}^{r} n_{i}\left(n-n_{i}\right)^{k}
$$

Let $\beta_{i}=1-\frac{n_{i}}{n}, i=1,2, \ldots, r$. Then

$$
\sum_{v \in \mathrm{~V}(G)} d^{k}(v) \leq n^{k+1} \sum_{i=1}^{r} \beta_{i}\left(1-\beta_{i}\right)^{k}, \quad k \geq r
$$

The inequality (i) follows from the last inequality and Lemma 3.1. Solving the inequality (i) for r, we derive the inequality (ii).
4. Some corollaries from Theorem 3.2.

Corollary 4.1. Let G be an n-vertex graph and let k and s be positive integers such that $k \leq \varphi^{(s)}(G)$. Then
192
(i) $\mathrm{d}_{k}(G) \leq \frac{\left(\varphi^{(s)}(G)-1\right) n}{\varphi^{(s)}(G)} \leq \frac{(\varphi(G)-1) n}{\varphi(G)} \leq \frac{(\omega(G)-1) n}{\omega(G)} \leq \frac{(\chi(G)-1) n}{\chi(G)}$;
(ii) $\varphi^{(s)}(G) \geq \frac{n}{n-\mathrm{d}_{k}(G)}$.

Proof. Let $\varphi^{(s)}(G)=r$ and $\mathrm{V}(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{r}, V_{i} \cap V_{j}=\emptyset$, where V_{i} are δ_{k}-small sets. Then the left inequality in (i) follows from Theorem 3.2 (i). The other inequalities in (i) follow from the inequalities $\varphi^{(s)}(G) \leq \varphi(G) \leq \omega(G) \leq \chi(G)$. The inequality (ii) follows from Theorem 3.2 (ii).

Remark 2. In the case $k=s=1$, Corollary 4.1 is proven in [1] (cf. Theorem 6.3 (i) and Theorem 6.2 (ii)).

Corollary 4.2. Let G be an n-vertex graph. Then for all integer $s \geq 2$,

$$
\varphi^{(s)}(G) \geq \frac{n}{n-\mathrm{d}_{2}(G)}
$$

Proof. If $\varphi^{(2)}(G)=1$ then $\mathrm{E}(G)=\emptyset$, i. e. $G=\bar{K}_{n}$ and the inequality is obvious. If $\varphi^{(2)}(G) \geq 2$ then $\varphi^{(s)}(G) \geq 2$ because $s \geq 2$. Therefore Corollary 4.2 follows from Corollary 4.1 (ii).

Corollary 4.3 ([2]). For every n-vertex graph

$$
\varphi(G) \geq \frac{n}{n-\mathrm{d}_{2}(G)}
$$

Proof. This inequality follows from Corollary 4.2 because $\varphi^{(s)}(G) \leq \varphi(G)$.
Corollary 4.4 ([1]). Let G be an n-vertex graph. Then for every positive integer $k \leq \varphi(G)$

$$
\varphi(G) \geq \frac{n}{n-\mathrm{d}_{k}(G)}
$$

Proof. According to Theorem 2.1 there exists a natural number s such that $\varphi(G)=$ $\varphi^{(s)}(G)$. Since $k \leq \varphi^{(s)}(G)$ from Corollary 4.1 (ii) we derive

$$
\varphi(G)=\varphi^{(s)}(G) \geq \frac{n}{n-\mathrm{d}_{k}(G)}
$$

Corollary 4.5. Let G be an n-vertex graph. Then for every integer $s \geq 3$

$$
\varphi^{(s)}(G) \geq \frac{n}{n-\mathrm{d}_{3}(G)}
$$

Proof. Since $s \geq 3, \varphi^{(s)}(G) \geq \varphi^{(3)}(G)$. Therefore it is sufficient to prove the inequality

$$
\begin{equation*}
\varphi^{(3)}(G) \geq \frac{n}{n-\mathrm{d}_{3}(G)} \tag{4.1}
\end{equation*}
$$

If $\varphi^{(3)}(G) \geq 3$ then (4.1) follows from Corollary 4.1 (ii). If $\varphi^{(3)}(G)=1$ then the inequality (4.1) is obvious because $\mathrm{d}_{3}(G)=0$. Let $\varphi^{(3)}(G)=2$ and $\mathrm{V}(G)=V_{1} \cup V_{2}$, where V_{i}, $i=1,2$ are δ_{3}-small sets. Let $n_{i}=\left|V_{i}\right|, i=1,2$. Then

$$
\begin{align*}
\sum_{v \in \mathrm{~V}(G)} d^{3}(v)=\sum_{v \in V_{1}} d^{3}(v) & +\sum_{v \in V_{2}} d^{3}(v) \leq \tag{4.2}\\
& n_{1}\left(n-n_{1}\right)^{3}+n_{2}\left(n-n_{2}\right)^{3}=n_{1} n_{2}\left(n^{2}-2 n_{1} n_{2}\right) \leq \frac{n^{4}}{8} .
\end{align*}
$$

Therefore $\mathrm{d}_{3}(G) \leq \frac{n}{2}$ and we obtain

$$
\frac{n}{n-\mathrm{d}_{3}(G)} \leq 2=\varphi^{(3)}(G)
$$

Since $\varphi(G) \geq \varphi^{(3)}(G)$ from Corollary 4.5 we derive
Corollary 4.6 ([1]). For every n-vertex graph G

$$
\varphi(G) \geq \frac{n}{n-\mathrm{d}_{3}(G)}
$$

Corollary 4.7. Let G be an n-vertex graph and $\varphi^{(4)}(G) \neq 2$. Then for every integer $s \geq 4$,

$$
\varphi^{(s)}(G) \geq \frac{n}{n-\mathrm{d}_{4}(G)}
$$

Proof. Since $\varphi^{(s)}(G) \geq \varphi^{(4)}(G)$ for $s \geq 4$, it sufficient to prove the inequality

$$
\begin{equation*}
\varphi^{(4)}(G) \geq \frac{n}{n-\mathrm{d}_{4}(G)} \tag{4.3}
\end{equation*}
$$

If $\varphi^{(4)}(G) \geq 4$ the inequality (4.3) follows from Corollary 4.1 (ii). If $\varphi^{(4)}(G)=1$ the inequality (4.3) is obvious because $\mathrm{d}_{4}(G)=0$. It remains to consider the case $\varphi^{(4)}(G)=3$. Let $\mathrm{V}(G)=V_{1} \cup V_{2} \cup V_{3}$, where V_{i}, are δ_{4}-small sets and let $n_{i}=\left|V_{i}\right|, i=1$, 2, 3. Then

$$
\begin{align*}
\sum_{v \in \mathrm{~V}(G)} d^{4}(v)=\sum_{v \in V_{1}} d^{4}(v)+\sum_{v \in V_{2}} d^{4}(v) & +\sum_{v \in V_{3}} d^{4}(v) \leq \tag{4.4}\\
& n_{1}\left(n-n_{1}\right)^{4}+n_{2}\left(n-n_{2}\right)^{4}+n_{3}\left(n-n_{3}\right)^{4} .
\end{align*}
$$

Denoting $\beta_{i}=1-\frac{n_{i}}{n}, i=1,2,3$ we receive

$$
\sum_{v \in \mathrm{~V}(G)} d^{4}(v) \leq n^{4}\left(\sum_{i=1}^{3}\left(1-\beta_{i}\right) \beta_{i}^{4}\right)
$$

Since $\sum_{i=1}^{3}\left(1-\beta_{i}\right) \beta_{i}^{4} \leq \frac{2}{3}$ (see the proof of Theorem 5.4 (iii) in [1]) we take

$$
\mathrm{d}_{4}(G) \leq \frac{2}{3}=\frac{\varphi^{(4)}(G)-1}{\varphi^{(4)}(G)}
$$

Solving the last equation for $\varphi^{(4)}(G)$ we obtain (4.3).
Corollary 4.8. Let G be an n-vertex graph and $\varphi^{(4)}(G) \neq 2$. Then

$$
\begin{equation*}
\varphi(G) \geq \frac{n}{n-\mathrm{d}_{4}(G)} \tag{4.5}
\end{equation*}
$$

Remark 3. In [1] it is proven that the inequlity (4.3) is held if $\varphi(G) \neq 2$.
5. Maximal $\boldsymbol{\delta}_{\boldsymbol{k}}$-sets. We denote the maximal number of vertices in a δ_{k}-set of G by $\alpha^{(k)}(G) . S(G)$ is the maximal number of vertices of small sets of G. It is easilly seen that Proposition 1.3 yields.

Proposition 5.1. For every graph G

$$
\alpha^{(1)}(G) \geq \alpha^{(2)}(G) \geq \cdots \geq \alpha^{(k)}(G) \geq \cdots \geq S(G) \geq \alpha(G)
$$

Remark 4. Note that $\alpha^{(1)}(G)$ is denoted in [1] by $S^{\alpha}(G)$.

From Theorem 2.1 we have
Theorem 5.2. For every graph G there exists an unique number $k_{0}=k_{0}(G)$ such that

$$
\alpha^{(1)}(G) \geq \alpha^{(2)}(G) \geq \cdots \geq \alpha^{\left(k_{0}\right)}(G)=\alpha^{\left(k_{0}+1\right)}(G) \cdots=S(G)
$$

Proposition 5.3. Let $\mathrm{V}(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \cdots \leq d\left(v_{n}\right)$. Then

$$
\begin{aligned}
\alpha^{(k)}(G) & =\max \left\{s \mid \mathrm{d}_{k}\left(\left\{v_{1}, v_{2}, \ldots v_{s}\right\}\right) \leq n-s\right\}= \\
& =\max \left\{s \mid\left\{v_{1}, v_{2}, \ldots v_{s}\right\} \text { is } \delta_{k} \text {-small set in } G\right\} .
\end{aligned}
$$

Proof. Let $s_{0}=\max \left\{s \mid\left\{v_{1}, v_{2}, \ldots v_{s}\right\}\right.$ be δ_{k}-small set in $\left.G\right\}$. Then $s_{0} \leq \alpha^{(k)}(G)$. Let $\alpha^{(k)}(G)=r$ and let $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{r}}\right\}$ be a δ_{k}-small set. Since $\mathrm{d}_{k}\left(\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}\right) \leq$ $\mathrm{d}_{k}\left(\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{r}}\right\}\right)$ it follows that $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is δ_{k}-small set too. Therefore $\alpha^{(k)}(G)=r \leq s_{0}$.

Proposition 5.4. For every positive number k the following inequalities hold

$$
n-\Delta(G) \leq \alpha^{(k)}(G) \leq n-\delta(G)
$$

Proof. The left inequality follows from the inequality $S(G) \geq n-\Delta(G)$ from [1] and Proposition 5.1. Let $r=\alpha^{(k)}(G)$. According to Proposition 5.3, $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is a δ_{k}-small set. So

$$
\delta(G)=d\left(v_{1}\right) \leq \mathrm{d}_{k}\left(\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}\right) \leq n-r=n-\alpha^{(k)}(G)
$$

hence $\alpha^{(k)}(G) \leq n-\delta(G)$.
Remark 5. The inequality $\alpha(G) \geq n-\Delta(G)$ is not always true. For example, $\alpha\left(C_{5}\right)<5-\Delta\left(C_{5}\right)=3$.

Theorem 5.5. Let $A \subseteq \mathrm{~V}(G)$ be a δ_{1}-small set of G and $s=\mathrm{d}_{1}(\mathrm{~V}(G) \backslash A)$. Then

$$
\begin{equation*}
|A| \leq\left\lfloor\frac{n-s}{2}+\sqrt{\frac{(n-s)^{2}}{4}+n s-2 e(G)}\right\rfloor \tag{5.1}
\end{equation*}
$$

Proof.

$$
2 e(G)=\sum_{v \in \mathrm{~V}(G)} d(v)=\sum_{v \in A} d(v)+\sum_{v \in \mathrm{~V}(G) \backslash A} d(v) \leq|A|(n-|A|)+s(n-|A|) .
$$

Solving for $|A|$ we obtain the inequality (5.1).
Corollary 5.6 ([1]). For every number k

$$
\begin{align*}
\alpha^{(k)}(G) & \leq\left\lfloor\frac{n-\Delta(G)}{2}+\sqrt{\frac{(n-\Delta(G))^{2}}{4}+n \Delta(G)-2 e(G)}\right\rfloor \leq \tag{5.2}\\
& \leq\left\lfloor\frac{1}{2}+\sqrt{\frac{1}{4}+n^{2}-n-2 e(G)}\right\rfloor
\end{align*}
$$

Proof. According to Proposition 5.1, it is sufficient to prove (5.2) only in the case $k=1$. Let A be a maximal δ_{1}-small set, i.e. $|A|=\alpha^{(1)}(G)$, and $s=\mathrm{d}_{1}(\mathrm{~V}(G) \backslash A)$. According to Theorem 5.5 the inequality (5.1) holds. Since the right side of (5.1) is an increasing function for s and $s \leq \Delta(G) \leq n-1$, the inequalities (5.2) follow from (5.1).
6. α-small sets.

Definition 3 ([1]). Let G be an n-vertex graph and let $W \subseteq \mathrm{~V}(G)$. We say that W
is an α-small set if

$$
\sum_{v \in W} \frac{1}{n-d(v)} \leq 1
$$

We denote the smallest natural number r for which $\mathrm{V}(G)$ decomposes into $r \alpha$-small sets by $\varphi^{\alpha}(G)$.

The idea for α-small sets is coming from the following Caro-Wey inequality ([3] and [7])

$$
\omega(G) \geq \sum_{v \in \mathrm{~V}(G)} \frac{1}{n-d(v)}
$$

We have the proposition
Proposition 6.1 ([1]).

$$
\varphi^{(1)}(G) \leq \varphi^{\alpha}(G) \leq \varphi(G)
$$

The following problem is inspired by Proposition 6.1 and Theorem 2.1.
Problem. Is it true that for every graph G there exists natural number $k_{0}=k_{0}(G)$ such that $\varphi^{\alpha}(G)=\varphi^{\left(k_{0}\right)}(G)$?

REFERENCES

[1] A. Bojllov, Y. Caro, A. Hansberg, N. Nenov. Partitions of graphs into small and large sets. Discrete Applied Mathematics (to appear), arXiv:1205.1727.
[2] A. Bojllov, N. Nenov. An inequality for generalized chromatic graphs. Math. and Education in Math., 41 (2012), 143-147.
[3] Y. Caro. New results on the independence number. Tech. report, Tel-Aviv University, 1979.
[4] G. H. Hardy, J. F. Litelewood, G. Polya. Inequalities, 1934.
[5] N. KhadzhiIvanov. Extremal theory of graphs. Sofia, Sofia University, 1990, (in Bulgarian).
[6] N. Nenov. Improvement of graph theory Wei's inequlity. Math. and Education in Math., 35 (2006), 191-194.
[7] V. K. Wer. A lower bound on the stability number of a simple graph. Technical Memorandum 81-11217-9, Bell Laboratories, Murray Hill, NJ, 1981.
[8] D. B. West. Introduction to graph theory, second ed.. Prentice Hall, Inc., Upper Saddle River, NJ, 2001, xx +588 pp.

Asen Bojilov
Nedyalko Nenov
Faculty of Mathematics and Informatics
University of Sofia
5, J. Bourchier Blvd
1164 Sofia, Bulgaria
e-mail: bojilov@fmi.uni-sofia.bg
nenov@fmi.uni-sofia.bg

δ_{K}-МАЛКИ МНОЖКЕСТВА В ГРАФИ

Асен Божилов, Недялко Ненов

Нека G е прост n-върхов граф и $W \subseteq \mathrm{~V}(G)$. Казваме, че W е δ_{k}-малко множество, ако

$$
\sqrt[k]{\frac{\sum_{v \in W} \mathrm{~d}^{k}(v)}{|W|}} \leq n-|W|
$$

$\varphi^{(k)}(G)$ означава най-малкото естествено число r, за което $\mathrm{V}(G)$ се разлага на $r \delta_{k}$-малки множества, а $\alpha^{(k)}(G)$ означава максимума на броя на върховете на δ_{k}-малките множества на G. В тази работа ние получаваме оценки за $\alpha^{(k)}(G)$ и $\varphi^{(k)}(G)$. Тъй като $\varphi^{(k)}(G) \leq \omega(G) \leq \chi(G)$ и $\alpha(G) \leq \alpha^{(k)}(G)$, получаваме също оценки за кликовото число $\omega(G)$, хроматичното число $\chi(G)$ и числото на независимост $\alpha(G)$.

[^0]: *2000 Mathematics Subject Classification: Primary 05C35.
 Key words: clique number, degree sequence.
 This work was supported by the Scientific Research Fund of the St. Kliment Ohridski Sofia University 2013.

