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This paper deals with the embedding conditions of a universal topological algebra in
some pseudocompact or bounded universal topological algebra.

1. Introduction. This paper is a continuation of [1], [6], [7], [4] and [5]. We use the
terminology from [2, 8, 5]. Any space is considered to be a Hausdorff space. By clXA we
denote the closure of a set A in X .

Let {En : n ∈ N = {0, 1, 2, 3, . . .}} be a sequence of pairwise disjoint discrete spaces.
The discrete sum E = ⊕{En : n ∈ N} is the signature of universal E-algebras.

A universal algebra of a signature E or an E-algebra is a family {G, enG : n ∈ N},
where G is a non-empty space and enG : En × Gn → G is a mapping for any n ∈ N.
Subalgebras, homomorphisms, isomorphisms and Cartesian product of E-algebras are
defined in the traditional way [5].

A topological universal algebra of a signature E or a topological E-algebra is a family
{G, enG : n ∈ N}, where G is a non-empty space and enG : En ×Gn → G is a continuous
mapping for any n ∈ N.

For each n ∈ N denote by expo(n) the family of all non-empty subsets of the set
{1, 2, . . . , n}. If n ≥ 1, L ∈ expo(n) and a = (a1, . . . , an) ∈ Gn, then GL

a = {(x1, . . . , xn) ∈
Gn : xi = ai for each i ∈ {1, . . . , n} \ L. If L = {1, . . . , n}, then GL

a = Gn for each
a ∈ Gn.

Fix a signature E. For each L ∈ expo(n) denote by EnL some subspace of the
space En. If n = 0 and L ∈ expo(n), then E0L = E0. We put E = {EnL : n ∈
N, L ∈ expo(n)}. A topological E-algebra is a family {G, enG : n ∈ N}, where G is a
non-empty space, enG : En × Gn → G is a mapping for any n ∈ N and the mapping
enLG = enG|(EnL × GL

a ) : EnL × GL
a −→ G is continuous for all n ∈ N and L ∈ expo(n).

A subalgebra of a topological E-algebra is a topological E-algebra.
The Cartesian product of topological E-algebras is a topological E-algebra.

Example 1.1. Let E0 = {0}, E1 = {−1}, E2 = {·} and E = E0 ∪ E1 ∪ E2. The set
E is the signature of groups. Consider the following classes of groups with topologies:

1.1.1. Let E1{1} = ∅, E2{1} = E2{2} = E2 and E2{1,2} = ∅. If a group G with a
topology is a topological E-algebra, then G is called a semitopological group.
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1.1.2. Let E1{1} = ∅ and E2{1} = E2{2} = E2{1,2} = E2. If a group G with a
topology is a topological E-algebra, then G is called a paratopological group.

1.1.3. Let E1{1} = ∅, E2{1} = E2 and E2{2} = E2{1,2} = ∅. If a group G with a
topology is a topological E-algebra, then G is called a right topological group.

1.1.4. Let E1{1} = ∅, E2{2} = E2 and E2{1} = E2{1,2} = ∅. If a group G with a
topology is a topological E-algebra, then G is called a leftt topological group.

Fix an infinite cardinal number τ . A space X is called τ-pseudocompact if it is
completelly regular and for any continuous mapping f : X −→ Y into a space Y of
weight w(Y ) ≤ τ the subspace f(X) is compact.

ℵ0-pseudocompact spaces are called pseudocompact spaces. A space X is pseudo-
compact if and only if any continuous function on X is bounded [8].

A τ -pseudocompact space of weight ≤ τ is a compact space. Hence a space is compact
if and only if it is τ -pseudocompact for each cardinal τ .

A subset L of a space X is called a Gτ -set if it is an intersection of τ open subsets of
the space X .

A subset Y of a space X is Gτ -dense in X if Y ∩ ⇁ H 6= ∅ for any non-empty Gτ -set
H of the space X .

A space X is τ -pseudocompact if and only if X is Gτ -dense in βX (see [8]) for τ = ℵ0).
We say that the space X is pseudo-τ -compact if it is completely regular and there

exists a dense subspace Y such that the set clXL is compact for each subset L ⊆ Y of
the cardinality |L| ≤ τ .

Any pseudo-τ -compact space is τ -pseudocompact.
Proposition 1.2 ([4], Lemma 5). A Cartesian product of pseudo-τ-compact spaces

is pseudo-τ-compact.

2. Precompact topological E-algebras. Fix an infinite cardinal τ , a signature
E = ⊕{En : n ∈ N} and a family E = {EnL : n ∈ N, L ∈ expo(n)}.

A topological E-algebra A is called a precompact E-algebra if A is a subalgebra of some
Hausdorff compact E-algebra.

Theorem 2.1. Let A be a precompact topological E-algebra and A is a subalgebra
of a Hausdorff compact E-algebra B. For any set L of cardinality > τ in the compact
E-algebra BL there exists some pseudo-τ-compact subalgebra G which contains A as a
closed subalgebra.

Proof. We put Bλ = B for any λ ∈ L. For each x ∈ A we put ϕ(x) = (xλ ∈ Bλ :
λ ∈ L), where xλ = x for each λ ∈ L. Then ϕ is an isomorphic embedding of A in BL.
We identify A with ϕ(A). Thus we can assume that A is a topological E-subalgebra of
the compact E-algebra BL.

Fix a point a ∈ A. We put G = {(xλ : λ ∈ L) ∈ BL : |{λ ∈ L : xλ 6∈ A}| ≤ τ} and
G1 = {(xλ : λ ∈ L) ∈ BL : |{λ ∈ L : xλ 6= a}| ≤ τ}.

By construction, we have:
P1. A ⊆ G ⊆ BL, A is a closed subspace of the space G and G1 ⊆ G ⊆ BL.
P2. G is a subalgebra of the algebra BL.
P3. G1 is a dense subspace of the spaces G and BL.
P4. If Z ⊆ G1 and |Z| ≤ τ , then clG1

L is a compact subset of G1.
Thus G is a pseudo-τ -compact subalgebra of the algebra BL and the algebra A is a

closed subalgebra of G. The proof is complete. �
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In the case of topological groups and rings and for τ = ℵ0 the construction of the
algebra G in the proof of the above theorem was proposed by M. Urssul [10, 11]. For
topological E-algebras this construction was used in [4].

If E = ∅, then any space is a topological E-algebra. Thus from Theorem 2.1 there
follow:

Corollary 2.2. For any infinite cardinal τ each completely regular space is a closed
subspace of some pseudo-τ-compact space.

Corollary 2.3 (N. Noble [9]). Each completely regular space is a closed subspace of
some pseudocompact space.

3. Bounded topological E-algebras. Fix a signature E = ⊕{En : n ∈ N} and a
family E = {EnL : n ∈ N, L ∈ expo(n)}.

Let G be a topological E-algebra. Let n ∈ N, n ≥ 1, 1 ≤ i ≤ n, a = (a1, . . . , an) ∈ Gn

and ω ∈ En. Then the mapping ω(a,i) : G −→ G, where ω(a,i)(x) = enG(ω, a1, . . . , ai−1x,
ai+1, . . . , an) for every x ∈ G is called a translation on G. This translation is called
a continuous translation if for some L ∈ expo(n) we have ω ∈ EnL and i ∈ L. The
identical mapping ιG(x) = x is also a continuous translation. If n = 0 and ω ∈ E0G,
then the constant mapping ω0G(x) = e0G(ω, G0) is also called a continuous translation.
The composition of a finite number of continuous translations is called a continuous
translation too. Any continuous translation is a continuous mapping of G into G.

A mapping t : G −→ G is called an admissible translation if there exist n ∈ N, n ≥ 1,
L ∈ expo(n), a ∈ Gn and ω ∈ EnL such that:

– t = ω(a,i) for some i ∈ L;
– for b ∈ Hn and any j ∈ L the translation ω(a,j) is a one-to-one continuous mapping

of G onto G.
A topological E-algebra A is called a bounded E-algebra if there exists a point b ∈ G

and for each neighbourhood U of the point b in the space G there exist n, m ≥ 1,
L ∈ expo(n), i ∈ L, a1 = (a(1,1), . . . , a(1,n)), . . . , am = (a(m,1), . . . , a(m,n)) ∈ Gn and
ω ∈ En such that G = ∪{tj(U) : j ≤ n} and tj = ω(aj ,i) is an admissible translation for
each j ≤ m . The point b is called the fixed point of the topological E-algebra G.

A topological E-algebra A is called a totally bounded E-algebra if for all n ≥ 2, ω ∈ L ∈
expo(n) and i ∈ L there exists a point b = b(ω, i) ∈ G such that for each neighbourhood
U of the point b in the space G there exist m ≥ 1 and a1 = (a(1,1), . . . , a(1,n), . . . , am =
(a(m,1), . . . , a(m,n) ∈ Gn for which G = ∪{ω(aj,i)(U) : j ≤ n} and tj = ω(aj ,i) is an
admissible translation for each j ≤ m .

Example 3.1. Let E = E0 ∪ E1 ∪ E2 and E2 = {ω2}. Then any E-algebra is a
groupoid with 0-ary and 1-ary operators. If E2{1} = E2{2} = E2 and E2{1,2} = ∅ and a
groupoid G with a topology is a topological E-algebra, then G is called a semitopological
groupoid. If E2{1} = E2{2} = E2{1,2} = E2 and a groupoid G with a topology is a
topological E-algebra, then G is called a paratopological groupoid. If E2{1} = E2 and
E2{2} = E2{1,2} = ∅ and a groupoid G with a topology is a topological E-algebra, then G
is called a right topological groupoid. A groupoid G with topology is a left (respectively,
right) totally bounded groupoid if G is a left (respectively, right) topological groupoid
and a bounded topological E-algebra for respectively E.

In particular, a group G with topology:
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– is a left (respectively, right) totally bounded groupoid if G is a left (respectively,
right) topological group and for every neighbourhood U of the identity e there exists a
finite subset L of G such that LU = G (respectively, UL = G);

– totally bounded if G is a semitopological topological group and for every neigh-
bourhood U of the identity e there exists a finite subset L of G such that LU = G and
UL = G.

For topological groups the conditions of precompactness, boundedness, total bound-
edness, left total boundedness and right total boundedness are equivalent.

Example 3.2. Let A be a topological multiplicative group and D = {0, 1}. On
G = A × D consider the following topology and operations ω0, ω1, ω2:

– The subspace A×{1} of G is discrete and the neighbourhood of the points (x, 0) in
G is of the form (U × D) \ {0, 1}, where U is a neighbourhood of the point x in A. The
space G is Alexandroff duplicate of the space A.

– ω2((x, 0), (y, i)) = (xy, i) and ω2((x, 1), (y, i)) = (x, 1) for all x, y ∈ A and i ∈ D.
– ω1(x, i) = (x−1, i) for all x ∈ A and i ∈ D.
– ω0 is a 0-ary operation and ω0(G

0) = (e, 0) where e is the unity of the group A.
The element b = (e, 0) is the unity of the semitopological semigroup G. The semigroup

G is left totally bounded if and only if A is a totally bounded topological group. The
semigroup G is right totally bounded if and only if A is a finite group.

Example 3.3. Let K be the group of reals as the Sorgenfrey line ([8], Example 1.2.2)
with the binary operation ω1(x, y) = x+y, Z be the discrete subgroup of K, B = K/Z be
the quotient group which is homeomorphic with the subspace [0, 1) = {x ∈ K : 0 ≤ x < 1}
of K. The spaces K and B are homeeomorphic, K is a non totally bounded paratopo-
logical Abelian group and B is a totally bounded paratopological Abelian group. Hence
on K there exists a binary operation ω2(x, y) such that (K, ω2) is a totally bounded
paratopological Abelian group. Obviously, K and B are not topological groups. Since
any semitopological precompact group and any paratopological pseudocompact group is
a topological group ([2], Theorem 2.4.1), B is not a subgroup of some precompact semi-
topological group or of a pseudocompact paratopological group. If E = E2 = {ω1, ω2},
then K is a bounded non totally bounded topological E-algebra.

Example 3.4. Let E be a signature and G be a non-empty space. If n ≥ 1 and
ω ∈ En, then we put ω(x) = x1 for each point x = (x1, . . . , xn) ∈ Gn. If G is a compact
space, then G is a precompact non-bounded topological E-algebra. A compact E-algebra
without admissible translations is precompact and non-bounded.

Thus the notions of precompactness, boundedness and totally boundedness are dis-
tinct. We should mention that closed subgroups of totally bounded Hausdorff paratopo-
logical groups were studied by T. Banakh and S. Ravsky [3].

Theorem 3.5.Let A be a topological E-algebra and A be subalgebra of a bounded E-
algebra B. For any uncountable set S in the bounded topological E-algebra BS there exists
some bounded subalgebra G which contains A as a closed subalgebra. If the topological E-
algebra B is totally bounded, then the topological E-algebras BS and G are totally bounded
too.

Proof. We put Bλ = B for any λ ∈ S. For each x ∈ A we put ϕ(x) = (xλ ∈ Bλ :
λ ∈ S), where xλ = x for each λ ∈ S. Then ϕ is an isomorphic embedding of A in BS .
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We identify A with ϕ(A). Thus we can assume that A is a topological E-subalgebra of
the E-algebra BS .

Let b ∈ A be the fixed point of A. We put G = {(xλ : λ ∈ S) ∈ BS : |{λ ∈ S : xλ 6∈
A}| ≤ τ} and G1 = {(xλ : λ ∈ L) ∈ BS : |{λ ∈ S : xλ 6= a}| ≤ τ}.

By construction, we have:

Claim 1. A ⊆ G ⊆ BS, A is a closed subspace of the space G and G1 ⊆ G ⊆ BS.

Claim 2. G is a subalgebra of the algebra BS .

Claim 3. G1 is a dense subspace of the spaces G and BS.

Now we mention the next assertion.

Claim 4. G and BS are bounded topological E-algebras.

Let c = (bλ = b : λ ∈ L) ∈ G1.
Fix a neighbourhood V of the point c in the space BL. There exists a neighbourhood

U of the point b in B and a finite subset M = {λ1, . . . , λk} ⊆ M such that Π{Uλ : λ ∈
L} ⊆ V , where Uλ = U for each λ ∈ M and Uλ = B for each λ ∈ S \ M .

Since the topological E-algebra B is bounded, there exist n, m ≥ 1, L ∈ expo(n),
i ∈ L, a1 = (a(1,1), . . . , a(1,n)), . . . , am = (a(m,1), . . . , a(m,n)) ∈ Gn and ω ∈ En such that
B = ∪{tj(U) : j ≤ n} and tj = ω(aj ,i) is an admissible translation for each j ∈ L.

Let H = BS and C = {a(i,j) : i ≤ m, j ≤ n}. If a ∈ Hn, i ∈ L, then:
– ω(a,i) : H −→ H is a homeomorphism;
– if a ∈ G, then ω(a,i)(G) = G;
– if a ∈ A, then ω(a,i)(A) = A.
Let Hi = H for each i ≤ n. The point a = (as : s ∈ S) ∈ H is (M, C)-marked if

as ∈ C for s ∈ M and as = b for s ∈ S \M . A point x = (x1, . . . , xn) ∈ Hn is (M, C, L)-
marked if xi is (M, C)-marked for each i ≤ n. The set Z of all (M, C, L)-marked points
is finite. By construction, Z ⊆ Gn. We affirm that H = ∪{ω(a, i)(U) : a ∈ Z} and
G = ∪{ω(a, i)(U ∩ G) : a ∈ Z}. Fix y = (ys : s ∈ S) ∈ H . If s ∈ M , then there
exist zs = (z1s, . . . , zns) ∈ Bn and xs ∈ U such that ω(zs,i)(xs) = ys and zjs ∈ C for
all j ≤ n. If s ∈ S \ M , then zs = (b, . . . , b) ∈ Bn and there exists xs ∈ B such that
ω(zs,i)(xs) = ys. If x = (xs : s ∈ S) ∈ H and z = (zs : s ∈ S) ∈ Hn, then z ∈ Z, x ∈ V
and ω(z,i)(x) = y. If y ∈ G, then x ∈ G too. Therefore H = ∪{ω(a, i)(U) : a ∈ Z} and
G = ∪{ω(a, i)(U ∩ G) : a ∈ Z}. Claim 4 is proven. The proof of the following Claim is
similar.

Claim 5. If B is totally bounded, then G and BS are totally bounded topological
E-algebras.

Thus G is a desired topological E-algebra G. The proof is complete.

Corollary 3.6. Let A be a paratopological group and A be a subalgebra of a totally
bounded paratopological group B. For any uncountable set S in the totally bounded topo-
logical paratopological group BS there exists some totally bounded paratopological group
G which contains A as a closed subgroup.

Corollary 3.7. Let A be a semitopological group and A be a subalgebra of a totally
bounded semitopological group B. For any uncountable set S in the totally bounded topo-
logical semitopological group BS there exists some totally bounded semitopological group
G which contains A as a closed subgroup.
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Corollary 3.8.Let A be a left (right) topopological group and A be a subalgebra of
a left (right) totally bounded left (right) topological group B. For any uncountable set S
in the left (right) totally bounded topological left (right) topological group BS there exists
some left (right) totally bounded left (right) topological group G which contains A as a
closed subgroup.
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