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VISCOUS DRAG IN STEADY STATE GAS FLOW
BETWEEN ROTATING CYLINDERS WITH DIFFERENT
WALL TEMPERATURE"

Dobri Dankov, Vladimir Roussinov, Peter Gospodinov

The viscous drag (wall shear-stress) exerted at the interface “gas — rotating cylinder
wall” is numerically studied by using the Direct Simulation Monte Carlo (DSMC)
method and the continuum model based on the Navier-Stokes-Fourier (NSF) equa-
tions. The wall drag of the cylinders is studied depending on the temperature of the
inner cylinder wall. The temperature of the stationary outer cylinder is constant. Dif-
ferent cases were calculated for a set of velocities and temperatures of rotating inner
cylinder. These studies have been accomplished for several fixed Knudsen numbers.
The NSF results have been obtained by setting a local value of Knudsen number
in the corresponding first order slip boundary conditions. The flow characteristics
obtained by both methods are: in a very good agreement at small Knudsen numbers
0.02 and 0.05 and in a satisfactory agreement at 0.1. The work may be of interest to
the analysis of various non-planar micro gas flows.

1. Introduction. In microflow device design, the viscous drag “solid surface — gas”
is often of critical importance. However, these depend on the characteristics of the flow -
the region of local non-equilibrium existing up to one or two molecular mean free paths
from the wall in any gas flow near a surface.

The Couette cylindrical flow is a fundamental problem in the rarefied gas dynamics
[4, 9, 15, 17]. As such, its modeling and numerical solving is of a great importance for
microfluidics, which serves for theoretical background of the analysis of new emerging
Micro Electro Mechanical Systems MEMS [5, 7, 19].

The design of adequate mathematical models of gaseous flows in micro devices is one
of the most important tasks of the studies. We consider both molecular and continuum
models treating the gaseous flow by using different level of mathematical description.
Both models take into account the specific microfluidic effects of gas rarefaction and
slip-velocity regime at the solid boundaries [10, 11, 13, 14, 15, 16].

In the present paper we compare results for the viscous drag exerted at the interface
“gas — rotating cylinder wall” in cylindrical Couette flow obtained by using the molecular
Direct Simulation Monte Carlo (DSMC) method with those calculated by a numerical
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solution of the continuum Navier-Stokes-Fourier equations for compressible flow (NSF).
Both methods are used to model the cylindrical Couette flow for Knudsen numbers 0.02,
0.05 and 0.1, the inner cylinder dimensionless velocity 0.1, 0.3 and 0.5, the inner cylinder
dimensionless temperature 0.1, 0.3, 0.5, 0.7 and 0.9 and the outer cylinder being at
rest, with constant dimensionless temperature To = 1. The slip boundary conditions
are modeled by using local Knudsen number. The aim of the comparison is to illustrate
qualitatively the influence of the Knudsen number, the inner cylinder wall velocity and
temperature on the viscous drag values.

The comparison illustrates qualitatively the influence of non-equilibrium effects taking
place at larger Knudsen numbers Kn > 0.1. Under such conditions the continuum model
is no longer valid and a kinetic theory approach must be applied.

2. Formulation of the problem and methods of solution. We study a rarefied
gas flow between two coaxial unconfined cylinders (one dimensional, axis-symmetrical
problem).

Continuous Model (NSF) and Numerical Simulation. The continuous model
is based on the Navier-Stokes-Fourier equations for compressible fluid, completed with
the equations of continuity and energy transport. The governing equations are written
as follows:
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Where V is the velocity vector, © and v are the velocity components along axis r
and ¢. A rather standard notation is used in Eqgs. (1)-(5): p is density and T is the
temperature. p, P, T, u,v = f(r,t). The stress tensor components are 7; ; and ® is the
dissipation function [12]. For a perfect monatomic gas, the viscosity and the coefficient
heat transfer read as [1]:
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The above written equations are normalized by using the following scales: for density,
po = mng, for velocity Vo = +/2RT, — R is the gas constant, for length - the distance
between the cylinders L = Ry — Ry, for time to = L/Vj, for temperature Ty = Ty 1 —
the wall temperature of both cylinders. The Knudsen number is Kn = 1p/L, where the
mean free path is [, and v = cp/ecv = 5/3 (cp and cy are the heat capacities at constant
pressure and constant volume respectively). In this way in the dimensionless model the
characteristic number Kn and the constants C, and C) take part. After the scaling, the
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same symbols for the dimensionless p, P, T, u, v are used.

For the problem (1)—(4), first-order slip boundary conditions are imposed at both
walls, which can be written directly in dimensionless form as follows [6, 22]:

ov v
(8) v¢A0<E;)Vi,
©)) u =0,
oT
(10) T+ (rKnS =T,

at r = R;, i = 1,2. In Egs. (8)-(10) V; = v;/Vo and T1 = Tw.1/To, T = 1, are
the dimensionless wall velocity and temperature for both cylinders (v;, i = 1,2 is the
dimensional wall velocity). For diffuse scattering we have used the viscous slip and
temperature jump coefficients A, = 1.1466 and (r = 2.1904 calculated, respectively
in [2, 3], from the kinetic BGK equation by using variation method. The boundary
conditions are modeled by using Knjocar.

! ! K
(11) Knlocal = E = (L\/iﬂojﬁ.no) = Po Il.
Po P

In ((11)) with [ is denoted the local mean free path.

The wall shear stress or the drag is defined as dimensionless stress tensor compo-
nent, expressing the viscous interaction between two neighboring thin “shells” of the gas
medium, calculated of the driven cylinder wall:

(12) Trp = Tro/ (P0V5)

where 7, is the dimensional stress tensor component along the axis ¢, according to [11]
With a view to axis-symmetric case the stress tensor component reads

(13) Top = Tor = —i [83 (”—*”)]

r

Using the scales introduced in the previously section, the dimensionless stress tensor
component 7., can be expressed through the dimensionless quantities v, 1":

(14) Tre = —CMKn\/E [7‘% (;)] )

The transfer equations (1)—(4), together with the boundary conditions (8)—(12) and
zero initial variations in the clearance between cylinders, written for u,v and T, formu-
late the unsteady-state initial-boundary value problem. A second order of approxima-
tion, central implicit finite difference scheme is used to solve numerically the formulated
problem. Starting from the inner cylinder wall M grid nodes are introduced along the
coordinate r. The time discretization step is At and the step along the axis r is Ar and
r; = (j — 1) Ar. j is the grid nod number (more details are given in [6, 23]).

Direct Simulation Monte Carlo (DSMC) Method. The gas considered is simu-
lated as a stochastic system of Nparticles [8, 9]. All quantities used are non-dimensional,
so that the mean free path at equilibrium is equal to 1. The basic steps of simulation
are as follows:

A. The time interval [0; f] over which the solution is found, is subdivided into subin-
tervals with step At.
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B. The space domain is subdivided into cells with sides Az, Ar.

C. Gas molecules are simulated in gap G using a stochastic system of N points
(particles) having position z; (t),r; (t) and velocities f,—(t))

D. N,, particles are located in the m-th cell at any given time. This number varies
during the computer simulation by the following two stages:

Stage 1. Binary collisions in each cell are calculated, whereas particles do not move.
Collision modelling is realized using Bird’s scheme “no time counter”.

Stage 2. Particles move with new initial velocities acquired after collisions, and no
external forces act on particles. No collisions are accounted for at this stage.

E. Stage 1 and Stage 2 are repeated until ¢ = .

F. Flow macro-characteristics (density, velocity, temperature) are calculated as time-
averaged when steady regime is attained. The shear-stress is calculated by

(15) Tro =P /§w§1d5 - gg_r )
S

where S is the cylinder wall surface area.

G. Boundary conditions are diffusive at the cylinder walls and periodic along axis Oy.
The number of particles (simulators) used in DSMC calculations is 3200000.

3. Numerical results. The aim of the studies is to determine the influence of the
Knudsen number, the cylindrical wall velocity and temperature on the drag between gas
and cylinder wall, calculated according Eq. (14) and Eq. (15). In a previous research
[12, 13, 14, 15] it has been found that only for Kn = 0.02 and less both method solutions
were in an excellent agreement. And here, our studies are for the cases with Kn = 0.02,
0.05 and 0.1 at:

V1 =0.1,0.3, 0.5 and V5 = 0 and

T, =0.1,0.3, 0.5, 0.7 and 0.9 and 75 = 1.
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Fig. 1. The viscous drag depending on the temperature of inner cylinder: 1 — Vi, = 0.1;
2 — Vin =0.3; 1- Vin = 0.5 at Kn = 0.02. The left figure the drag on the inner cylinder, the
right figure the drag on the outer cylinder
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Fig. 2. The viscous drag depending on the temperature of inner cylinder: 1 — Vi, = 0.1;
2 - Vin =0.3; 1- Vin = 0.5 at Kn = 0.05. The left figure the drag on the inner cylinder, the
right figure the drag on the outer cylinder

The decrease of the inner cylinder temperature value leads to decrease the drag be-
tween the gas and the cylinders. The drag on the inner cylinder is greater than the drag
on the outer cylinder in all studied cases (no matter whether the rotating cylinder is inner
or outer). The Figures 1, 2 and 3 show that the drag is linearly dependent on the cylinder
temperature. This indicates that the effects caused by the increasing drag “gas-wall” at
the Knudsen number increasing, can be of interest at the MEMS development.

In previous research was found that the differences between the two methods occur
in temperature values, which naturally leads to increasing differences with increasing
temperature gradient [15, 16, 24].

0.06

Kn=0.1in eyl Kn=0.1

0.05

0.04

=}
8 0.03
Q

0.02

0.01

0 0.2 04 0.6 08 1 0 0.2 04 06 08 1
in in
Fig. 3. The viscous drag depending on the temperature of inner cylinder: 1- Vi, = 0.1;
2 —Vin =0.3; 1- Vi, = 0.5 at Kn = 0.1. The left figure the drag on the inner cylinder, the right
figure the drag on the outer cylinder
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4. Conclusions. The results obtained by both methods are: in a very good agree-
ment at small Knudsen numbers Kn = 0.02 and Kn = 0.05 and in a satisfactory agree-
ment at Kn = 0.1. The flow character is maintained at increasing the Knudsen number
while the differences are in the macro-characteristics value. With decreasing the wall
temperature the drag “gas-wall” decreases. This is due to the fact that with increasing
of Knudsen number the NSF model can’t adequately describe the gas flow.
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BNCKO3HO TPUEHE HA CTEHUTE, ITP1 CTAIIMOHAPHO
TEYEHUWE HA T'A3 ME2K/1Y BbPTAIIIN CE IINJIMHAPW C
PA3JINYHA TEMIIEPATYPA

Hobpu Jdaukos, Bnagunmup Pycunos, Ilerbp T'ocioguHoB

HucaeHo e n3caeaBaHO BUCKO3HOTO TPUEHE BbPXY CTEHATa, Bb3HUKBAINO Ha (Ha3zoBaTa
CPaHUIA a3 — BbPTSIN Ce IIIHHIBP", MOCPEACTBOM METOJa HA MPSKOTO CTATUCTU-
1ecko mozesmpate (DSMC) u pelneHnero Ha KOHTHHYaJeH MOJIEIN, C M3IOJ3BaHe Ha
ypasaenusTa na Hasue-Crokc u @ypue (NSF). Pasrnenana e 3aBucumoctra Ha TpHe-
HETO BbPXY CTEHATA Ha BbPTSIIHUS Ce BbTPEIEH IIUINHIbD OT HETOBATA TEMIIEPATYPA.
BbHITHUAT NUIVMHBD € HEMOABUYKEH U C MTOCTOSIHHA, TEMITEpaTypa Ha cTeHaTa. duc-
JICHUTE DE3yJITATH Ca MOJIYYeHH 33 HSKOJKO XapaKTEPHU CTOWHOCTH HA YUCIIOTO HA
Kuyncen. B rpannunnTe ycioBust Ha IIrb3rane, OT I'bPBU PeJl B KOHTHHYAIHUS MOJIEI,
€ M3MOJI3BAHO JIOKATHO unciio Ha Kuyacen. CpaBHEHMETO HA PE3yJITATUTE, TOJIYIeHN
110 JIBATa METOJIa, IT0OKa3Ba MHOT'O JI00po chBITajienue 3a ducia Ha Kuymacen 0.02 u 0.05
7 33I0BOJINTEJTHO CHOTBETCTBHUE 3a 4umcyo Ha Kuyncen pasuo ma 0.1. Pazpaborkara
[IPEeJ/ICTaBJISIBA UHTEPEC MIPU U3CJIEIBAHETO HA MUKPOTEUEHUST HA BUCKO3EH ras.
KumaroyoBu ngymum: Mexanuka Ha QJIynuTe, KIHETUIHA TEOPUS, PA3PeIeH ra3, IIPIKO
crarucrudecko mogesupane (DSMC).
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